Искусственный интеллект: что это на самом деле? Риск для развития человеческой цивилизации. Подходы к пониманию проблемы

Создания интеллектуальных машин , особенно интеллектуальных компьютерных программ ; 2) свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека.Шаблон:-1

ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта , но не обязательно ограничивается биологически правдоподобными методами.Шаблон:-1

Происхождение и понимание термина «искусственный интеллект»

Процитированное в преамбуле определение искусственного интеллекта, данное Джоном Маккарти в 1956 году на конференции в Дартмутском университете , не связано напрямую с пониманием интеллекта у человека. Согласно Маккарти, ИИ-исследователи вольны использовать методы, которые не наблюдаются у людей, если это необходимо для решения конкретных проблем.

Участники Российской ассоциации искусственного интеллекта дают следующие определения искусственного интеллекта:

  1. Научное направление, в рамках которого ставятся и решаются задачи аппаратного или программного моделирования тех видов человеческой деятельности, которые традиционно считаются интеллектуальнымиАверкин А. Н., Гаазе-Рапопорт М. Г., Поспелов Д. А. Толковый словарь по искусственному интеллекту. - М.:Радио и связь, 1992. - 256 с. .
  2. Свойство интеллектуальных систем выполнять функции (творческие), которые традиционно считаются прерогативой человека. При этом интеллектуальная система - это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Структура интеллектуальной системы включает три основных блока - базу знаний, решатель и интеллектуальный интерфейс, позволяющий вести общение с ЭВМ без специальных программ для ввода данных.
  3. Наука под названием «Искусственный интеллект» входит в комплекс компьютерных наук , а создаваемые на её основе технологии к информационным технологиям . Задачей этой науки является воссоздание с помощью вычислительных систем и иных искусственных устройств разумных рассуждений и действийГ. С. Осипов. Искусственный интеллект: состояние исследований и взгляд в будущее .

Одно из частных определений интеллекта, общее для человека и «машины», можно сформулировать так: «Интеллект - способность системы создавать в ходе самообучения программы (в первую очередь эвристические) для решения задач определённого класса сложности и решать эти задачи»Ильясов Ф. Н. Разум искусственный и естественный // Известия АН Туркменской ССР, серия общественных наук. 1986. № 6. С. 46-54..

Предпосылки развития науки искусственного интеллекта

История развития искусственного интеллекта в СССР и России

В СССР работы в области искусственного интеллекта начались в 1960-х годах. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым . С начала 1960-х М. Л. Цетлин с коллегами разрабатывали вопросы, связанные с обучением конечных автоматов.

В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.

До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики . По мнению Д. А. Поспелова , науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики . При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950-х - начала 1960-х годовД. А. Поспелов. Становление информатики в России . Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются

Искусственный интеллект - это область науки, занимающаяся моделированием интеллектуальной деятельности человека. Зародившийся более 700 лет назад в средневековой Испании искусственный интеллект оформился в самостоятельную научную область в середине XX в.

Методы искусственного интеллекта позволили создать эффективные компьютерные программы в самых разнообразных, ранее считавшихся недоступными для формализации и алгоритмизации, сферах человеческой деятельности, таких как медицина, биология, зоология, социология, культурология, политология, экономика, бизнес, криминалистика и т.п. Идеи обучения и самообучения компьютерных программ, накопления знаний, приемы обработки нечетких и неконкретных знаний позволили создать программы, творящие чудеса. Компьютеры успешно борются за звание чемпиона мира по шахматам, моделируют творческую деятельность человека, создавая музыкальные и поэтические произведения, распознают образы и сцены, распознают, понимают и обрабатывают речь, тексты на естественном человеческом языке. Нейрокомпьютеры, созданные по образу и подобию человеческого мозга, успешно справляются с управлением сложными техническими объектами, диагностикой заболеваний человека, неисправностей сложных технических устройств; предсказывают погоду и курсы валют, результаты голосований; выявляют хакеров и потенциальных банкротов; помогают абитуриентам правильно выбрать специальность и т.д.

