Как определить тип вещества химия. Виды связи слов в словосочетании

Словосочетание – строительный материал предложения. Это самая маленькая синтаксическая единица, которая имеет свои методы соединения. Если мы умеем определять виды связи слов в , то научимся разбирать более сложные синтаксические единицы – предложения.

Способы образования

Слова объединяются подчинительным способом. Это значит, что они неравноправны: одно – главное, другое – зависимое. Функция такого соединения – более подробно описать понятие (предмет, признак, действие).

Важно! Не каждое сочетание слов может стать словосочетанием.

Какие разновидности словесных сочетаний не относятся к словосочетаниям:

  1. Грамматическая основа – подлежащее и сказуемое: папа приехал, окно открыто, задача решена.
  2. Однородные члены предложения. Они связаны сочинительными союзами: добрый и веселый; то грустно, то смешно; не только умный, но и красивый.
  3. Сложное будущее время: буду читать, будем смеяться.
  4. Сравнительная степень: самый быстрый, менее высоко.
  5. с самостоятельными: в течение времени, возле реки, навстречу ветру.
  6. Фразеологизмы. По смыслу они приравниваются к словам: вешать нос (расстраиваться), скрепя сердце (неохотно).

Слова в словосочетании соединяются:

  • по смыслу (от главного элемента задается смысловой вопрос: написать (что?) книгу, зайти (куда?) домой);
  • грамматически: с помощью окончаний: курткой желтой, либо с помощью окончаний и предлогов: зацепиться за ветку.

Чтобы лучше понять, что такое зависимое слово, посмотрим, какие встречаются смысловые отношения:

  1. Определительные. Называется признак предмета: фрукты (какие?) вкусные.
  2. Объектные. Указывается на объект действия, место, направление: приехать (к кому?) к другу, повернуть (куда?) направо.
  3. Обстоятельственные. Обозначается признак действия: бежать (каким образом?) быстро.

Подчинение и его способы

Смысловое соединение есть во всех конструкциях, а грамматическое – нет. Основные виды словосочетаний определяют по форме его составных элементов. Смотрим, изменяемые это части речи или нет, какой вид они имеют, какие средства связи слов в конструкции. Чтобы быстро определять тип соединения, нужно уметь изменять словоформы по и лицам.

Существует 3 типа грамматической связи слов в минимальных синтаксических единицах. Рассмотрим подробно каждый из них.

Способ сочетания, при котором зависимое слово принимает форму главного: шляпа (какая?) красивая. Оба члена имеют одинаковые падеж, род, число.

Внимание! Изменяется основной компонент – изменяется и второстепенный: шляпой красивой , шляпами красивыми , о шляпах красивых .

Оба элемента в таких конструкциях – изменяемые части речи. Поэтому средства связи слов в сочетаниях такого типа – смысл и грамматический вид.

Главное Зависимое Примеры
Существительное и те словоформы, которые могут выполнять его функцию Прилагательное Что-то (какое?) красивое,

небо (какое?) голубое,

столовая (какая?) чистая

Ученик (какой?) читающий,

река (какая?) замерзшая

Числительное Дом (который?) второй,

в городах (скольких?) трех,

руками (сколькими?) обеими

Человек (какой?) какой-то,

смысла (какого?) никакого,

тарелка (чья?) моя

Существительное (приложение) Девочка (какая?) Оля,

глаза (какие?) бусинки (глаза-бусинки)

Главное слово управляет зависимым, ставит его в необходимую форму : пришел (с кем?) с другом – глагол указывает существительному на форму Т.п. Если изменить словоформу ведущего элемента, ведомый останется в том же падеже. Например: приду с другом , пришли с другом , придет с другом .

Грамматические средства в этих конструкциях – смысл и падежная форма. Только при управлении между частями может ставиться предлог: думать о звездах, накричать на соседа, лететь навстречу ветру.

При управлении второстепенные слова – изменяемые части речи, так как соединяются с помощью падежных окончаний и/или предлогов.

Главное Зависимое Примеры
Глагол,

деепричастие, существительное, причастие, прилагательное,

числительное,

местоимение.

Существительное Приехать (к кому?) к другу,

записывая (что?) лекцию,

прочитана (кем?) мальчиком,

память (о чем?) о прошлом,

три (кого?) сестры,

не нужен (кому?) никому.

Местоимение Спросил (у кого?) у кого-то,

увидел (что?) нечто,

подарок (кому?) ему

Прилагательное, называющее предмет Узнать (о ком?) о неизвестном,

принесли (что?) горячее

Причастие, называющее предмет Множество (кого?) собравшихся,

приветствовать (кого?) отдыхающих

Необходимо различать! Числительное в именительном и винительном падежах командует существительным. Это управление: пять собак, трое мальчиков. Если числительное стоит в других падежах, то это согласование: пятью собаками, о пяти собаках, с тремя мальчиками, о трех мальчиках.

