Импульс всегда движется. Импульс

Подробности Категория: Механика Опубликовано 21.04.2014 14:29 Просмотров: 53279

В классической механике существуют два закона сохранения: закон сохранения импульса и закон сохранения энергии .

Импульс тела

Впервые понятие импульса ввёл французский математик, физик, механик и философ Декарт, назвавший импульс количеством движения .

С латинского «импульс» переводится как «толкать, двигать».

Любое тело, которое движется, обладает импульсом.

Представим себе тележку, стоящую неподвижно. Её импульс равен нулю. Но как только тележка начнёт двигаться, её импульс перестанет быть нулевым. Он начнёт изменяться, так как будет изменяться скорость.

Импульс материальной точки, или количество движения, – векторная величина, равная произведению массы точки на её скорость. Направление вектора импульса точки совпадает с направлением вектора скорости.

Если говорят о твёрдом физическом теле, то импульсом такого тела называют произведение массы этого тела на скорость центра масс.

Как вычислить импульс тела? Можно представить, что тело состоит из множества материальных точек, или системы материальных точек.

Если - импульс одной материальной точки, то импульс системы материальных точек

То есть, импульс системы материальных точек – это векторная сумма импульсов всех материальных точек, входящих в систему. Она равна произведению масс этих точек на их скорости.

Единица измерения импульса в международной системе единиц СИ – килограмм-метр в секунду (кг · м/сек).

Импульс силы

В механике существует тесная связь между импульсом тела и силой. Эти две величины связывает величина, которая называется импульсом силы .

Если на тело действует постоянная сила F в течение промежутка времени t , то согласно второму закону Ньютона

Эта формула показывает связь между силой, которая действует на тело, временем действия этой силы и изменением скорости тела.

Величина, равная произведению силы, действующей на тело, на время, в течение которого она действует, называется импульсом силы .

Как мы видим из уравнения, импульс силы равен разности импульсов тела в начальный и конечный момент времени, или изменению импульса за какое-то время.

Второй закон Ньютона в импульсной форме формулируется следующим образом: изменение импульса тела равно импульсу действующей на него силы. Нужно сказать, что сам Ньютон именно так и сформулировал первоначально свой закон.

Импульс силы – это также векторная величина.

Закон сохранения импульса вытекает из третьего закона Ньютона.

Нужно помнить, что этот закон действует только в замкнутой, или изолированной, физической системе. А замкнутой называют такую систему, в которой тела взаимодействуют только между собой и не взаимодействуют с внешними телами.

Представим замкнутую систему из двух физических тел. Силы взаимодействия тел друг с другом называют внутренними силами.

Импульс силы для первого тела равен

Согласно третьему закону Ньютона силы, которые действуют на тела при их взаимодействии, равны по величине и противоположны по направлению.

Следовательно, для второго тела импульс силы равен

Путём простых вычислений получаем математическое выражение закона сохранения импульса:

где m 1 и m 2 – массы тел,

v 1 и v 2 – скорости первого и второго тел до взаимодействия,

v 1 " и v 2 " скорости первого и второго тел после взаимодействия.

p 1 = m 1 · v 1 - импульс первого тела до взаимодействия;

p 2 = m 2 · v 2 - импульс второго тела до взаимодействия;

p 1 "= m 1 · v 1 " - импульс первого тела после взаимодействия;

p 2 "= m 2 · v 2 " - импульс второго тела после взаимодействия;

То есть

p 1 + p 2 = p 1 " + p 2 "

В замкнутой системе тела только обмениваются импульсами. А векторная сумма импульсов этих тел до их взаимодействия равна векторной сумме их импульсов после взаимодействия.

Так, в результате выстрела из ружья импульс самого ружья и импульс пули изменятся. Но сумма импульсов ружья и находящейся в нём пули до выстрела останется равной сумме импульсов ружья и летящей пули после выстрела.