Мы уже привыкли к тому, что компьютеры «умнеют» буквально на глазах, а компьютерные программы становятся все более и более интеллектуальными. Само по себе понятие интеллекта постоянно претерпевает изменения по мере развития науки и человека. Давно уже не считаются интеллектуальными задачи, состоящие в выполнении арифметических операций сложения, умножения, деления. Не считается интеллектуальной задача интегрирования дифференциального уравнения, если для нее известен строго детерминированный алгоритм. В настоящее время принято считать интеллектуальными задачи, которые на современном этапе не поддаются алгоритмизации в традиционном смысле этого слова. Это задачи, для решения которых требуются манипуляции с нечеткими, неконкретными, ненадежными, расплывчатыми и даже нетрадиционными знаниями.

Начнем рассмотрение положений ИИ с терминов и определений.

Термин интеллект (intelligence) происходит от латинского intellectus - что означает ум, рассудок, разум; мыслительные способности человека. Соответственно искусственный интеллект (artificial intelligence) - ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий.

Понятие «интеллект» используется сегодня и в технике, и в технических дисциплинах, которое отличается от определений, сформировавшихся в контексте психологических и философских исследований сознания. Под интеллектом будем понимать способность мышления предвидеть события, предвидеть результаты собственных действий, анализировать и оценивать свое состояние и окружающую обстановку и принимать решения, сообразуясь со своими представлениями об окружающем мире. Определение, данное академиком Н.Н. Моисеевым, рассматривает интеллектуальную деятельность с позиций информатики. Но оно и выделяет самое главное в интеллекте – это способность к отвлеченному мышлению, абстрагированию, благодаря которым и возникают самосознание и рефлексия.

Итак, интеллект – это способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам.

При этом под термином «знания» подразумевается не только та информацию, которая поступает в мозг через органы чувств. Такого типа знания чрезвычайно важны, но недостаточны для интеллектуальной деятельности. Дело в том, что объекты окружающей нас среды обладают свойством не только воздействовать на органы чувств, но и находиться друг с другом в определенных отношениях. Ясно, что для того, чтобы осуществлять в окружающей среде интеллектуальную деятельность (или хотя бы просто существовать), необходимо иметь в системе знаний модель этого мира. В этой информационной модели окружающей среды реальные объекты, их свойства и отношения между ними не только отображаются и запоминаются, но и, как это отмечено в данном определении интеллекта, могут мысленно «целенаправленно преобразовываться». При этом существенно то, что формирование модели внешней среды происходит «в процессе обучения на опыте и адаптации к разнообразным обстоятельствам».

Интеллектуальная задача . Для того, чтобы пояснить, чем отличается интеллектуальная задача от просто задачи, необходимо ввести термин «алгоритм» - один из краеугольных терминов кибернетики.

Под алгоритмом понимают точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин «алгоритм» происходит от имени узбекского математика Аль-Хорезми, который еще в IX веке предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Отыскание алгоритма для задач некоторого данного типа связано с тонкими и сложными рассуждениями, требующими большой изобретательности и высокой квалификации. Задачи, связанные с отысканием алгоритма решения класса задач определенного типа, будем называть интеллектуальными .

Что же касается задач, алгоритмы решения которых уже установлены, то, как отмечает известный специалист в области ИИ М. Минский, «излишне приписывать им такое мистическое свойства, как «интеллектуальность»». В самом деле, после того, как такой алгоритм уже найден, процесс решения соответствующих задач становится таким, что его могут в точности выполнить человек, вычислительная машина (должным образом запрограммированная) или робот, не имеющие ни малейшего представления о сущность самой задачи. Требуется только, чтобы лицо, решающее задачу, было способно выполнять те элементарные операции, их которых складывается процесс, и, кроме того, чтобы оно педантично и аккуратно руководствовалось предложенным алгоритмом. Такое лицо, действуя, как говорят в таких случаях, чисто машинально, может успешно решать любую задачу рассматриваемого типа.