К главному компоненту примыкает неизменяемая часть речи : ехать (куда?) вперед. Средство соединения здесь одно – смысл, потому что ведомое слово не может принять иной вид. Можно выделить дополнительные средства соединения в таких конструкциях – порядок слов и интонацию.

Зависимые компоненты в примыкании – неизменяемые, поэтому средство грамматической связи отсутствует. Ведущее слово – любая часть речи.

Главное Зависимое Примеры
Глагол,

существительное,

прилагательное,

причастие,

деепричастие,

местоимение

Наречие Приехал (когда?) вчера,

дом (какой?) напротив,

быстро (в какой степени?) очень

Деепричастие Говорил (каким образом?) заикаясь
Инфинитив Мечта (какая?) жениться,

пришел (с какой целью?) поговорить

Неизменяемое имя прилагательное Цвет (какой?) хаки
Сравнительная степень имени прилагательного Новость (какая?) поважнее,

некто (какой?) поинтереснее

Притяжательными местоимениями (его, ее, их) Квартира (чья?) его,

ребенок (чей?) их

Существительное (несогласованное приложение) Пьеса (какая?) «Бесприданница»,

роман (какой?) «Война и мир»

Как определить тип соединения

Выпишите из предложения необходимые конструкции – так разбирать будет удобнее. Помните, что не все соединения подходят. Когда верные единицы нашлись, определяем способы подчинительной связи. Попробуйте действовать по алгоритму:

Образец разбора:

  1. Возьмем такой пример: увидимся скоро .
  2. Задаем вопрос: увидимся (когда?) скоро. Увидимся – главный элемент, скоро – второстепенный.
  3. Изменяем: увижу скоро, увидишь скоро. Преобразовался только основной компонент, значит согласованием это быть не может. Остаются те виды синтаксической связи в словосочетании, в которых изменяемый только один компонент.
  4. Предлога нет.
  5. «Скоро» – это наречие. Наречие не изменяется, значит грамматическое средство в нашем случае отсутствует.
  6. Это примыкание.

Связь слов в словосочетании

Задание 6. Словосочетание

Вывод

При синтаксическом разборе удобно строить схему. Главную часть обозначаем крестиком, формальные средства подчеркиваем (предлоги и окончания), называем части речи членов конструкции. С помощью схемы и алгоритма легко разобрать любые примеры словосочетаний.

Словосочетание – это сочетание двух или более знаменательных (самостоятельных) слов, связанных между собой на основе подчинительной связи по смыслу и грамматически. Словосочетания называют предметы, действия, признаки и т.д. Но более точно, более конкретно, чем слова: читать – читать вслух, ручка – шариковая ручка, быстро – очень быстро.

Подчинительная связь – связь слов в СС, которая связывает неравноправные компоненты, один из которых является главным, а другой – зависимым; от главного слова к зависимому можно поставить вопрос.

Типы подчинительной связи:

Компоненты словосочетания связаны друг с другом подчинительной связью, которая бывает трех видов: согласование, управление, примыкание :

1) согласование – подчинительная связь, при которой зависимое слово уподобляется главному в его морфологических признаках, т.е. при которой формы рода, числа, падежа зависимого слова предопределяются соответственными формами стержневого слова.

Различается согласование полное и неполное :

а) при полном согласовании подчиненное слово принимает все формы подчиняющего слова , насколько это позволяют грамматические категории обоих слов, например: темной ночью (согласование в роде, падеже и числе); последние минуты (согласование в падеже и числе); отметки выставлены (согласование в числе)

б) при неполном согласовании не все возможности согласования исчерпаны , например: вижу его готовым к отъезду (согласование прилагательного готовым с местоимением его в роде и числе, но не в падеже; ср. устарелую конструкцию вижу его готового к отъезду – с полным согласованием)

Зависимое слово при согласовании может быть выражено:

1) прилагательным в любой форме (кроме простой сравнительной и построенной на его базе составной превосходной степеней сравнения), которое согласуется с главным словом в роде, числе, падеже

2) местоименным прилагательным (кроме его, ее, их)

3) порядковым числительным и числительным один

4) причастием; согласование то же: прочитанную книгу

5) существительным – согласованным приложением, которое согласуется с главным словом в падеже и числе (если согласуемое существительное изменяется по числам)

6) количественными числительными в косвенных падежах; согласование в падеже, а для слова оба и в роде: обеих девочек, обоих мальчиков

2) управление – подчинительная связь, при которой от главного слова зависит существительное или местоимение в форме определенного падежа с предлогом или без него , т.е. при которой зависимое слово принимает форму того или иного падежа в зависимости от грамматической возможности главного слова и выражаемого им значения. Зависимая словоформа остается неизменной при изменении грамматической формы главного слова, в отличие от согласования, где изменяются обе словоформы одновременно.

