Как объяснить явление внешнего фотоэффекта. Фотоэффект.виды фотоэффекта.законы столетова.уравнение эйнштейна для внешнего фотоэффекта

Фотоэффект- это явление вырывания света электронов из металла(внешний)

Фотоэффе́кт - это испускание электронов веществом под действием света (или любого другого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твёрдых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости иливентильного фотоэффекта.

Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Законы Столетова

Первый закон
Исследуя зависимость силы тока в баллоне от напряжения между электродами при постоянном световом потоке на один из них, он установил первый закон фотоэффекта.

Фототок насыщения пропорционален световому потоку, падающему на металл.

T.к. сила тока определяется величиной заряда, a световой поток - энергией светового пучка, то можно сказать:

число электронов, выбиваемых за 1 c из вещества, пропорционально интенсивности света, падающего на это вещество.

Второй закон

Изменяя условия освещения на этой же установке, A. Г. Столетов открыл второй закон фотоэффекта: кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, a зависит от его частоты.

Из опыта следовало, что если частоту света увеличить, то при неизменном световом потоке запирающее напряжение увеличивается, a, следовательно, увеличивается и кинетическая энергия фотоэлектронов. Таким образом, кинетическая энергия фотоэлектронов линейно возрастает c частотой света.


Третий закон

Заменяя в приборе материал фотокатода, Столетов установил третий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. e. существует наименьшая частота nmin, при которой еще возможен фотоэффект.

Закон сохранения энергии, записанный Эйнштейном для фотоэффекта, состоит в утверждении, что энергия фотона, приобретенная электроном, позволяет ему покинуть поверхность проводника, совершив работу выхода. Остаток энергии реализуется в виде кинетической энергии теперь уже свободного электрона

Энергия падающего фотона расходуется на совершение электроном работы вы­хода А из металла и на сообщение вылетевшему фотоэлектрону кинетичес­кой энергии mv2max/2. По закону сохранения энергии,

(203.1)

Уравнение (203.1) называется уравнением Эйнштейна для внешнего фотоэффекта.

Эффект Комптона

Изменение длины волны света при рассеивании на связанных электронов

ОПЫТЫ РЕЗЕРФОРДА.ПЛАНЕТАРНАЯ МОДЕЛЬ АТОМА

Опыты Резерфорда. Масса электронов в несколько тысяч раз меньше массы атомов. Так как атом в целом нейтрален, то, следовательно, основная масса атома приходится на его положительно заряженную часть.

Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Эрнест Резерфорд предложил в 1906 г. применить зондирование атома с помощью -частиц. Эти частицы возникают при распаде радия и некоторых других элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона. Это не что иное, как полностью ионизированные атомы гелия. Скорость -частиц очень велика: она составляет 1/15 скорости света.

Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут заметно изменить траекторию -частицы, подобно тому как камушек в несколько десятков граммов при столкновении с автомобилем не может значительно изменить его скорость.

Планетарная модель атома. На основе своих опытов Резерфорд создал планетарную модель атома. В центре атома расположено положительно заряженное ядро, в котором сосредоточена почти вся масса атома. В целом атом нейтрален. Поэтому число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической системе. Ясно, что покоиться электроны внутри атома не могут, так как они упали бы на ядро. Они движутся вокруг ядра, подобно тому как планеты обращаются вокруг Солнца. Такой характер движения электронов определяется действием кулоновских сил притяжения со стороны ядра.

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта – явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. В 1887 году Г. Герц обнаружил, что при освещении отрицательного электрода ультрафиолетовыми лучами разряд между электродами происходит при меньшем напряжении. Это явление, как показали опыты В. Гальвакса (1888 г.) и А.Г. Столетова (1888–1890 гг.), обусловлено выбиванием под действием света отрицательных зарядов из электрода. Электрон еще не был открыт. Лишь в 1898 году Дж.Дж. Томпсон и Ф. Леонард, измерив удельный заряд испускаемых телом частиц, установили, что это электроны.

Различают фотоэффект внешний, внутренний, вентильный и многофотонный фотоэффект.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).

Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению электродвижущей силы (ЭДС).

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 2.1.

Рис. 2.1 Рис. 2.2

Два электрода (катод К из исследуемого материала и анод А , в качестве которого Столетов применял металлическую сетку) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое стекло), измеряется включенным в цепь миллиамперметром.

В 1899 г. Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Вольт-амперная характеристика (ВАХ) фотоэффекта – зависимость фототока I , образуемого потоком электронов, от напряжения, – приведена на рис. 2.2.

Такая зависимость соответствует двум различным энергетическим освещенностям катода (частота света в обоих случаях одинакова). По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями.

Максимальное значение фототока насыщения определяется таким значением напряжения U , при котором все электроны, испускаемые катодом, достигают анода:

где n – число электронов, испускаемых катодом в 1 с.