Поэтому представляется совершенно естественным исключить их класса интеллектуальных такие задачи, для которых существуют стандартные методы решения. Примерами таких задач могут служить чисто вычислительные задачи: решение системы линейных алгебраических уравнений, численное интегрирование дифференциальных уравнений и т. д. Для решения подобного рода задач имеются стандартные алгоритмы, представляющие собой определенную последовательность элементарных операций, которая может быть легко реализована в виде программы для вычислительной машины. В противоположность этому для широкого класса интеллектуальных задач, таких, как распознавание образов, игра в шахматы, доказательство теорем и т.п., напротив это формальное разбиение процесса поиска решения на отдельные элементарные шаги часто оказывается весьма затруднительным, даже если само их решение несложно.

Таким образом, можно перефразировать определение интеллекта как универсальный сверхалгоритм, который способен создавать алгоритмы решения конкретных задач.

Еще интересным замечанием здесь является то, что профессия программиста, исходя из наших определений, является одной из самых интеллектуальных, поскольку продуктом деятельности программиста являются программы - алгоритмы в чистом виде. Именно поэтому, создание даже элементов ИИ должно очень сильно повысить производительность его труда.

Деятельность мозга (обладающего интеллектом), направленную на решение интеллектуальных задач, будем называть мышлением, или интеллектуальной деятельностью . Интеллект и мышление органически связаны с решением таких задач, как доказательство теорем, логический анализ, распознавание ситуаций, планирование поведения, игры и управление в условиях неопределенности. Характерными чертами интеллекта, проявляющимися в процессе решения задач, являются способность к обучению, обобщению, накоплению опыта (знаний и навыков) и адаптации к изменяющимся условиям в процессе решения задач. Благодаря этим качествам интеллекта мозг может решать разнообразные задачи, а также легко перестраиваться с решения одной задачи на другую. Таким образом, мозг, наделенный интеллектом, является универсальным средством решения широкого круга задач (в том числе неформализованных) для которых нет стандартных, заранее известных методов решения.

Следует иметь в виду, что существуют и другие, чисто поведенческие (функциональные) определения. Так, по А. Н. Колмогорову, любая материальная система, с которой можно достаточно долго обсуждать проблемы науки, литературы и искусства, обладает интеллектом. Другим примером поведенческой трактовки интеллекта может служить известное определение А. Тьюринга. Его смысл заключается в следующем. В разных комнатах находится люди и машина. Они не могут видеть друг друга, но имеют возможность обмениваться информацией (например, с помощью электронной почты). Если в процессе диалога между участниками игры людям не удается установить, что один из участников - машина, то такую машину можно считать обладающей интеллектом.

Кстати интересен план имитации мышления, предложенный А. Тьюрингом. «Пытаясь имитировать интеллект взрослого человека, - пишет Тьюринг, - мы вынуждены много размышлять о том процессе, в результате которого человеческий мозг достиг своего настоящего состояния… Почему бы нам вместо того, чтобы пытаться создать программу, имитирующую интеллект взрослого человека, не попытаться создать программу, которая имитировала бы интеллект ребенка? Ведь если интеллект ребенка получает соответствующее воспитание, он становится интеллектом взрослого человека… Наш расчет состоит в том, что устройство, ему подобное, может быть легко запрограммировано… Таким образом, мы расчленим нашу проблему на две части: на задачу построения «программы-ребенка» и задачу «воспитания» этой программы».

Забегая вперед, можно сказать, что именно этот путь используют практически все системы ИИ. Ведь понятно, что практически невозможно заложить все знания в достаточно сложную систему. Кроме того, только на этом пути проявятся перечисленные выше признаки интеллектуальной деятельности (накопление опыта, адаптация и т. д.).

