Ионный эмиссионный микроскоп. Принцип действия ионных микроскопов

Методы зондирования поверхности излучениями всё же не дают возможности своими глазами увидеть её самые малые участки. Для того, чтобы понять, что же происходит на поверхности, исследователям необходима карта точного расположения атомов и их электронных оболочек. Наблюдать отдельные атомы на поверхности позволяют ионные микроскопы. Это связано с тем, что длина волны движущегося в электрическом поле иона должна быть гораздо меньше, чем длина волны электрона, что подтверждается формулой Луи де Бройля -

ведь масса иона несоизмеримо больше массы покоя электрона.

В настоящее время (начало бурного развития наноэлектронных технологий) практически опробованы и постоянно модернизируются несколько типов ионных микроскопов, среди которых можно выделить полевой ионизационный микроскоп, растровый туннельный микроскоп и атомный силовой микроскоп . Ниже кратко рассмотрим первых два вида ионных микроскопов.

Полевой ионизационный микроскоп (ПИМ).

Основой прибора служит очень тонкая и острая металлическая игла, являющаяся исследуемым образцом, а также люминесцентный экран, расположенный напротив (рис. 12).

Рис. 12. Схема формирования изображения в полевом ионизационном микроскопе

1 - образец исследуемого материала (наконечник иглы); 2 - зона ионизации;

3 - атом "изображающего" газа; 4 - ион; 5 - расходящийся поток ионов;

6 - заземлённый флуорисцирующий экран; 7 - вспышка на экране;

8 - изображение (совокупность вспышек)

Пространство между иглой и экраном заполняется инертным газом (гелием, аргоном) при давлении 10-1 Па. Если между кончиком иглы и экраном приложить напряжение, причём игла должна служить анодом, то вокруг неё можно создать чрезвычайно сильное электрическое поле - около 500 МВ/см2. Когда электрически нейтральный атом вследствие диффузии подходит к атомам острия, электрическое поле ионизирует его. Этот ион под действием электрического поля направляется к той точке экрана, которая однозначно соответствует позиции атома исследуемого образца, вблизи которого произошла ионизация. Изображение иглы на флуоресцирующем экране характеризуется очень большим увеличением - отчётливо видны атомы кристаллической решётки. Поскольку ионы - это тяжёлые частицы, то длина их волны очень мала, вследствие чего исключаются дифракционные эффекты, снижающие разрешающую способность получаемых изображений.

При этом максимальное разрешение микроскопа определяется величиной менее 0,2 нм.

Однако не все образцы можно изучать с помощью ионного микроскопа. Образец должен быть насажен на тонкий кончик иглы шириной несколько ангстрем и быть стойким к огромным электрическим полям, которые могут привести к разрыву химических связей, удерживающих атомы на поверхности. Самые важные с технологической точки зрения полупроводниковые материалы можно изучать лишь при полях с плотностью около 350 МВ/см.

Растровый туннельный микроскоп (РТМ).

Принцип работы РТМ сравнительно прост. Сканирующая металлическая игла, закрепленная в трехкоординатном приводе P X , P Y , P Z , расположена перпендикулярно исследуемой поверхности (рис. 13).

Рис. 13. Принцип работы сканирующего туннельного микроскопа:

1 - игла; 2 - исследуемая поверхность; 3 - трехкоординатный пьезопривод; 4 - система обратной связи

С помощью пьезопривода игла подводится к поверхности образца до возникновения туннельного тока I T , который определяется величиной зазора s между иглой и поверхностью:

где Ф - величина потенциального барьера в зазоре, измеряемая в электронвольтах; U - напряжение, приложенное между иглой и образцом в вольтах; s - зазор между поверхностью и иглой в ангстремах.

При постоянном напряжении U на зазоре игла перемещается вдоль поверхности, причем с помощью системы обратной связи, воздействующей на пьезоэлемент P Z , туннельный ток I T поддерживают постоянным. Если величина барьера Ф постоянна вдоль исследуемой поверхности (материал поверхности однороден), то величина туннельного тока будет изменяться пропорционально величине зазора между иглой и поверхностью и график изменения этого тока будет описывать профиль рельефа поверхности. Набор таких профилей даст непосредственную информацию о топографии поверхности.