При стрельбе из пушки возникает отдача. Снаряд летит вперёд, а само орудие откатывается назад. Снаряд и пушка – замкнутая система, в которой действует закон сохранения импульса.

Импульс каждого из тел в замкнутой системе может изменяться в результате их взаимодействия друг с другом. Но векторная сумма импульсов тел, входящих в замкнутую систему, не изменяется при взаимодействии этих тел с течением времени, то есть остаётся постоянной величиной. Это и есть закон сохранения импульса .

Более точно закон сохранения импульса формулируется следующим образом: векторная сумма импульсов всех тел замкнутой системы – величина постоянная, если внешние силы, действующие на неё, отсутствуют, или же их векторная сумма равна нулю.

Импульс системы тел может измениться только в результате действия на систему внешних сил. И тогда закон сохранения импульса действовать не будет.

Нужно сказать, что в природе замкнутых систем не существует. Но, если время действия внешних сил очень мало, например, во время взрыва, выстрела и т.п., то в этом случае воздействием внешних сил на систему пренебрегают, а саму систему рассматривают как замкнутую.

Кроме того, если на систему действуют внешние силы, но сумма их проекций на одну из координатных осей равна нулю, (то есть силы уравновешены в направлении этой оси), то в этом направлении закон сохранения импульса выполняется.

Закон сохранения импульса называют также законом сохранения количества движения .

Самый яркий пример применения закона сохранения импульса – реактивное движение.

Реактивное движение

Реактивным движением называют движение тела, которое возникает при отделении от него с определённой скоростью какой-то его части. Само тело получает при этом противоположно направленный импульс.

Самый простой пример реактивного движения – полёт воздушного шарика, из которого выходит воздух. Если мы надуем шарик и отпустим его, он начнёт лететь в сторону, противоположную движению выходящего из него воздуха.

Пример реактивного движения в природе – выброс жидкости из плода бешеного огурца, когда он лопается. При этом сам огурец летит в противоположную сторону.

Медузы, каракатицы и другие обитатели морских глубин передвигаются, вбирая воду, а затем выбрасывая её.

На законе сохранения импульса основана реактивная тяга. Мы знаем, что при движении ракеты с реактивным двигателем в результате сгорания топлива из сопла выбрасывается струя жидкости или газа (реактивная струя ). В результате взаимодействия двигателя с вытекающим веществом появляется реактивная сила . Так как ракета вместе с выбрасываемым веществом является замкнутой системой, то импульс такой системы не меняется со временем.

Реактивная сила возникает в результате взаимодействия только частей системы. Внешние силы не оказывают никакого влияния на её появление.

До того, как ракета начала двигаться, сумма импульсов ракеты и горючего была равна нулю. Следовательно, по закону сохранения импульса после включения двигателей сумма этих импульсов тоже равна нулю.

где - масса ракеты

Скорость истечени газа

Изменение скорости ракеты

∆ m f - расход массы топлива

Предположим, ракета работала в течение времени t .

Разделив обе части уравнения на t , получим выражение

По второму закону Ньютона реактивная сила равна

Реактивная сила, или реактивная тяга, обеспечивает движение реактивного двигателя и объекта, связанного с ним, в сторону, противоположную направлению реактивной струи.

Реактивные двигатели применяются в современных самолётах и различных ракетах, военных, космических и др.

Импульс тела. Закон сохранения импульса. Антонова Ульяна ученица 9 «а» класса. Руководитель Балакина И. В., учитель физики первой категории

Стакан с водой находится на длинной полоске прочной бумаги. Если тянуть полоску медленно, то стакан движется вместе с бумагой. А если резко дернуть полоску бумаги - стакан остается неподвижный. Почему? Если мяч, летящий с большой скоростью, футболист может остановить ногой или головой, то вагон, движущийся по рельсам даже очень медленно, человек не остановит. Теннисный мяч, попадая в человека, вреда не причиняет, однако пуля, которая меньше по массе, но движется с большой скоростью (600-800 м/с), оказывается смертельно опасной.