Термин «искусственный интеллект» введен в обиход в 1956 г. профессором Массачусетского технологического института Дж.Макарти на встрече американских специалистов в области наук, связанных с теорией и практикой исследования вычислительных процессов. На этой встрече в Дортмутском колледже, которую американцы считают первой конференцией по ИИ, были сформулированы две основные задачи в новой научно-технической отрасли: раскрыть механизм человеческого мышления и построить электронную машину, которая могла бы имитировать данный процесс .

Единого определения, полностью описывающего эту научную область, не существует и по сей день. Среди многих точек зрения на нее сегодня доминируют три. Согласно первой - исследования в области ИИ являются фундаментальными исследованиями, в рамках которых разрабатываются модели и методы решения задач, традиционно считавшихся интеллектуальными и не поддававшихся ранее формализации и автоматизации. Согласно второй точке зрения, новое направление связано с новыми идеями решения задач на ЭВМ, с разработкой принципиально иной технологии программирования, с переходом к архитектуре ЭВМ, отвергающей классическую архитектуру, которая восходит еще к первым ЭВМ. Наконец, третья точка зрения, по-видимому, наиболее прагматическая, состоит в том, что в результате работ в области искусственного интеллекта рождается множество прикладных систем, решающих задачи, для которых ранее создаваемые системы были непригодны.

Конечно, все эти три точки зрения взаимно связаны, в области ИИ развиваются фундаментальные исследования, новая технология программирования, новая архитектура технических средств, и все это используется для создания прикладных систем, предназначенных для работы в самых разнообразных областях.

Под искусственным интеллектом будем понимать область научных исследований, в рамках которой разрабатываются модели, методы, технические и программные средства решения задач, традиционно считавшихся интеллектуальными и поддающимися формализации и автоматизации.

Под интеллектуальными системами понимают любые биологические, искусственные или формальные системы, проявляющие способность к целенаправленному поведению. Последнее включает свойства (проявления) общения, накопления знаний, принятия решений, обучения, адаптации и т.д.

Системами ИИ называют системы, предназначенные для выполнения на ЭВМ таких практических задач, которые называются интеллектуальными, если они выполняются людьми. В теории ИИ часто системы ИИ называют интеллектуальными системами.

Еще одно определение понятия «интеллектуальная система» в ИИ предложено Поспеловым Д.А. Система считается интеллектуальной, если в ней реализованы следующие три базовые функции:

1) Функция представления и обработки знаний. Интеллектуальная система должна быть способна накапливать знания об окружающем мире, классифицировать и оценивать их с точки зрения прагматики и непротиворечивости, инициировать процессы получения новых знаний, соотносить новые знания со знаниями, хранящимися в базе знаний.

2) Функция рассуждения. Интеллектуальная система должна быть способна формировать новые знания с помощью логического вывода и механизмов выявления закономерностей в накопленных знаниях, получать обобщенные знания на основе частных знаний и логически планировать свою деятельность.

3) Функция общения. Интеллектуальная система должна быть способна общаться с человеком на языке, близком к естественному (ЕЯ) и получать информацию через каналы, аналогичные тем, которые использует человек при восприятии окружающего мира, прежде всего зрительный и звуковой, уметь формировать «для себя» или по просьбе человека объяснения собственной деятельности, оказывать человеку помощь за счет знаний, которые хранятся в ее памяти, и логических средств рассуждения.

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Технологические направления ИИ. Данные Deloitte

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Основные коммерческие сферы применения технологий искусственного интеллекта

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

Основные коммерческие сферы применения технологий искусственного интеллекта в банках

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

Использование ИИ в госуправлении

ИИ в криминалистике

  • Распознавание образов - используется в т.ч. для выявления преступников в общественных пространствах.
  • В мае 2018 года стало известно об использовании голландской полицией искусственного интеллекта для расследования сложных преступлений.

Как сообщает издание The Next Web, правоохранительные органы начали оцифровывать более 1500 отчетов и 30 млн страниц, связанных с нераскрытыми делами. В компьютерный формат переносят материалы, начиная с 1988 года, в которых преступление не раскрывалось не менее трех лет, и преступник были приговорен к более 12 годам лишения свободы.

