Как найти частное решение дифференциального уравнения. Конспект лекции_6 Дифференциальные уравнения первого порядка

Дифференциальное уравнение (ДУ) - это уравнение ,
где - независимые переменные, y - функция и - частные производные.

Обыкновенное дифференциальное уравнение - это дифференциальное уравнение, которое имеет только одну независимую переменную, .

Дифференциальное уравнение в частных производных - это дифференциальное уравнение, которое имеет две и более независимых переменных.

Слова “обыкновенные“ и "в частных производных" могут опускаться, если ясно, какое уравнение рассматривается. В дальнейшем рассматриваются обыкновенные дифференциальные уравнения.

Порядок дифференциального уравнения - это порядок старшей производной.

Вот пример уравнения первого порядка:

Вот пример уравнения четвертого порядка:

Иногда дифференциальное уравнение первого порядка записывается через дифференциалы:

В этом случае переменные x и y являются равноправными. То есть независимой переменной может быть как x так и y . В первом случае y является функцией от x . Во втором случае x является функцией от y . Если необходимо, мы можем привести это уравнение к виду, в котором явно входит производная y′ .
Разделив это уравнение на dx , мы получим:
.
Поскольку и , то отсюда следует, что
.

Решение дифференциальных уравнений

Производные от элементарных функций выражаются через элементарные функции. Интегралы от элементарных функций часто не выражаются через элементарные функции. С дифференциальными уравнениями дело обстоит еще хуже. В результате решения можно получить:

  • явную зависимость функции от переменной;

    Решение дифференциального уравнения - это функция y = u(x) , которая определена, n раз дифференцируема, и .

  • неявную зависимость в виде уравнения типа Φ(x, y) = 0 или системы уравнений;

    Интеграл дифференциального уравнения - это решение дифференциального уравнения, которое имеет неявный вид.

  • зависимость, выраженную через элементарные функции и интегралы от них;

    Решение дифференциального уравнения в квадратурах - это нахождение решения в виде комбинации элементарных функций и интегралов от них.

  • решение может не выражается через элементарные функции.

Поскольку решение дифференциальных уравнений сводится к вычислению интегралов, то в состав решения входит набор постоянных C 1 , C 2 , C 3 , ... C n . Количество постоянных равно порядку уравнения.Частный интеграл дифференциального уравнения - это общий интеграл при заданных значениях постоянных C 1 , C 2 , C 3 , ... , C n .


Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Или уже решены относительно производной , или их можно решить относительно производной .

Общее решение дифференциальных уравнений типа на интервале X , который задан, можно найти, взяв интеграл обоих частей этого равенства.

Получим .

Если посмотреть на свойства неопределенного интеграла, то найдем искомое общее решение:

y = F(x) + C ,

где F(x) - одна из первообразных функции f(x) на промежутке X , а С - произвольная постоянная.

Обратите внимание, что в большинстве задач интервал X не указывают. Это значит, что решение нужно находить для всех x , при которых и искомая функция y , и исходное уравнение имеют смысл.

Если нужно вычислить частное решение дифференциального уравнения , которое удовлетворяет начальному условию y(x 0) = y 0 , то после вычисления общего интеграла y = F(x) + C , еще необходимо определить значение постоянной C = C 0 , используя начальное условие. Т.е., константу C = C 0 определяют из уравнения F(x 0) + C = y 0 , и искомое частное решение дифференциального уравнения примет вид:

y = F(x) + C 0 .

Рассмотрим пример:

Найдем общее решение дифференциального уравнения , проверим правильность результата. Найдем частное решение этого уравнения, которое удовлетворяло бы начальному условию .

Решение:

После того, как мы проинтегрировали заданное дифференциальное уравнение, получаем:

.

Возьмем этот интеграл методом интегрирования по частям:


Т.о., является общим решением дифференциального уравнения.

Чтобы убедиться в правильности результата, сделаем проверку. Для этого подставляем решение, которое мы нашли, в заданное уравнение:


.

То есть, при исходное уравнение превращается в тождество:

поэтому общее решение дифференциального уравнения определили верно.

Решение, которое мы нашли, является общим решением дифференциального уравнения для каждого действительного значения аргумента x .

Осталось вычислить частное решение ОДУ, которое удовлетворяло бы начальному условию . Другими словами, необходимо вычислить значение константы С , при котором будет верно равенство:

.

.

Тогда, подставляя С = 2 в общее решение ОДУ, получаем частное решение дифференциального уравнения, которое удовлетворяет первоначальному условию:

.

Обыкновенное дифференциальное уравнение можно решить относительно производной, разделив 2 части равенства на f(x) . Это преобразование будет равнозначным, если f(x) не превращается в нуль ни при каких x из интервала интегрирования дифференциального уравнения X .