На рис. 14 представлены сравнительные характеристики различных сканирующих растровых микроскопов, а на рис. 15 и 16 - примеры изображений отдельных групп атомов, построенных с помощью РТМ.

Рис. 15. РТМ-изображение германиевой самосборки атомов (германиевая «пирамида» на кремнии) шириной 10 нм

Рис. 16. РТМ-изображение «квантового загона» - 48 атомов Fe по окружности диаметром 14,6 нм с движущимися внутри электронами (волновой рельеф) на медной пластине

Микроскопы появились очень давно, в середине XV столетия, еще до Галилея. Но увеличение светового микроскопа ограничено, в микроскоп можно увидеть только объекты около 0,2 мкм, т. е. получить увеличение примерно в 500 раз. Интересно, что такое увеличение давали микроскопы Левенгука – просто стеклянные капельки на длинной палочке. Поэтому до 1950 года никто не смог увидеть отдельные атомы – кирпичики, из которых построены твердые тела, и удалось это впервые сделать в том году Эрвину Мюллеру. Выдающийся физик XX века Ричард Фейнман так охарактеризовал изобретение Э. Мюллера:
«Ионный микроскоп впервые снабдил человечество средством видеть атомы. Замечательное достижение, да еще полученное с таким простым прибором».

Схема конструкции ионного эмиссионного микроскопа, называемого также автоионным микроскопом (АИМ), показана на рис. 1. Основные части микроскопа – вакуумная трубка и люминесцентный экран. Из исследуемого кристаллического материала изготавливатся тоненькая иголочка с радиусом кривизны 50–100 нм, она устанавливается вдоль оси вакуумной трубки на расстоянии около 50 мм от экрана и к образцу прикладывается высокое напряжение (3–30 кВ) . В трубку микроскопа напускается небольшое количество (~10 –3 Па) инертного газа, обычно гелия или неона.

Рис. 1 Устройство ионного эмиссионного микроскопа

Когда потенциал образца увеличивается, атомы газа, окружающего его вершину, поляризуются в сильном электрическом поле и притягиваются к поверхности. Они сталкиваются с поверхностью, отдают ей часть своей кинетической энергии в процессе выравнивания температуры и захватываются в область сильного поля. Затем атомы газа претерпевают серию ударов с поверхностью образца при уменьшающейся высоте отскока от нее (рис. 2).

Рис. 2. Принцип формирования микроскопического изображения

В достаточно высоком поле (несколько десятков вольт на нанометр) первые атомы газа, достигающие поверхности, адсорбируются полем в особых положениях над отдельными выступающими поверхностными атомами. Атомы газа, достигающие поверхности, мигрируют вдоль нее над слоем адсорбированных атомов до тех пор, пока не ионизуются, отдав свой электрон игле, оставляя положительный ион газа над поверхностью. Электрические силы отталкивают ионы от образца перпендикулярно его поверхности и направляют ионы к люминесцентному экрану, создавая изображение поверхности, на которой они были образованы, и обеспечивая тем самым высокое увеличение. Процесс автоионизации легче всего происходит у наиболее выступающих поверхностных атомов, и поэтому на экране мы видим увеличенное изображение структуры вещества.

В достаточно высоких полях начинаются процессы десорбции полем и испарения полем.

Это очень удобно, так как позволяет убрать неровности, химические загрязнения и даже отдельные атомные слои, что позволяет получить фотографии нескольких последовательных слоев вещества. По снимкам слоев можно восстановить объемную атомную структуру вещества.

Туннельный ток небольшой (10 –12 –10 –11 А) , передать энергию люминофору удается не больше чем 1 % ионов, а для засвечивания пятна необходимо 10 3 –10 4 ион/с. Поэтому яркость «первичного» ионного изображения очень мала, и, как правило, оно с трудом воспринимается глазом без полной адаптации в темноте. Для увеличения яркости изображения в современной технике обычно используют преобразователи изображения (так называемые микроканальные пластины – МКП). Они размещаются перед экраном и преобразуют ионные пучки в более сильные электронные. При использовании таких усилителей изображение в АИМ становится контрастным и его можно наблюдать даже при дневном свете и фотографировать.

На рис. 3 показан общий вид современного АИМ.