Импульс тела - это важнейшая величина

Изменение импульса тела происходит при взаимодействии тел. Например, при ударах.

Импульсом тела называется величина, равная произведению массы тела на его скорость:

Импульс – это векторная величина. Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения.

При расчетах пользуются уравнением для проекций векторов, направленных на координатную ось Ох Единицей импульса тела в СИ является 1 кг * м/с

Слово «импульс» (impulsus) в переводе с латинского означает «толчок» Эта величина была введена в науку в конце XVII века

Тело массы небольшой (10 кг.) скорость развивает (5м/с). И какой же это тело Импульс получает? P=mV P=10кг.*5м/с=50кг*м/с

Закон сохранения импульса. Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействия этих тел. Запись закона для двух тел:

ЗАМКНУТАЯ СИСТЕМА – ЭТО СИСТЕМА ТЕЛ,КОТОРЫЕ ВЗАИМОДЕЙСТВУЮТ ТОЛЬКО ДРУГ С ДРУГОМ

Осьминоги вбирают в себя воду и затем резко выбрасывают её, получая при этом импульс, направленный в противоположную сторону. Управляя струёй, осьминог может двигаться в нужном направлении. Движение ракет Применение закона сохранения импульса В природе В технике

1. Импульс силы измеряется в C И: 1Н; В. 1м; С. 1 Дж; D . кг · м / с 2. Закон сохранения импульса справедлив для: А. замкнутой системы; В. любой системы 3.Что называют импульсом тела: А. величину, равную произведению массы тела на силу; В. величину, равную отношению массы тела к его скорости; С. величину, равную произведению массы тела на его скорость. 4. Что можно сказать о направлении вектора скорости и вектора импульса тела? А. направлены в противоположные стороны; В. перпендикулярны друг другу; С. их направления совпадают ОТВЕТ: 1 D ; 2А; 3С; 4С. Проверь себя

Спасибо за внимание!

Задача 1

Вдоль оси Ох движется тело массой m =1 кг со скоростью V 0 = 2 м/с. Вдоль направления движения действует сила F = 4 Н в течение некоторого времени t = 2 с. Определите скорость тела после окончания действия этой силы.

Для решения этой задачи в первую очередь важно вспомнить о том, что такое, импульс тела .

Рис. 1. Выбор системы отсчета

Вспоминая, что импульс силы – это изменение импульса тела, запишем следующее выражение: .

Теперь уравнение согласуем с выбранной системой отсчета. Сила F при проекции на ось Х будет с положительным знаком, а значит: .

Затем, преобразовав это уравнение, выделив из него ту скорость, которую нужно определить, запишем следующее выражение: .

Ответ: 10 м/с.


Задача 2

Тележка с человеком на ней движется вдоль прямой со скоростью 2 м/с. Человек спрыгивает с тележки в горизонтальном направлении, противоположном направлению движения тележки, со скоростью 1 м/с. Определите скорость тележки после того, как с нее спрыгнул человек. Масса человека в 1,5 раза больше, чем масса тележки.

Рис. 2. Проекции импульса тел на ось Х

В первом случае, обратите внимание, и тележка, и человек едут вместе, значит, скорость у них одинакова, мы можем записать для данной системы отсчета, связанной с осью Ох, следующее выражение: .

Затем, когда человек спрыгивает с тележки, этих двух тел можно записать следующим образом: .

Знак минус показывает, что скорость человека направлена в противоположную сторону, а скорость тележки со знаком плюс будет направлена в ту же сторону, что и первоначальная скорость, т.е. вдоль оси Ох.

Записав эти выражения для начального состояния и состояния после взаимодействия, воспользуемся законом сохранения импульса.


По закону сохранения импульса импульс в первом случае будет равен импульсу во втором случае: Р 0х = Р х. .