Раскрыть сложное преступление за день. Полиция берет ИИ на вооружение

После оцифровки всего контента он будет подключен к системе машинного обучения , которая будет анализировать записи и решать, в каких делах используются самые достоверные доказательства. Это должно снизить время обработки дел и раскрытия прошлых и будущих преступлений с нескольких недель до одного дня.

Искусственный интеллект будет распределять дела по их «разрешимости» и указывать на возможные результаты экспертизы ДНК. Затем планируется автоматизировать анализ и в других областях судебной экспертизы и, возможно, даже охватить данные в таких областях, как общественные науки и свидетельские показания.

Кроме того, как рассказал один разработчиков системы Джерун Хаммер (Jeroen Hammer), в будущем могут быть выпущены API -функции для партнёров.


В голландской полиции есть специальное подразделение, специализирующееся на освоении новых технологий для раскрытия преступлений. Именно он и создало ИИ-систему для быстрого поиска преступников по уликам.

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что машинный интеллект сможет быстро обрабатывать данные и учитывать значительно больше факторов, чем судья-человек.

Эксперты-психологи, впрочем, считают, что отсутствие эмоциональной составляющей при рассмотрении судебных дел негативно скажется на качестве решения. Вердикт машинного суда может оказаться слишком прямолинейным, не учитывающим важность чувств и настроения людей.

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

Искусственный интеллект

Искусственный интеллект - раздел информатики, изучающий возможность обеспечения разумных рассуждений и действий с помощью вычислительных систем и иных искусственных устройств. При этом в большинстве случаев заранее неизвестен алгоритм решения задачи.

Точного определения этой науки не существует, так как в философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла - Саймона. На данный момент есть множество подходов как к пониманию задачи ИИ, так и созданию интеллектуальных систем.

Так, одна из классификаций выделяет два подхода к разработке ИИ:

нисходящий, семиотический - создание символьных систем, моделирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;

восходящий, биологический - изучение нейронных сетей и эволюционные вычисления, моделирующих интеллектуальное поведение на основе более мелких «неинтеллектуальных» элементов.

Эта наука связана с психологией, нейрофизиологией, трансгуманизмом и другими. Как и все компьютерные науки, она использует математический аппарат. Особое значение для неё имеют философия и робототехника.

Искусственный интеллект - очень молодая область исследований, старт которой был дан в 1956 году. Её исторический путь напоминает синусоиду, каждый «взлёт» которой инициировался какой-либо новой идеей. В настоящий момент её развитие находится на «спаде», уступая место применению уже достигнутых результатов в других областях науки, промышленности, бизнесе и даже повседневной жизни.

Подходы к изучению

Существуют различные подходы к построению систем ИИ. На данный момент можно выделить 4 достаточно различных подхода:

1. Логический подход. Основой для логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов - в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели (такая система известна как экспертные системы). Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем. Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и промежуточные значения - не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет.

2. Под структурным подходом мы подразумеваем здесь попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон. Позднее возникли и другие модели, которые большинству известны под термином нейронные сети (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети. В более широком смысле такой подход известен как Коннективизм.

3. Эволюционный подход. При построении систем ИИ по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели. Среди эволюционных алгоритмов классическим считается генетический алгоритм

4. Имитационный подход. Данный подход является классическим для кибернетики с одним из ее базовых понятий черный ящик. Объект, поведение которого имитируется, как раз и представляет собой «черный ящик». Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Таким образом здесь моделируется другое свойство человека - способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни.

В рамках гибридных интеллектуальных систем пытаются объединить эти направления. Экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения.

Многообещающий новый подход, называемый усиление интеллекта, рассматривает достижение ИИ в процессе эволюционной разработки как побочный эффект усиления человеческого интеллекта технологиями.

Направления исследований

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, т. е. переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.