Из ВАХ следует, при U = 0 фототок не исчезает. Следовательно, электроны, выбитые из катода, обладают некоторой начальной скоростью υ, а значит и отличной от нуля кинетической энергией, поэтому они могут достигнуть катода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение . При ни один из электронов, даже обладающий при вылете из катода максимальной скоростью , не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

1. Сила фототока насыщения пропорциональна электрической освещенности:

2. Максимальная кинетическая энергия фотоэлектронов пропорциональна частоте излучения, вызывающего фотоэффект и не зависит от интенсивности света:

где а – универсальный коэффициент пропорциональности не зависящий от вещества,

b – константа, зависящая от природы катода.

3. Для каждого вещества существует «красная граница» фотоэффекта, т.е. минимальная частота ν 0 света (или max λ) при которой еще наблюдается фотоэффект.

Волновая теория оказалась бессильной объяснить закономерности фотоэффекта. Все её предсказания не согласуются с экспериментом.

Объяснение законов фотоэффекта было дано Эйнштейном в 1905г.

Он разработал фотонную теорию света, которая явилась дальнейшим развитием идеи Планка о дискретном характере излучателей света.

По Эйнштейну свет, частотой ν не только испускается, как это предлагал Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами). Эти кванты интерферируют, дифрагируют поглощаются как единое целое. Они получили названия фотоны (квант света). Каждый фотон с частотой ν обладает энергией:

Механизм фотоэффекта состоит в следующем: электрон, взаимодействуя с фотоном, поглощает его (фотон). Кинетическая энергия электрона увеличивается на величину энергии фотона hν. Передача энергии осуществляется мгновенно. Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии

уравнение Эйнштейна для

внешнего фотоэффекта

в случае «красной границы»

Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу.

В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости или э.д.с.

В отличие от фотоэлемента с внешним фотоэффектом фотоэлементы с внутренним фотоэффектом (их называют фотосопротивления) не обладают током насыщения, их чувствительность в сотни и тысячи раз больше, чем чувствительность фотоэлементов с внешним фотоэффектом.

Вентильный фотоэффект – (фотогальванический) возникновение фото э.д.с. при освещении контакта двух разных полупроводников или п/п из металла.

Вентильный фотоэффект открывает возможности для преобразования солнечной энергии в электрическую (электромобиль на солнечных батареях).

Фотоэффект


Внешний фотоэффект

Внешним фотоэлектрическим эффектом (фотоэффектом) называется процесс испускания электронов веществом при поглощении им квантов электромагнитного излучения (фотонов). Внешний фотоэффект был открыт в 1887 г. Г.Герцем, который обнаружил, что искровой разряд между двумя металлическими шариками происходит значительно интенсивнее, если один из шариков освещать ультрафиолетовыми лучами. После открытия электрона измерение удельного заряда вылетающих из металла под действием излучения частиц позволило установить, что частицы являются электронами.

Детальное экспериментальное исследование закономерностей внешнего фотоэффекта для металлов было выполнено в 1888 – 1889 гг. А.Г.Столетовым на установке с фотоэлементом, схема которой приведена на рисунке. Фотоэлемент в виде вакуумной двухэлектродной лампы имеет металлический катод К , который при освещении его через кварцевое окошко видимым светом или ультрафиолетовым излучением испускает электроны. Вылетевшие из катода фотоэлектроны, достигая анода А , обеспечивают протекание в цепи электрического тока, который фиксируется гальванометром или миллиамперметром. Специальная схема подключения источника позволяет изменять полярность напряжения, подаваемого на фотоэлемент.

На следующем рисунке представлена зависимость фототока от напряжения между катодом и анодом (вольт-амперные характеристики) при падении на катод монохроматического света с длиной волны при неизменном световом потоке для двух значений светового потока ( > ). Из вольт-амперной характеристики видно, что при некотором положительном напряжении фототок достигает насыщения – все электроны, испущенные катодом, достигают анода. Ток насыщения определяется числом электронов, испускаемых катодом в единицу времени под действием света. Из рисунка видно, что число электронов, вылетающих из катода при данной частоте падающего света зависит от светового потока ( > ) так как ( > ). При напряжении фототок не исчезает, это свидетельствует о том, что электроны покидают катод со скоростью, отличной от нуля, т.е. обладают кинетической энергией, достаточной для достижения анода. При отрицательном напряжении испущенный катодом электрон попадает в тормозящее электрическое поле, преодолеть которое он может, лишь имея определенный запас кинетической энергии. Электрон с малой кинетической энергией, вылетев из катода, не может преодолеть тормозящее поле и попасть на анод. Такой электрон возвращается на катод, не давая вклада в фототок. Поэтому, плавный спад фототока в области отрицательных напряжений указывает на то, что вылетающие из катода фотоэлектроны имеют разные значения кинетической энергии. При некотором отрицательном напряжении , величину которого называют задерживающим напряжением (потенциалом), фототок становится равным нулю. При таком напряжении ни одному из электронов не удается преодолеть задерживающее поле и долететь до анода. Соответствующее тормозящее электрическое поле при этом задерживает все вылетающие из катода электроны, включая электроны с максимальной кинетической энергией.