Записав это соотношение, переписываем, раскрываем скобки выражений: (m 1 + m 2) . V 1 =- m 2 . V 2 + m 1 . V ¢ 1 .

Скорость V¢ 1 и нужно определить. Выразим массу человека через массу тележки, но так, чтобы масса была выражена в одних единицах: (m 1 +1,5 m 1) . V 1 =-1,5 m 1 . V 2 + m 1 . V ¢ 1 .

Массу m 1 мы можем вынести за скобку и сократить: 2,5 m 1 . V 1 =-1,5 m 1 . V 2 + m 1 . V ¢ 1 . Когда подставляем значения для скоростей, получаем ответ: .

М Эта задача хорошо иллюстрирует реактивное движение. Человек, который спрыгнул с тележки в противоположную сторону, увеличил скорость самой тележки. Не правда ли, это хорошо сочетается с тем, как из ракеты вырываются с некоторой скоростью газы и придают дополнительную скорость оболочке, т.е. самой ракете.

Задача 3

Шарик массой m 1 = 1 кг . скользит по идеально гладкой поверхности со скоростью v 1 = 4 м/с и абсолютно упруго сталкивается с таким же по размеру шариком массой m 2 = 3 кг . Определите скорость шариков после удара?
Решение:
По закону сохранения импульса при абсолютно неупругом ударе .

ОХ:

Ответ: 1 м/с


Задача 4

Мячик массой 70 г . падает на пол под углом 60 0 к нормали и под таким же углом отскакивает без потери скорости. Определите импульс суммарной силы, действовавшей на мячик во время удара, если его скорость равна 30 м/с .
Решение:
Покажем на рисунке изменения скорости мячика в процессе удара:
Запишем 2-й закон Ньютона
По построению определяем, что . Величина импульса суммарной силы, действовавшей на мячик во время удара, равна
Ответ:

Задача 5

Мальчик массой 40 кг , стоя на коньках кидает камень массой 1 кг со скоростью 8 м/с . под углом 60 0 к горизонту. Определите скорость, с которой мальчик начнет двигаться по льду в результате броска?


Решение:
На систему мальчик - камень не действуют ни какие горизонтальный силы. В инерциальной системе отчета, связанной с землей, проекция суммарного импульса системы на горизонтальную ось должны оставаться неизменной:
Скорость мальчика после броска
Ответ: 0.1 м/с

Задача 6 0.04 м/с

Задача 7

Снаряд в верхней точке своей траектории разорвался на два осколка с массами m 1 =3 кг и m 2 =5 кг. Скорость снаряда непосредственно перед разрывом равнялась v 0 =600 м/с, скорость большего осколка сразу после разрыва равнялась v 2 =800 м/с, а направление ее совпало с направлением движения снаряда перед разрывом. Определите скорость малого осколка сразу после разрыва.


Решение:
Выберем за положительное направление скорости снаряда v 0 и запишем закон сохранения импульса.




Значит, и меньший осколок летел в том же направлении.
Ответ:

Цели урока:

  • Образовательные : формировать понятия «импульс тела», «импульс силы»; добиться усвоения учащимися формулировки и вывода закона сохранения импульса.
  • Развивающие : продолжить совершенствование навыков решения задач с учетом теоретических знаний.
  • Воспитательные : показать объективность проявления закона сохранения импульса, учёт и использование его на практике.

Оборудование: металлические шарики, тележки демонстрационные, желоб лабораторный металлический, штатив с муфтой и лапкой

ХОД УРОКА

1. Актуализация знаний. Повторение изученного материала

  1. В чём заключается основная задача механики?
  2. Как формулируется второй закон Ньютона?
  3. О чём гласит третий закон Ньютона?