Рис. 3. Общий вид автоионного микроскопа

Автоионные микроскопы могут быть использованы для анализа разнообразных материалов, включая почти все металлы и сплавы, полупроводники, проводящие окислы и керамики.

Ионный микроскоп

прибор, в котором для получения изображений применяется пучок ионов, создаваемый термоионным или газоразрядным ионным источником. По принципу действия И. м. аналогичен электронному микроскопу (См. Электронный микроскоп). Проходя через объект и испытывая в различных его участках рассеяние и поглощение, ионный пучок фокусируется системой электростатических или магнитных линз и даёт на экране или фотослое увеличенное изображение объекта (см. Электронная и ионная оптика).

Создано лишь несколько опытных образцов И. м. Работы по его усовершенствованию стимулируются тем, что он должен обладать более высокой разрешающей способностью (См. Разрешающая способность) по сравнению с электронным микроскопом. Длина Волны де Бройля для ионов значительно меньше, чем для электронов (при одинаковом ускоряющем напряжении), вследствие чего в И. м. очень малы эффекты дифракции, которые в электронном микроскопе ограничивают его разрешающую способность. Другие преимущества И. м. - меньшее влияние изменения массы ионов при больших ускоряющих напряжениях и лучшая контрастность изображения. Расчёты показывают, что, например, контрастность изображения органических плёнок толщиной в 50 Å, вызванная рассеянием протонов, в несколько раз должна превышать контрастность, вызванную рассеянием электронов.

К недостаткам И. м. относятся заметная потеря энергии ионов даже при прохождении через очень тонкие объекты, что вызывает разрушение объектов, большая хроматическая аберрация (см. Электронные линзы), разрушение люминофора экрана ионами и слабое фотографическое действие. Эти недостатки привели к тому, что, несмотря на перечисленные выше преимущества И. м. по сравнению с электронным, он не нашёл пока практического применения. Значительно более эффективным оказался И. м. без линз - Ионный проектор .

Лит.: The proceedings of the 3d International conference on electron microscopy, L., 1956, p. 220-99.

Ю. М. Кушнир.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Ионный микроскоп" в других словарях:

    Электронно оптич. прибор, в к ром для получения изображений применяется ионный пучок, создаваемый термоионным или газоразрядным ионным источником. По принципу действия И. м. аналогичен электронному микроскопу. Проходя через объект и испытывая в… … Физическая энциклопедия

    ионный микроскоп - Микроскоп, в к ром для получения изображений применяют пучок ионов, создаваемый термоионным или газоразрядным ионным источником. По принципу действия и. м. аналогичен эл нному. Пройдя через объект, ионный пучок фокусируется системой… … Справочник технического переводчика

    Безлинзовый прибор, в котором для получения изображений используется ионный пучок. Последний проходит через объект, полностью или частично прозрачный для ионов данной энергии, фокусируется системой электрических и магнитных полей и образует на… … Большой Энциклопедический словарь

    ионный микроскоп - микроскоп, в котором для получения изображений применяют пучок ионов, создаваемый термоионным или газоразрядным ионным источником. По принципу действия ионный микроскоп аналогичен электронному. Пройдя через объект, ионный пучок… … Энциклопедический словарь по металлургии

    Безлинзовый прибор, в котором для получения изображений используется ионный пучок. Последний проходит через объект, полностью или частично прозрачный для ионов данной энергии, фокусируется системой электрического и магнитного полей и образует на… … Энциклопедический словарь

    Безлинзовый прибор, в котором для получения увеличенных изображений исследуемого объекта используется ионный пучок. Последний проходит через объект, полностью или частично прозрачный для ионов данной энергии, фокусируется с помощью электрических… … Энциклопедия техники

    Безлинзовый прибор, в к ром для получения изображений используется ионный пучок. Последний проходит через объект, полностью или частично прозрачный для ионов данной энергии, фокусируется системой электрич. и магн. полей и образует на… … Естествознание. Энциклопедический словарь

    Ионно оптич. прибор для получения увеличенного изображения с помощью ионных пучков. По принципу действия аналогичен электронному микроскопу. В И. м. поток ионов, создаваемый термоионным или газоразрядным источником, проходя через исследуемый… … Большой энциклопедический политехнический словарь