Измерив задерживающее напряжение, можно определить эту максимальную энергию или максимальную скорость фотоэлектронов из соотношения

, (6.41.1)

где – масса электрона, – заряд электрона, – максимальная скорость вылетевших электронов.

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1. Максимальная кинетическая энергия фотоэлектронов (следовательно и ) линейно возрастает с увеличением частоты света ν и не зависит от светового потока (см. рисунок, приведенный ниже).

2. Для каждого вещества существует так называемая красная граница фотоэффекта , то есть наименьшая частота , при которой еще возможен внешний фотоэффект.

3. При неизменном спектральном составе падающего на катод света число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально световому потоку :

Это утверждение носит название закона Столетова.

4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Попытки объяснить закономерности фотоэффекта с использованием классической волновой теории, в которой излучение рассматривалось как электромагнитные волны, приводили к выводам, противоположным наблюдаемым в эксперименте. Действительно, объясняя вырывание электронов из металла силовым воздействием на них со стороны электрического поля волны, такая теория неизбежно приходила к выводу о том, что максимальная кинетическая энергия фотоэлектронов должна определяться световым потоком, падающим на катод. Наличие красной границы у фотоэффекта также противоречило выводам волновой теории.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе развития гипотезы М. Планка о том, что электромагнитное излучение испускается в виде отдельных порций – квантов, энергия которых зависит от частоты. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что и свет имеет прерывистую дискретную структуру: свет не только испускается, но и распространяется и взаимодействует с веществом в виде отдельных порций.

Электромагнитная волна состоит из отдельных порций – квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Если электрон находится на самой поверхности, Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

(6.41.3)

Таким образом, энергия падающего фотона расходуется на совершение электроном работы выхода из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии По закону сохранения энергии

(6.41.4)

Выражение (6.41.4) называется формулой (уравнением) Эйнштейна для внешнего фотоэффекта. С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Если энергия падающих фотонов < , то фотоэффект не наблюдается. Отсюда частота и длина волны красной границы фотоэффекта определяются слеющими формулами:



(6.41.5)

Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Важной количественной характеристикой фотоэффекта является квантовый выход, определяющий число вылетевших электронов, приходящихся на один падающий на металл фотон. Вблизи красной границы для большинства металлов квантовый выход составляет порядка 10 -4 электрон/фотон. Малость квантового выхода обусловлена тем, что энергию, достаточную для выхода из металла сохраняют только те электроны, которые получили энергию от фотонов на глубине от поверхности, не превышающей 0,1 мкм. Кроме того, поверхность металлов сильно отражает излучение. С увеличением энергии фотонов, то есть с уменьшением длины волны излучения квантовый выход увеличивается, составляя 0,01 – 0,05 электрон/фотон для энергии фотонов порядка одного электрон-вольта. Для рентгеновского излучения с энергией фотонов эВ уже практически на каждые десять падающих на поверхность фотонов приходится один вылетевший из металла электрон.

ФОТОЭФФЕКТ, группа явлений, связанных с освобождением электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, испускание электронов с поверхности… … Современная энциклопедия

Явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают:..1) внешний фотоэффект испускание электронов под действием света (фотоэлектронная эмиссия), ? излучения и др.;..2)… … Большой Энциклопедический словарь

Испускание эл нов в вом под действием эл. магн. излучения. Ф. был открыт в 1887 нем. физиком Г. Герцем. Первые фундам. исследования Ф. выполнены А. Г. Столетовым (1888), а затем нем. физиком Ф. Ленардом (1899). Первое теоретич. объяснение законов … Физическая энциклопедия

Сущ., кол во синонимов: 2 фото эффект (1) эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

фотоэффект - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN photoeffect … Справочник технического переводчика

ФОТОЭФФЕКТ - (1) вентильный возникновение электродвижущей силы (фотоЭДС) между двумя разнородными полупроводниками или между полупроводником и металлом под действием электромагнитного излучения; (2) Ф. внешний (фотоэлектронная эмиссия) испускание электронов с … Большая политехническая энциклопедия

А; м. Физ. Изменение свойств вещества под воздействием световой энергии; фотоэлектрический эффект. * * * фотоэффект явление, связанное с освобождением электронов твёрдого тела (или жидкости) под действием электромагнитного излучения. Различают:… … Энциклопедический словарь

Испускание электронов веществом под действием электромагнитного излучения (Фотонов). Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в… … Большая советская энциклопедия

- (см. фото... + аффект) физ. изменение электрических свойств вещества под действием электромагнитных излучений (света, ультрафиолетовых, рентгеновских и других лучей), напр, испускание электронов вовне под действием света (внешний ф.), изменение… … Словарь иностранных слов русского языка

Книги

  • , П.С. Тартаковский. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство`ГИТТЛ`). В…
  • Внутренний фотоэффект в диэлектриках , П.С. Тартаковский. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство "ГИТТЛ"…