2. Изучение нового материала

Законы движения позволяют решать задачи механики, если известны силы, приложенные к телам. Но во многих случаях законы движения нельзя использовать для решения задач именно потому, что неизвестны силы. Когда, например, приходится рассматривать столкновение двух тел, будь то столкновение автомобилей, бильярдных шаров, трудно определить значения возникающих сил. Значит, кроме силы в физике есть другая величина, которая позволяет решать задачи при взаимодействии тел. Это импульс тела.

Ребята, тема нашего урока «Импульс тела. Закон сохранения импульса».

Цель урока: усвоить понятие импульса тела, понятие замкнутой системы, вывести закон сохранения импульса, научится решать задачи на закон сохранения.

Импульсом тела называется величина, равная произведению массы тела на его скорость.

Обозначим импульс (его также называют иногда количеством движения) буквой . Тогда

Из формулы видно, что импульс - векторная величина. Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения. Единица импульса не имеет особого названия. Ее наименование получается из определения этой величины:

[p ] = [m ] · = 1 кг · 1 м/с = 1 кг·м/с.

При расчетах пользуются уравнением для проекций векторов: p x = m x .

Запишем второй закон Ньютона в виде:

С другой стороны:

Подставим это выражение в формулу второго закона Ньютона. После преобразования, получим

Данная формула устанавливает взаимосвязь между действующей на тело силой, временем её действия и изменением скорости тела. Изменение импульса равно произведению силы, приложенной к телу, на время ее действия. Величина – импульс силы. Изменение импульса тела равно импульсу силы.

Импульс обладает интересным и важным свойством, которое есть у немногих физических величин – это свойство сохранения.

Опыт 1

Рисунок 1 .

Рисунок 2 .

Что происходит с импульсом? Исчезло?

Ученик. Импульс сохранился.

Опыт 2

Рисунок 3.

Учитель. Тележка обладает импульсом?
Ученик. Нет, т.к. его скорость равна нулю.
Учитель. Шарик обладает импульсом?
Ученик. Обладает.
Учитель. Что происходит с импульсом?
Ученик. Импульс сохраняется не полностью.

Опыт 3

Рисунок 4 .

Учитель. Что происходит с импульсом?
Ученик. Импульс пропал.
Учитель. В зависимости от случая импульс сохраняется, сохраняется не полностью, исчезает. Нравится ли такой закон?
Ученик. Нет.
Учитель. В природе все тела и явления взаимосвязаны и взаимообусловливают друг друга. Но, несмотря на это, при решении некоторых задач механики можно не учитывать влияния на некоторую группу тел всех остальных тел. Такая условно выделенная группа тел, не взаимодействующая с внешними телами, носит название замкнутой системы.
В природе замкнутых систем тел нет. Иногда можно исключить действие внешних сил (ружье и пуля в его стволе, Солнце и планеты, пушка и снаряд).

Рассмотрим упругое столкновение, где нет потерь энергии.

Рисунок 5 .

Пусть замкнутая система состоит из двух тел массами m 1 и m 2 , которые до столкновения имеют скорости и (см. Рисунок 5), а после столкновения -

Система будет замкнутая, так как силы тяжести уравновешены силами упругости поверхности, а силы сопротивления малы. Во время столкновения возникают силы (1).

По второму закону Ньютона каждую из этих сил можно заменить произведением массы на ускорение, полученное каждым из шаров при взаимодействии:

Ускорения, как мы знаем, определяются из равенств:

Заменив в уравнении (2) ускорения соответствующими выражениями из уравнений (3) и (4), получим:

В результате сокращения обеих частей уравнения (5) на t получим:

Сгруппируем члены уравнения (6) следующим образом:

Учитывая, что запишем уравнение (7) в таком виде:

Левые части уравнений (7) и (8) представляют собой суммарный импульс шаров после их взаимодействия, а правые - суммарный импульс до взаимодействия.

Значит, несмотря на то, что импульс каждого из шаров при взаимодействии изменился, векторная сумма их импульсов после взаимодействия осталась такой же, как и до взаимодействия.