    Autoemisinis joninis mikroskopas statusas T sritis radioelektronika atitikmenys: angl. field emission ion microscope vok. Feldionenmikroskop, n rus. автоэмиссионный ионный микроскоп, m pranc. microscope à émission ionique de champ, m … Radioelektronikos terminų žodynas

    автоэмиссионный ионный микроскоп - autoemisinis joninis mikroskopas statusas T sritis chemija apibrėžtis Mikroskopas, kuriuo matomą vaizdą sukuria emituoti bandinio jonai. atitikmenys: angl. field emission ion microscope rus. автоэмиссионный ионный микроскоп … Chemijos terminų aiškinamasis žodynas

Немецкие физики разработали новый просвечивающий ионный микроскоп с улучшенным алгоритмом получения информации об изображении. Это серьёзный вызов самым точным просвечивающим электронным микроскопам.

Оптическая микроскопия упирается в дифракционный предел: в такой микроскоп нельзя увидеть объекты, размер которых меньше, чем так называемый предел Аббе. Он определяется как отношение половины длины волны света в видимом диапазоне к показателю преломления среды, помноженному на синус апертурного угла (максимального угла по отношению к оптической оси, под которым свет входит в объектив). Чтобы разглядеть что-то меньше четверти микрона (250 нм), нужно использовать дополнительные ухищрения, например, погрузить образец и объектив в масло. Даже линзы с большим апертурным углом и микроскопы с двойным объективом принципиально ограничены величинами порядка сотни нанометров.

Рис. 1: Схема микроскопа: между двумя металлическими «крышками» с отверстиями для пучка находится ловушка ионов. После охлаждения пучок со строго определённым числом ионов следует через серию корректировочных электродов и электро-линзу для фокусировки.

Рис. 2: Изображение волновода с отверстиями около 150 нм в диаметре. Слева направо: РЭМ; изображение, полученное с помощью детерминистского источника (2659 из 4141 ионов дошли до детектора); изображение, полученное с помощью ФИЛ с Пуассоновым распределени

Рис. 3: Слева: изображение отверстия в образце, полученное без Байесовой оптимизации; справа: то же отверстие, полученное с помощью Байесова экспериментального подхода.

В электронной микроскопии вместо света используются заряженные частицы, что помогает значительно снизить дифракционный предел. Электронный микроскоп открыл нам красоту микро- и нано-мира во всех подробностях, и в наше время он превратился в рутинный инструмент биологов, химиков, физиков и материаловедов. Различают два вида электронных микроскопов: растровый и просвечивающий. Первый «сканирует» поверхность пучком электронов с высокой энергией (0.2-50 кэВ) и собирает так называемые вторичные электроны, которые пучок выбивает из поверхности образца. Их энергия существенно ниже, порядка 50 эВ, и на основе от их количества и направления воссоздаётся топография поверхности образца. Анализ отражённых электронов, катодолюминесцении и рентгеновских лучей даёт информацию о химическом составе и кристаллической структуре образца. Растровая электронная микроскопия (РЭМ) так же лежит в основе электронно-лучевой литографии. Это ключевой процесс в изготовлении транзисторов и наноструктур с разрешением и точностью в несколько десятков нанометров. Просвечивающий электронный микроскоп (ПЭМ) используется для исследования очень тонких образцов (некоторые из них требуют тщательной и трудоёмкой подготовки), и строит изображение на основе электронов, которые прошли сквозь образец. Специфика электронной микроскопии заключается в том, что для хорошего изображения образец должен сам хорошо проводить электроны или же быть покрытым металлическим напылением. В противном случае наведённый при облучении заряд накапливается в образце и приводит к артефактам, что затрудняет изучение биологических объектов и непроводящих полимеров.

В качестве альтернативы электронам в микроскопии можно использовать ионы – тяжёлые положительно заряженные частицы. Чтобы получить положительно заряженный ион, нужно «оторвать» от электронейтрального атома хотя бы один электрон. Для этого расплавленный металл собирается на кончике иглы из вольфрама, и за счёт сильного электрического поля атомы ионизируются и отрываются от поверхности металла. Фокусируемый ионный луч или пучок (ФИЛ) позволяет получить изображение непроводящих образцов с разрешением до 5 нм, но этот метод разрушает поверхность: «родные» атомы выбиваются ионами, которые «встают» на их место. С другой стороны, такой ионный пучок ионный пучок хорошо подходит для высокоточного «выжигания» наноструктур и добавления примесей в полупроводники.

