Как найти градиент функции в точке примеры. Градиент функции и производная по направлению вектора

Определение 1

Если для каждой пары $(x,y)$ значений двух независимых переменных из некоторой области ставится в соответствие определенное значение $z$, то говорят, что $z$ является функцией двух переменных $(x,y)$. Обозначение: $z=f(x,y)$.

Рассмотрим функцию $z=f(x,y)$, которая определена в некоторой области в пространстве $Oxy$.

Следовательно,

Определение 3

Если для каждой тройки $(x,y,z)$ значений трех независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией трех переменных $(x,y,z)$ в данной области.

Обозначение: $w=f(x,y,z)$.

Рассмотрим функцию $w=f(x,y,z)$, которая определена в некоторой области в пространстве $Oxyz$.

Для заданной функции определим вектор, для которого проекциями на оси координат являются значения частных производных заданной функции в некоторой точке $\frac{\partial z}{\partial x} ;\frac{\partial z}{\partial y} $.

Определение 4

Градиентом заданной функции $w=f(x,y,z)$ называется вектор $\overrightarrow{gradw} $ следующего вида:

Теорема 3

Пусть в некотором скалярном поле $w=f(x,y,z)$ определено поле градиентов

\[\overrightarrow{gradw} =\frac{\partial w}{\partial x} \cdot \overrightarrow{i} +\frac{\partial w}{\partial y} \cdot \overrightarrow{j} +\frac{\partial w}{\partial z} \cdot \overrightarrow{k} .\]

Производная $\frac{\partial w}{\partial s} $ по направлению заданного вектора $\overrightarrow{s} $ равна проекции вектора градиента $\overrightarrow{gradw} $ на заданный вектор $\overrightarrow{s} $.

Пример 4

Решение:

Выражение для градиента находим по формуле

\[\overrightarrow{gradw} =\frac{\partial w}{\partial x} \cdot \overrightarrow{i} +\frac{\partial w}{\partial y} \cdot \overrightarrow{j} +\frac{\partial w}{\partial z} \cdot \overrightarrow{k} .\]

\[\frac{\partial w}{\partial x} =2x;\frac{\partial w}{\partial y} =4y;\frac{\partial w}{\partial z} =2.\]

Следовательно,

\[\overrightarrow{gradw} =2x\cdot \overrightarrow{i} +4y\cdot \overrightarrow{j} +2\cdot \overrightarrow{k} .\]

Пример 5

Определить градиент заданной функции

в точке $M(1;2;1)$. Вычислить $\left(|\overrightarrow{gradz} |\right)_{M} $.

Решение:

Выражение для градиента в заданной точке находим по формуле

\[\left(\overrightarrow{gradw} \right)_{M} =\left(\frac{\partial w}{\partial x} \right)_{M} \cdot \overrightarrow{i} +\left(\frac{\partial w}{\partial y} \right)_{M} \cdot \overrightarrow{j} +\left(\frac{\partial w}{\partial z} \right)_{M} \cdot \overrightarrow{k} .\]

Частные производные имеют вид:

\[\frac{\partial w}{\partial x} =2x;\frac{\partial w}{\partial y} =4y;\frac{\partial w}{\partial z} =6z^{2} .\]

Производные в точке $M(1;2)$:

\[\frac{\partial w}{\partial x} =2\cdot 1=2;\frac{\partial w}{\partial y} =4\cdot 2=8;\frac{\partial w}{\partial z} =6\cdot 1^{2} =6.\]

Следовательно,

\[\left(\overrightarrow{gradw} \right)_{M} =2\cdot \overrightarrow{i} +8\cdot \overrightarrow{j} +6\cdot \overrightarrow{k} \]

\[\left(|\overrightarrow{gradw} |\right)_{M} =\sqrt{2^{2} +8^{2} +6^{2} } =\sqrt{4+64+36} =\sqrt{104} .\]

Перечислим некоторые свойства градиента:

    Производная заданной функции в заданной точке по направлению некоторого вектора $\overrightarrow{s} $ имеет наибольшее значение, если направление данного вектора $\overrightarrow{s} $ совпадает с направлением градиента. При этом данное наибольшее значение производной совпадает с длиной вектора градиента, т.е. $|\overrightarrow{gradw} |$.

    Производная заданной функции по направлению вектора, который перпендикулярен к вектору градиента, т.е. $\overrightarrow{gradw} $, равна 0. Так как $\varphi =\frac{\pi }{2} $, то $\cos \varphi =0$; следовательно, $\frac{\partial w}{\partial s} =|\overrightarrow{gradw} |\cdot \cos \varphi =0$.

Градиентом функции в точке называется вектор, координаты которого равны соответствующим частным производным и, обозначается.

Если рассмотреть единичный вектор e=(), то согласно формуле (3) производная по направлению есть скалярное произведение градиента и единичного вектора, задающего направление. Известно, что скалярное произведение двух векторов максимально, если они одинаково направлены. Следовательно, градиент функции в данной точке характеризует направление и величину максимального роста функции в этой точке.

Теорема. Если функция дифференцируема и в точке М 0 величина градиента отлична от нуля, то градиент перпендикулярен линии уровня, проходящей через данную точку и направлен в сторону возрастания функции при этом

ВЫВОД: 1) Производная функции в точке по направлению, определяемому градиентом этой функции в указанной точке, имеет максимальное значение по сравнению с производной в этой точке по любому другому направлению.