Уравнения (7) и (8) являются математической записью закона сохранения импульса.

Таким образом, векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.

В этом заключается закон сохранения импульса.

Взаимодействия бывают: 1) упругими, 2) неупругими.

Алгоритм решения задач:

1. Записать условие.
2. Схематически показать взаимодействие тел до и после взаимодействия.
3. Записать для данной задачи закон сохранения импульса в векторной форме.
4. Найти проекции скоростей на ось ОХ.
5. Заменить векторы скоростей их проекциями.
6. Из полученного уравнения найти искомую величину.

3. Решение задач

С тележки, движущейся со скоростью 2 м/с, спрыгивает мальчик со скоростью 1 м/с, направленной горизонтально против хода тележки. Масса мальчика равна 45 кг, а масса тележки – 30 кг. С какой скоростью будет двигаться тележка сразу после того, как мальчик спрыгнул с нее?

Используя закон сохранения импульса запишем уравнение в векторном виде:

Спроектируем полученное векторное уравнение на ось ОХ:

2 = ((45 кг + 30 кг) * 2 м/с + 45 кг)* 1 м/с) / 30 кг = 6,5 м/с

Ответ: 2 = 6,5 м/с.

4. Домашнее задание: § 21, 22, Упр 21 (2).

Законы Ньютона позволяют решать различные практически важные задачи, касающиеся взаимодействия и движения тел. Большое число таких задач связано, например, с нахождением ускорения движущегося тела, если известны все действующие на это тело силы. А затем по ускорению определяют и другие величины (мгновенную скорость, перемещение и др.).

Но часто бывает очень сложно определить действующие на тело силы. Поэтому для решения многих задач используют ещё одну важнейшую физическую величину - импульс тела.

  • Импульсом тела р называется векторная физическая величина, равная произведению массы тела на его скорость

Импульс - векторная величина. Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения.

За единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скоростью 1 м/с. Значит, единицей импульса тела в СИ является 1 кг м/с.

При расчётах пользуются уравнением для проекций векторов: р х = mv x .

В зависимости от направления вектора скорости по отношению к выбранной оси X проекция вектора импульса может быть как положительной, так и отрицательной.

Слово «импульс» (impulsus) в переводе с латинского означает «толчок». В некоторых книгах вместо термина «импульс» используется термин «количество движения».

Эта величина была введена в науку примерно в тот же период времени, когда Ньютоном были открыты законы, названные впоследствии его именем (т. е. в конце XVII в.).

При взаимодействии тел их импульсы могут изменяться. В этом можно убедиться на простом опыте.

Два шарика одинаковой массы подвешивают на нитяных петлях к укреплённой на кольце штатива деревянной линейке, как показано на рисунке 44, а.

Рис. 44. Демонстрация закона сохранения импульса

Шарик 2 отклоняют от вертикали на угол а (рис. 44, б) и отпускают. Вернувшись в прежнее положение, он ударяет по шарику 1 и останавливается. При этом шарик 1 приходит в движение и отклоняется на тот же угол а (рис. 44, в).

В данном случае очевидно, что в результате взаимодействия шаров импульс каждого из них изменился: на сколько уменьшился импульс шара 2, на столько же увеличился импульс шара 1.

Если два или несколько тел взаимодействуют только между собой (т. е. не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему.

Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом. Но

  • векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел

В этом заключается закон сохранения импульса.

Закон сохранения импульса выполняется и в том случае, если на тела системы действуют внешние силы, векторная сумма которых равна нулю. Покажем это, воспользовавшись для вывода закона сохранения импульса вторым и третьим законами Ньютона. Для простоты рассмотрим систему, состоящую только из двух тел - шаров массами m 1 и m 2 , которые движутся прямолинейно навстречу друг другу со скоростями v 1 и v 2 (рис. 45).