Источники электронного и ионного излучения подчиняются статистике Пуассона (распределение, которое описывает вероятность несвязаных между собой событий в определённый промежуток времени, при известной средней интенсивности этих событий). По этой причине отношение сигнала к шуму (ОСШ, отношение мощности полезного сигнала к мощности шума) оптимизируется за счёт продолжительности облучения или увеличенной интенсивности пучка. Как упоминалось выше, это наводит дополнительный заряд и разрушает образцы.

Георг Якоб и его коллеги из университетов Майнца и Касселя в Германии подошли к проблеме с неожиданной стороны: они создали детерминистский источник ионного излучения, который позволяет извлечь максимум полезной информации из каждого иона, который попадает на образец. В данном случае принцип действия детерминистского источника противопоставляется обычным источникам, которые полагаются на статистическое распределение количества характеристик ионов.

Микроскоп, который собрали немецкие учёные, показан на иллюстрации. Ионы кальция 40 Ca + собираются в продолговатую ловушку за счёт градиента электрического поля, созданного продольными сборными пластинами из алюминия. Градиент колеблется на радиочастоте, удерживая заряженные частицы на месте. Попав в ловушку, ионы охлаждаются с помощью лазера. Частота его излучения чуть меньше, чем разница между двумя энергетическими уровнями иона, соответствующими излучательному переходу. Ионы, которые двигаются навстречу фотонам, «видят» более высокую частоту за счёт эффекта Допплера (этот метод известен как Допплеровское охлаждение). В таком случае они поглощают фотон и переходят в возбуждённое состояние. После этого ионы переиспускают фотон в случайном направлении. В результате ион теряет изначальное направление движения и момент. Иными словами, уменьшается средняя кинетическая энергия ионов, а следовательно, и температура. ПЗС-камера рядом с ловушкой улавливает переизлучённые фотоны, что позволяет оценить количество охлаждённых ионов. Профиль ловушки подстраивается так, чтобы она удерживала строго определённое количество ионов. Ускоряющее напряжение, находящееся в фазе с колебаниями ловушки, выпускает ионы, после чего они проходят через серию корректирующих направление пучка электродов и электро-линзу. Детектор собирает ионы, прошедшие через образец, после чего изображение строится с учётом точного количества выпущенных ионов. Эффективность такого подхода показана на рис.2, где сравниваются изображения, полученные с помощью РЭМ, нового ионного микроскопа и ФИЛ с Пуассоновым распределением. Несмотря на то, что количество частиц, попавших в детектор, сопоставимо, качество изображения последнего сильно уступает новому методу.

Для оценки возможностей нового микроскопа учёные используют алмазную пластину с отверстием в 1 микрон (1000 нм). Задача измерения – определить размер и расположение центра отверстия по отношению к ионному пучку. Сначала был сделан «контрольный» замер: с помощью 1332 ионов получено изображение образца с радиусом отверстия 1057 ± 32 нм и точностью расположения его центра 20-40 нм (см. рис. 3).

Чтобы увеличить эффективность сбора информации, реализован так называемый «Байесов экспериментальный подход». Основная идея заключается в использовании алгоритма по оптимизации решений в условиях неопределённости. С помощью предварительно известных параметров измерений можно оптимизировать процесс, используя Байесову оценку решения: выбирается предварительная функция распределения, которая уточняется по мере проведения эксперимента таким образом, чтобы максимизировать функцию полезности. Измерение параметризовано радиусом отверстия и его положением, а так же известными диаметром пучка ионов в фокусе (25 нм) и эффективностью детектора (95%). Для каждой «порции» ионов положение образца корректируется с учётом Байесовой оценки. На рис. 3 показаны пошаговая коррекция оценки положения центра отверстия (серая ломаная линия), предварительная функция распределения Гауссовой формы (Концентрический градиент) и конечный результат (красная штриховая линия). В результате изображение этого отверстия, сделанное с помощью 379 ионов, даёт результат 1004 ± 2 нм и точность определения позиции центра 2.7 нм. Это на порядок лучше, чем «контрольное» измерение!