  • 2) Значение производной функции по направлению, которое определяет градиент этой функции в данной точке, равно.
  • 3) Зная градиент функции в каждой точке, можно с некоторой погрешностью строить линии уровня. Начнем с точки М 0 . Построим градиент в этой точке. Зададим направление, перпендикулярное градиенту. Построим малую часть линии уровня. Рассмотрим близкую точку М 1 , построим градиент в ней и так далее.

Краткая теория

Градиентом называется вектор, направление которого указывает направление максимально быстрого возрастания функции f(x). Нахождение этой векторной величины связано с определением частных производных функции. Производная по направлению это скалярная величина и показывает скорость изменения функции при движении вдоль направления, заданного некоторым вектором.

Пример решения задачи

Условие задачи

Даны функция , точка и вектор . Найти:

Решение задачи

Нахождение градиента функции

1) Найдем градиент функции в точке :

Искомый градиент:

Нахождение производной по направлению вектора

2) Найдем производную в направлении вектора :

где -угол, образованный вектором и осью

Искомая производная в точке :

На цену сильно влияет срочность решения (от суток до нескольких часов). Онлайн-помощь на экзамене/зачете осуществляется по предварительной записи.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

ГРАДИЕНТ ФУНКЦИИ и = f(x, у, z), заданной в некоторой обл. пространства (X Y Z), есть вектор с проекциями обозначаемый символами: grad где i, j, k - координатные орты. Г. ф. - есть функция точки (х, у, z), т. е. он образует векторное поле. Производная в направлении Г. ф. в данной точке достигает наибольшего значения и равна: Направление градиента есть направление наибыстрейшего возрастания функции. Г. ф. в данной точке перпендикулярен поверхности уровня, проходящей через эту точку. Эффективность использования Г. ф. при литологических исследованиях была показана при изучении эоловых отл. Центральных Каракумов.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "ГРАДИЕНТ ФУНКЦИИ" в других словарях:

    Эта статья о математической характеристике; о способе заливки см.: Градиент (компьютерная графика) … Википедия

    - (лат.). Разность в барометрических и термометрических показаниях в разных местностях. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГРАДИЕНТ разность в показаниях барометра и термометра в один и тот же момент… … Словарь иностранных слов русского языка

    градиент - Изменение значения некоторой величины на единицу расстояния в заданном направлении. Топографический градиент — это изменение высоты местности на измеренном по горизонтали расстоянии. Тематики релейная защита EN gradient of the differential protection tripping characteristic … Справочник технического переводчика

    Градиент - вектор, направленный в сторону наискорейшего возрастания функции и равный по величине ее производной в этом направлении: где символами ei обозначены единичные векторы осей координат (орты) … Экономико-математический словарь

    Одно из основных понятий векторного анализа и теории нелинейных отображений. Градиентом скалярной функции векторного аргумента из евклидова пространства Е n наз. производная функции f(t).по векторному аргументу t, то есть n мерный вектор с… … Математическая энциклопедия

    Градиент физиологический - – величина, отражающая изменение к либо показателя функции в зависимости от другой величины; напр., градиент парциального давления разность парциальных дав лений, определяющая диффузию газов из альвеол (акцинусов) в кровь и из крови в… … Словарь терминов по физиологии сельскохозяйственных животных

    I Градиент (от лат. gradiens, род. падеж gradientis шагающий) Вектор, показывающий направление наискорейшего изменения некоторой величины, значение которой меняется от одной точки пространства к другой (см. Поля теория). Если величина… … Большая советская энциклопедия

    Градиент - (от лат. gradiens шагающий, идущий) (в математике) вектор, показывающий направление наискорейшего возрастания некоторой функции; (в физике) мера возрастания или убывания в пространстве или на плоскости какой либо физической величины на единицу… … Начала современного естествознания

Книги

  • Методы решения некоторых задач избранных разделов высшей математики. Практикум , Клименко Константин Григорьевич, Левицкая Галина Васильевна, Козловский Евгений Александрович. В данном практикуме рассматриваются методы решения некоторых типов задач из таких разделов общепринятого курса математического анализа, как предел и экстремум функции, градиент и производная…

Понятие производной по направлению рассматривается для функций двух и трёх переменных. Чтобы понять смысл производной по направлению, нужно сравнить производные по определению

Следовательно,

Теперь можем найти производную по направлению данной функции по её формуле:

А сейчас - домашнее задание. В нём дана функция не трёх, а лишь двух переменных, но несколько иначе задан направляющий вектор. Так что придётся вновь повторить векторную алгебру .

Пример 2. Найти производную функции в точке M 0 (1; 2) по направлению вектора , где M 1 - точка с координатами (3; 0) .

Вектор, задающий направление производной, может быть дан и в такой форме, как в следующем примере - в виде разложения по ортам координатных осей , но эта хорошо знакомая тема из самого начала векторной алгебры.

Пример 3. Найти производную функции в точке M 0 (1; 1; 1) по направлению вектора .

Решение. Найдём направляющие косинусы вектора

Найдём частные производные функции в точке M 0 :

Следовательно, можем найти производную по направлению данной функции по её формуле:

.

Градиент функции

Градиент функции нескольких переменных в точке M 0 характеризует направление максимального роста этой функции в точке M 0 и величину этого максимального роста.

Как найти градиент?

Нужно определить вектор, проекциями которого на оси координат являются значения частных производных , , этой функции в соответствующей точке:

.

То есть, должно получиться представление вектора по ортам координатных осей , в котором на каждый орт умножается соответствующая его оси частная производная.