Немаловажным направлением является обработка естественного языка, в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них - машинное обучение - касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Большие и интересные достижения имеются в области моделирования биологических систем. Строго говоря, сюда можно отнести несколько независимых направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как разпознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы - агента, взаимодействующего с внешней средой, называется агентным подходом. А если должным образом заставить массу «не очень интеллектуальных» агентов взаимодействовать вместе, то можно получить «муравьиный» интеллект.

Задачи распознавание образов уже частично решаются в рамках других направлений. Сюда относятся распознавание символов, рукописного текста, речи, анализ текстов. Особо стоит упомянуть компьютерное зрение, которое связано с машинным обучением и робототехникой.

Вообще, робототехника и искусственный интеллект часто ассоциируется друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов, можно считать ещё одним направлением ИИ.

Особняком держится машинное творчество, в связи с тем, что природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки, литературных произведений (часто - стихов или сказок), художественное творчество.

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх, нелинейное управление, интеллектуальные системы безопасности.

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.

В начале XVII века Рене Декарт предположил, что животное - некий сложный механизм, тем самым сформулировав механистическую теорию. В 1623 г. Вильгельм Шикард построил первую механическую цифровую вычислительную машину, за которой последовали машины Блеза Паскаля (1643) и Лейбница (1671). Лейбниц также был первым, кто описал современную двоичную систему счисления, хотя до него этой системой периодически увлекались многие великие ученые. В XIX веке Чарльз Бэббидж и Ада Лавлейс работали над программируемой механической вычислительной машиной.

В 1910-1913 гг. Бертран Рассел и А. Н. Уайтхэд опубликовали работу «Принципы математики», которая произвела революцию в формальной логике. В 1941 Конрад Цузе построил первый работающий программно-контролируемый компьютер. Уоррен Маккалок и Валтер Питтс в 1943 опубликовали A Logical Calculus of the Ideas Immanent in Nervous Activity, который заложил основы нейронных сетей.

Современное положение дел

В настоящий момент (2008) в создании искусственного интеллекта (в первоначальном смысле этого слова, экспертные системы и шахматные программы сюда не относятся) наблюдается дефицит идей. Практически все подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла.

Некоторые из самых впечатляющих гражданских ИИ систем:

Deep Blue - победил чемпиона мира по шахматам. (Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам и система не была признана Каспаровым, хотя оригинальные компактные шахматные программы неотъемлемый элемент шахматного творчества. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain. Данная история - пример запутанных и засекреченных отношений ИИ, бизнеса, и национальных стратегических задач.)

Mycin - одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно как и доктора.

20q - проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в интернете на сайте 20q.net.

Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.

Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Применение ИИ

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика) при игре на бирже и управлении собственностью. В августе 2001 года роботы выиграли у людей в импровизированном соревновании по трейдингу (BBC News, 2001). Методы распознавания образов, (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр вынуждены применять ИИ той или иной степени проработанности. Стандартными задачами ИИ в играх являются нахождение пути в двухмерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

Перспективы ИИ

Просматриваются два направления развития ИИ:

первое заключается в решении проблем связанных с приближением специализированных систем ИИ к возможностям человека и их интеграции, которая реализована природой человека.

второе заключается в создании Искусственного Разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.

Связь с другими науками

Искусственный интеллект тесно связан с трансгуманизмом. А вместе с нейрофизиологией и когнитивной психологией он образует более общую науку, называемую когнитологией. Отдельную роль в искусственном интеллекте играет философия.

Философские вопросы

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве. С одной стороны, они неразрывно связаны с этой наукой, а с другой - привносят в неё некоторый хаос. Среди исследователей ИИ до сих пор не существует какой-либо доминирующей точки зрения на критерии интеллектуальности, систематизацию решаемых целей и задач, нет даже строгого определения науки.

Может ли машина мыслить?