Вероятны ситуации, когда при некоторых значениях аргумента x X функции f(x) и g(x) одновременно превращаются в нуль. Для подобных значений x общим решением дифференциального уравнения будет всякая функция y , которая определена в них, т.к. .

Если для некоторых значений аргумента x X выполняется условие , значит, в этом случае у ОДУ решений нет.

Для всех других x из интервала X общее решение дифференциального уравнения определяется из преобразованного уравнения .

Разберем на примерах:

Пример 1.

Найдем общее решение ОДУ: .

Решение.

Из свойств основных элементарных функций ясно, что функция натурального логарифма определена для неотрицательных значений аргумента, поэтому областью определения выражения ln(x+3) есть интервал x > -3 . Значит, заданное дифференциальное уравнение имеет смысл для x > -3 . При этих значениях аргумента выражение x + 3 не обращается в нуль, поэтому можно решить ОДУ относительно производной, разделив 2 части на х + 3 .

Получаем .

Далее проинтегрируем полученное дифференциальное уравнение, решенное относительно производной: . Для взятия этого интеграла пользуемся методом подведения под знак дифференциала.

Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, неизвестную функцию этой переменной и её производные (или дифференциалы) различных порядков.

Порядком дифференциального уравнения называется порядок старшей производной, содержащейся в нём.

Кроме обыкновенных изучаются также дифференциальные уравнения с частными производными . Это уравнения, связывающие независимые переменные , неизвестную функцию этих переменных и её частные производные по тем же переменным. Но мы будем рассматривать только обыкновенные дифференциальные уравнения и поэтому будем для краткости опускать слово "обыкновенные".

Примеры дифференциальных уравнений:

(1) ;

(3) ;

(4) ;

Уравнение (1) - четвёртого порядка, уравнение (2) - третьего порядка, уравнения (3) и (4) - второго порядка, уравнение (5) - первого порядка.

Дифференциальное уравнение n -го порядка не обязательно должно содержать явно функцию, все её производные от первого до n -го порядка и независимую переменную. В нём могут не содержаться явно производные некоторых порядков, функция, независимая переменная.

Например, в уравнении (1) явно нет производных третьего и второго порядков, а также функции; в уравнении (2) - производной второго порядка и функции; в уравнении (4) - независимой переменной; в уравнении (5) - функции. Только в уравнении (3) содержатся явно все производные, функция и независимая переменная.

Решением дифференциального уравнения называется всякая функция y = f(x) , при подстановке которой в уравнение оно обращается в тождество.

Процесс нахождения решения дифференциального уравнения называется его интегрированием .

Пример 1. Найти решение дифференциального уравнения .

Решение. Запишем данное уравнение в виде . Решение состоит в нахождении функции по её производной. Изначальная функция, как известно из интегрального исчисления , есть первообразная для , т. е.

Это и есть решение данного дифференциального уравнения . Меняя в нём C , будем получать различные решения. Мы выяснили, что существует бесконечное множество решений дифференциального уравнения первого порядка.

Общим решением дифференциального уравнения n -го порядка называется его решение, выраженное явно относительно неизвестной функции и содержащее n независимых произвольных постоянных, т. е.

Решение дифференциального уравнения в примере 1 является общим.

Частным решением дифференциального уравнения называется такое его решение, в котором произвольным постоянным придаются конкретные числовые значения.

Пример 2. Найти общее решение дифференциального уравнения и частное решение при .

Решение. Проинтегрируем обе части уравнения такое число раз, которому равен порядок дифференциального уравнения.

,

.

В результате мы получили общее решение -

данного дифференциального уравнения третьего порядка.

Теперь найдём частное решение при указанных условиях. Для этого подставим вместо произвольных коэффициентов их значения и получим

.

Если кроме дифференциального уравнения задано начальное условие в виде , то такая задача называется задачей Коши . В общее решение уравнения подставляют значения и и находят значение произвольной постоянной C , а затем частное решение уравнения при найденном значении C . Это и есть решение задачи Коши.

Пример 3. Решить задачу Коши для дифференциального уравнения из примера 1 при условии .

Решение. Подставим в общее решение значения из начального условия y = 3, x = 1. Получаем

Записываем решение задачи Коши для данного дифференциального уравнения первого порядка:

При решении дифференциальных уравнений, даже самых простых, требуются хорошие навыки интегрирования и взятия производных , в том числе сложных функций . Это видно на следующем примере.

Пример 4. Найти общее решение дифференциального уравнения .

Решение. Уравнение записано в такой форме, что можно сразу же интегрировать обе его части.

.