Минимальное количество ионов, выпущенных «по образцу», существенно снижает артефакты, возникающие за счёт наведения заряда и физического повреждения. Физики уже планируют улучшить установку с помощью с помощью более оперативной «подгрузки» ионов и более надёжного и стабильного коммерческого ионного источника. По их оценкам, это даст новому микроскопу преимущество перед самыми точными просвечивающими микроскопами. При реализации пикосекундного контроля над ионами можно делать микроскопию с временным разрешением, а оптическая накачка сделает ионный источник полностью спин-поляризованным, что позволит измерять магнитную поляризацию поверхности.

Сверхвысокое электрическое поле, окружающее всякий острый выступ заряженного проводника, получило интересное применение в одном приборе. Работа ионного микроскопа обусловлена мощными полями, возникающими вокруг металлического острия. Устроен этот прибор так. Очень тонкая игла, диаметр кончика которой не более , помещена в центре стеклянной сферы, из которой выкачан воздух (фиг. 6.16). Внутренняя поверхность сферы покрыта тонким проводящим слоем флуоресцирующего вещества, и между иглой и флуоресцирующим покрытием создана очень высокая разность потенциалов.

Фигура 6.16. Ионный микроскоп.

Посмотрим сперва, что будет, если игла по отношению к флуоресцирующему экрану заряжена отрицательно. Линии поля у кончика иглы сконцентрированы очень сильно. Электрическое поле может достигать . В таких сильных полях электроны отрываются от поверхности иглы и ускоряются на участке от иглы до экрана за счет разности потенциалов. Достигнув экрана, они вызывают в этом месте свечение (в точности, как на экране телевизионной трубки).

Электроны, пришедшие в данную точку флуоресцирующей поверхности, - это, в очень хорошем приближении, те самые электроны, которые покинули другой конец радиальной линии поля, потому что электроны движутся вдоль линий поля, соединяющих кончик иглы с поверхностью сферы. Так что на поверхности мы видим своего рода изображение кончика иглы. А точнее, мы видим картину испускательной способности поверхности иглы, т. е. легкости, с которой электроны могут оставить поверхность металлического острия. Если сила разрешения достаточно высока, то можно рассчитывать разрешить положения отдельных атомов на кончике иглы. Но с электронами такого разрешения достичь нельзя по следующим причинам. Во-первых, возникает квантовомеханическая дифракция электронных волн, и изображение затуманится. Во-вторых, в результате внутреннего движения в металле электроны имеют небольшую поперечную начальную скорость в момент вырывания из иглы и эта случайная поперечная составляющая скорости приведет к размазыванию изображения. В общей сложности эти эффекты ограничивают разрешимость деталей величиной порядка .

Если, однако, мы переменим знак напряжения и впустим в колбу немного гелия, то детали разрешены будут лучше. Когда атом гелия сталкивается с кончиком острия, мощное поле срывает с атома электрон, и атом заряжается положительно. Затем ион гелия ускоряется вдоль силовой линии, пока не попадет в экран. Поскольку ион гелия несравненно тяжелее электрона, то и квантовомеханические длины волн у него намного меньше. А если к тому же температура не очень высока, то и влияние тепловых скоростей также значительно слабее, чем у электрона. Изображение размазывается меньше и получается куда более резкое изображение кончика иглы. С микроскопом, работающим на принципе ионной эмиссии, удалось добиться увеличения вплоть до 2 000 000 раз, т. е. в десять раз лучше, чем на лучших электронных микроскопах.

На фиг. 6.17 показано, что удалось получить на таком микроскопе, применив вольфрамовую иглу. Центры атомов вольфрама ионизуют атомы гелия чуть иначе, чем промежутки между атомами вольфрама. Расположение пятен на флуоресцирующем экране демонстрирует расстановку отдельных атомов на вольфрамовом острие. Почему пятна имеют вид колец, можно понять, если представить себе большой ящик, набитый шарами, уложенными в прямоугольную сетку и образующими таким образом кубическую решетку. Эти шары - как бы атомы в металле. Если вы из этого ящика вырежете примерно сферическую часть, то увидите картину колец, характерную для атомной структуры. Ионный микроскоп впервые снабдил человечество средством видеть атомы. Замечательное достижение, да еще полученное с таким простым прибором.

Фигура 6.17. Изображение, полученное ионным микроскопом