Наиболее горячие споры в философии искусственного интеллекта вызывает вопрос возможности мышления творения человеческих рук. Вопрос «Может ли машина мыслить?», который подтолкнул исследователей к созданию науки о моделировании человеческого разума, был поставлен Аланом Тьюрингом в 1950 году. Две основных точки зрения на этот вопрос носят названия гипотез сильного и слабого искусственного интеллекта.

Термин «сильный искусственный интеллект» ввел Джон Сёрль, его же словами подход и характеризуется:

«Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум» .

Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

В своем мысленном эксперименте «Китайская комната», Джон Сёрль показывает, что прохождение теста Тьюринга не является критерием наличия у машины подлинного процесса мышления.

Мышление есть процесс обработки находящейся в памяти информации: анализ, синтез и самопрограмированние.

Аналогичную позицию занимает и Роджер Пенроуз, который в своей книге «Новый ум короля» аргументирует невозможность получения процесса мышления на основе формальных систем.

Существуют разные точки зрения на этот вопрос. Аналитический подход предполагает анализ высшей нервной деятельности человека до низшего, неделимого уровня (функция высшей нервной деятельности, элементарная реакция на внешние раздражители (стимулы), раздражение синапсов совокупности связанных функцией нейронов) и последующее воспроизведение этих функций.

Некоторые специалисты за интеллект принимают способность рационального, мотивированного выбора, в условиях недостатка информации. То есть интелектуальной просто считается та программа деятельности (не обязательно реализованная на современных ЭВМ), которая сможет выбрать из определенного множества альтернатив, например, куда идти в случае «налево пойдёшь …», «направо пойдёшь …», «прямо пойдёшь…»

Наука о знании

Также, с проблемами искусственного интеллекта тесно связана эпистемология - наука о знании в рамках философии. Философы, занимающиеся данной проблематикой, решают вопросы, схожие с теми, которые решаются инженерами ИИ о том, как лучше представлять и использовать знания и информацию.

Отношение к ИИ в обществе

ИИ и религия

Среди последователей авраамических религий существует несколько точек зрения на возможность создания ИИ на основе структурного подхода.

По одной из них мозг, работу которого пытаются имитировать системы, по их мнению, не участвует в процессе мышления, не является источником сознания и какой-либо другой умственной деятельности. Создание ИИ на основе структурного подхода невозможно.

В соответствии с другой точкой зрения, мозг участвует в процессе мышления, но в виде "передатчика" информации от души. Мозг ответственен за такие "простые" функции, как безусловные рефлексы, реакция на боль и тп. Создание ИИ на основе структурного подхода возможно, если конструируемая система сможет выполнять "передаточные" функции.

Обе позиции не соответствуют данным современной науки, т.к. понятие душа не рассматривается современной наукой в качестве научной категории.

По мнению многих буддистов ИИ возможен. Так, духовный лидер далай-лама XIV не исключает возможности существования сознания на компьютерной основе.

Раэлиты активно поддерживают разработки в области искусственного интеллекта.

ИИ и научная фантастика

В научно-фантастической литературе ИИ чаще всего изображается как сила, которая пытается свергнуть власть человека (Омниус, HAL 9000, Скайнет, Colossus , Матрица и репликант) или обслуживающий гуманоид (C-3PO, Data, KITT и KARR, Двухсотлетний человек). Неизбежность доминирования над миром ИИ, вышедшего из под контроля, оспаривается такими фантастами как Айзек Азимов и Kevin Warwick.

Любопытное видение будущего представлено в романе «Выбор по Тьюрингу» писателя-фантаста Гарри Гаррисона и ученого Марвина Мински. Авторы рассуждают на тему утраты человечности у человека, в мозг которого была вживлена ЭВМ, и приобретения человечности машиной с ИИ, в память которой была скопирована информация из головного мозга человека.

Некоторые научные фантасты, например Вернор Виндж, также размышляли над последствиями появления ИИ, которое, по-видимому, вызовет резкие драматические изменения в обществе. Такой период называют технологической сингулярностью.