Применяем метод интегрирования заменой переменной (подстановкой) . Пусть , тогда .

Требуется взять dx и теперь - внимание - делаем это по правилам дифференцирования сложной функции , так как x и есть сложная функция ("яблоко" - извлечение квадратного корня или, что то же самое - возведение в степень "одна вторая", а "фарш" - самое выражение под корнем):

Находим интеграл:

Возвращаясь к переменной x , получаем:

.

Это и есть общее решение данного дифференциального уравнения первой степени.

Не только навыки из предыдущих разделов высшей математики потребуются в решении дифференциальных уравнений, но и навыки из элементарной, то есть школьной математики. Как уже говорилось, в дифференциальном уравнении любого порядка может и не быть независимой переменной, то есть, переменной x . Помогут решить эту проблему не забытые (впрочем, у кого как) со школьной скамьи знания о пропорции. Таков следующий пример.

На сегодняшний день одним из важнейших навыков для любого специалиста является умение решать дифференциальные уравнения. Решение дифференциальных уравнений – без этого не обходится ни одна прикладная задача, будь это расчет какого-либо физического параметра или моделирование изменений в результате принятой макроэкономической политики. Эти уравнения также важны для ряда других наук, таких как химия, биология, медицина и т.д. Ниже мы приведем пример использования дифференциальных уравнений в экономике, но перед этим кратко расскажем об основных типах уравнений.

Дифференциальные уравнения – простейшие виды

Мудрецы говорили, что законы нашей вселенной написаны на математическом языке. Конечно, в алгебре есть много примеров различных уравнений, но это, большей частью, учебные примеры, неприменимые на практике. По-настоящему интересная математика начинается, когда мы хотим описать процессы, протекающие в реальной жизни. Но как отразить фактор времени, которому подчиняются реальные процессы – инфляция, выработка продукции или демографические показатели?

Вспомним одно важное определение из курса математики, касающееся производной функции. Производная является скоростью изменения функции, следовательно, она может помочь нам отразить фактор времени в уравнении.

То есть, мы составляем уравнение с функцией, которая описывает интересующий нас показатель и добавляем в уравнение производную этой функции. Это и есть дифференциальное уравнение. А теперь перейдем к простейшим типам дифференциальных уравнений для чайников .

Простейшее дифференциальное уравнение имеет вид $y’(x)=f(x)$, где $f(x)$ – некоторая функция, а $y’(x)$ – производная или скорость изменения искомой функции. Оно решается обычным интегрированием: $$y(x)=\int f(x)dx.$$

Второй простейший тип называется дифференциальным уравнением с разделяющимися переменными. Такое уравнение выглядит следующим образом $y’(x)=f(x)\cdot g(y)$. Видно, что зависимая переменная $y$ также входит в состав конструируемой функции. Уравнение решается очень просто – нужно "разделить переменные", то есть привести его к виду $y’(x)/g(y)=f(x)$ или $dy/g(y)=f(x)dx$. Остается проинтегрировать обе части $$\int \frac{dy}{g(y)}=\int f(x)dx$$ – это и есть решение дифференциального уравнения разделяющегося типа.

Последний простой тип – это линейное дифференциальное уравнение первого порядка. Оно имеет вид $y’+p(x)y=q(x)$. Здесь $p(x)$ и $q(x)$ – некоторые функции, а $y=y(x)$ – искомая функция. Для решения такого уравнения применяют уже специальные методы (метод Лагранжа вариации произвольной постоянной, метод подстановки Бернулли).

Есть более сложные виды уравнений – уравнения второго, третьего и вообще произвольного порядка, однородные и неоднородные уравнения, а также системы дифференциальных уравнений. Для их решения нужна предварительная подготовка и опыт решения более простых задач.

Большое значение для физики и, что неожиданно, финансов имеют так называемые дифференциальные уравнения в частных производных. Это значит, что искомая функция зависит от нескольких переменных одновременно. Например, уравнение Блека-Шоулса из области финансового инжиниринга описывает стоимость опциона (вид ценной бумаги) в зависимости от его доходности, размера выплат, а также сроков начала и конца выплат. Решение дифференциального уравнения в частных производных довольно сложное, обычно нужно использовать специальные программы, такие как Matlab или Maple.

Пример применения дифференциального уравнения в экономике

Приведем, как и было обещано, простой пример решения дифференциального уравнения. Вначале поставим задачу.

Для некоторой фирмы функция маржинальной выручки от продажи своей продукции имеет вид $MR=10-0,2q$. Здесь $MR$ – маржинальная выручка фирмы, а $q$ – объем продукции. Нужно найти общую выручку.