Рис. 45. Система из двух тел - шаров, движущихся прямолинейно навстречу друг другу

Силы тяжести, действующие на каждый из шаров, уравновешиваются силами упругости поверхности, по которой они катятся. Значит, действие этих сил можно не учитывать. Силы сопротивления движению в данном случае малы, поэтому их влияние мы тоже не будем учитывать. Таким образом, можно считать, что шары взаимодействуют только друг с другом.

Из рисунка 45 видно, что через некоторое время шары столкнутся. Во время столкновения, длящегося в течение очень короткого промежутка времени t, возникнут силы взаимодействия F 1 и F 2 , приложенные соответственно к первому и второму шару. В результате действия сил скорости шаров изменятся. Обозначим скорости шаров после соударения буквами v 1 и v 2 .

В соответствии с третьим законом Ньютона силы взаимодействия шаров равны по модулю и направлены в противоположные стороны:

По второму закону Ньютона каждую из этих сил можно заменить произведением массы и ускорения, полученного каждым из шаров при взаимодействии:

m 1 а 1 = -m 2 а 2 .

Ускорения, как вы знаете, определяются из равенств:

Заменив в уравнении для сил ускорения соответствующими выражениями, получим:

В результате сокращения обеих частей равенства на t получим:

m1(v" 1 - v 1) = -m 2 (v" 2 - v 2).

Сгруппируем члены этого уравнения следующим образом:

m 1 v 1 " + m 2 v 2 " = m 1 v 1 = m 2 v 2 . (1)

Учитывая, что mv = p, запишем уравнение (1) в таком виде:

P" 1 + Р" 2 = P 1 + Р 2 .(2)

Левые части уравнений (1) и (2) представляют собой суммарный импульс шаров после их взаимодействия, а правые - суммарный импульс до взаимодействия.

Значит, несмотря на то, что импульс каждого из шаров при взаимодействии изменился, векторная сумма их импульсов после взаимодействия осталась такой же, как и до взаимодействия.

Уравнения (1) и (2) являются математической записью закона сохранения импульса.

Поскольку в данном курсе рассматриваются только взаимодействия тел, движущихся вдоль одной прямой, то для записи закона сохранения импульса в скалярной форме достаточно одного уравнения, в которое входят проекции векторных величин на ось X:

m 1 v" 1x + m 2 v" 2х = m 1 v 1x + m 2 v 2x .

Вопросы

  1. Что называют импульсом тела?
  2. Что можно сказать о направлениях векторов импульса и скорости движущегося тела?
  3. Расскажите о ходе опыта, изображённого на рисунке 44. О чём он свидетельствует?
  4. Что означает утверждение о том, что несколько тел образуют замкнутую систему?
  5. Сформулируйте закон сохранения импульса.
  6. Для замкнутой системы, состоящей из двух тел, запишите закон сохранения импульса в виде уравнения, в которое входили бы массы и скорости этих тел. Поясните, что означает каждый символ в этом уравнении.

Упражнение 20

  1. Две игрушечные заводные машины, массой по 0,2 кг каждая, движутся прямолинейно навстречу друг другу. Скорость каждой машины относительно земли равна 0,1 м/с. Равны ли векторы импульсов машин; модули векторов импульсов? Определите проекцию импульса каждой из машин на ось X, параллельную их траектории.
  2. На сколько изменится (по модулю) импульс автомобиля массой 1 т при изменении его скорости от 54 до 72 км/ч?
  3. Человек сидит в лодке, покоящейся на поверхности озера. В какой-то момент он встаёт и идёт с кормы на нос. Что произойдёт при этом с лодкой? Объясните явление на основе закона сохранения импульса.
  4. Железнодорожный вагон массой 35 т подъезжает к стоящему на том же пути неподвижному вагону массой 28 т и автоматически сцепляется с ним. После сцепки вагоны движутся прямолинейно со скоростью 0,5 м/с. Какова была скорость вагона массой 35 т перед сцепкой?