Как видно из задачи, это прикладной пример из микроэкономики. Множество фирм и предприятий постоянно сталкивается с подобными расчетами в ходе своей деятельности.

Приступаем к решению. Как известно из микроэкономики, маржинальная выручка представляет собой производную от общей выручки, причем выручка равна нулю при нулевом уровне продаж.

С математической точки задача свелась к решению дифференциального уравнения $R’=10-0,2q$ при условии $R(0)=0$.

Проинтегрируем уравнение, взяв первообразную функцию от обеих частей, получим общее решение: $$R(q) = \int (10-0,2q)dq = 10 q-0,1q^2+C. $$

Чтобы найти константу $C$, вспомним условие $R(0)=0$. Подставим: $$R(0) =0-0+C = 0. $$ Значит C=0 и наша функция общей выручки принимает вид $R(q)=10q-0,1q^2$. Задача решена.

Другие примеры по разным типам ДУ собраны на странице:


Эта статья является отправной точкой в изучении теории дифференциальных уравнений. Здесь собраны основные определения и понятия, которые будут постоянно фигурировать в тексте. Для лучшего усвоения и понимания определения снабжены примерами.

Дифференциальное уравнение (ДУ) – это уравнение, в которое входит неизвестная функция под знаком производной или дифференциала.

Если неизвестная функция является функцией одной переменной, то дифференциальное уравнение называют обыкновенным (сокращенно ОДУ – обыкновенное дифференциальное уравнение). Если же неизвестная функция есть функция многих переменных, то дифференциальное уравнение называют уравнением в частных производных .

Максимальный порядок производной неизвестной функции, входящей в дифференциальное уравнение, называется порядком дифференциального уравнения .


Вот примеры ОДУ первого, второго и пятого порядков соответственно

В качестве примеров уравнений в частных производных второго порядка приведем

Далее мы будем рассматривать только обыкновенные дифференциальные уравнения n-ого порядка вида или , где Ф(x, y) = 0 неизвестная функция, заданная неявно (когда возможно, будем ее записывать в явном представлении y = f(x) ).

Процесс нахождения решений дифференциального уравнения называется интегрированием дифференциального уравнения .

Решение дифференциального уравнения - это неявно заданная функция Ф(x, y) = 0 (в некоторых случаях функцию y можно выразить через аргумент x явно), которая обращает дифференциальное уравнение в тождество.

ОБРАТИТЕ ВНИМАНИЕ.

Решение дифференциального уравнения всегда ищется на заранее заданном интервале X .

Почему мы об этом говорим отдельно? Да потому что в условиях многих задач об интервале X не упоминают. То есть, обычно условие задач формулируется так: «найдите решение обыкновенного дифференциального уравнения ». В этом случае подразумевается, что решение следует искать для всех x , при которых и искомая функция y , и исходное уравнение имеют смысл.

Решение дифференциального уравнения часто называют интегралом дифференциального уравнения .

Функции или можно назвать решением дифференциального уравнения .

Одним из решений дифференциального уравнения является функция . Действительно, подставив эту функцию в исходное уравнение, получим тождество . Несложно заметить, что другим решением этого ОДУ является, например, . Таким образом, дифференциальные уравнения могут иметь множество решений.


Общее решение дифференциального уравнения – это множество решений, содержащее все без исключения решения этого дифференциального уравнения.

Общее решение дифференциального уравнения еще называют общим интегралом дифференциального уравнения .

Вернемся к примеру. Общее решение дифференциального уравнения имеет вид или , где C – произвольная постоянная. Выше мы указали два решения этого ОДУ, которые получаются из общего интеграла дифференциального уравнения при подстановке С = 0 и C = 1 соответственно.

Если решение дифференциального уравнения удовлетворяет изначально заданным дополнительным условиям, то его называют частным решением дифференциального уравнения .

Частным решением дифференциального уравнения , удовлетворяющим условию y(1)=1 , является . Действительно, и .

Основными задачами теории дифференциальных уравнений являются задачи Коши, краевые задачи и задачи нахождения общего решения дифференциального уравнения на каком-либо заданном интервале X .

Задача Коши – это задача нахождения частного решения дифференциального уравнения, удовлетворяющего заданным начальным условиям , где - числа.

Краевая задача – это задача нахождения частного решения дифференциального уравнения второго порядка, удовлетворяющего дополнительным условиям в граничных точках x 0 и x 1 :
f (x 0) = f 0 , f (x 1) = f 1 , где f 0 и f 1 - заданные числа.

Краевую задачу часто называют граничной задачей .

Обыкновенное дифференциальное уравнение n-ого порядка называется линейным , если оно имеет вид , а коэффициенты есть непрерывные функции аргумента x на интервале интегрирования.