При управлении устанавливаются отношения объектные , в которых грамматически господствующее слово называет действие или состояние, а зависимое – объект действия или носителя состояния (послать письмо, читать книгу), и субъектные , в которых грамматически господствующее слово называет действие или состояние, а зависимое – субъект действия или носителя состояния ; а также комплетивные (восполняющие) , которые в большинстве случаев выступают как синтаксически не членимые словосочетания , так как главный компонент, ввиду его смысловой недостаточности или неопределенности, не может употребляться в строго определенной форме: десять дней, стая уток, стакан воды, стать героем, начинать готовиться, четыре угла, назваться гостем, слыть простаком.

Главное слово при управлении выражается:

1) глаголом в любой форме: читая книгу

2) существительным: чтение книги

3) прилагательным: довольный успехом

4) количественным числительным в И. (В.) падеже: три стула, пять стульев

Зависимое слово при управлении – существительное, местоименное существительное или любая часть речи в функции существительного: посмотреть на друга

3) примыкание – вид подчинительной связи, при которой к главному слову присоединяется неизменяемое зависимое слово или форма изменяемого зависимого слова, не обладающая способностью согласования (инфинитив глагола, деепричастная форма, простая сравнительная степень прилагательного или наречия), т.е. при котором зависимое слово является неизменяемым, изолированным от системы падежей в силу своей принадлежности определённой части речи, зависимость от главного слова выражена семантически. Примыкать могут деепричастия, наречия и инфинитив.

Главное слово при примыкании:

1) глагол: бежать быстр

2) прилагательное: очень быстрый,

3) наречие: очень быстро

4) существительное: яйцо всмятку, брюки клеш, дети постарше

Зависимое слово при примыкании выражается:

1) наречием, в том числе в форме степеней сравнения: идти пешком, пиши быстрее

2) деепричастием: говорил заикаясь

3) инфинитивом: просил написать

4) сравнительной степенью прилагательного: дети постарше

5) неизменяемым (аналитическим) прилагательным: цвет хаки

6) местоименным прилагательным его, ее, их: его дом

7) существительным – несогласованным приложением: в газете «Известия»

Понятие химической связи имеет немаловажное значение в различных областях химии как науки. Связано это с тем, что именно с ее помощью отдельные атомы способны соединяться в молекулы, образуя всевозможные вещества, которые, в свою очередь, являются предметом химических исследований.

С многообразием атомов и молекул связано возникновение различных типов связей между ними. Для разных классов молекул характерны свои особенности распределения электронов, а значит, и свои виды связей.

Основные понятия

Химической связью называют совокупность взаимодействий, которые приводят к связыванию атомов с образованием устойчивых частиц более сложного строения (молекул, ионов, радикалов), а также агрегатов (кристаллов, стекол и прочего). Природа этих взаимодействий носит электрический характер, а возникают они при распределении валентных электронов в сближающихся атомах.

Валентностью принято называть способность того или иного атома образовывать определенное число связей с другими атомами. В ионных соединениях за значение валентности принимают число отданных или присоединенных электронов. В ковалентных соединениях она равна количеству общих электронных пар.

Под степенью окисления понимают условный заряд, который мог бы быть на атоме, если бы все полярные ковалентные связи имели бы ионный характер.

Кратностью связи называют число обобществленных электронных пар между рассматриваемыми атомами.

Связи, рассматриваемые в различных разделах химии, можно разделить на два вида химических связей: те, которые приводят к образованию новых веществ (внутримолекулярные), и те, которые возникают между молекулами (межмолекулярные).

Основные характеристики связи

Энергией связи называют такую энергию, которая требуется для разрыва всех имеющихся связей в молекуле. Также это энергия, выделяющаяся в ходе образования связи.

Длиной связи именуют такое расстояние между соседними ядрами атомов в молекуле, при котором силы притяжения и отталкивания уравновешены.

Эти две характеристики химической связи атомов являются мерой ее прочности: чем меньше длина и больше энергия, тем связь прочнее.

Валентным углом принято называть угол между представляемыми линиями, проходящими по направлению связи через ядра атомов.

Методы описания связей

Наиболее распространены два подхода к объяснению химической связи, заимствованные из квантовой механики:

Метод молекулярных орбиталей. Он рассматривает молекулу в качестве совокупности электронов и ядер атомов, причем каждый отдельно взятый электрон движется в поле действия всех других электронов и ядер. Молекула имеет орбитальное строение, а все ее электроны распределены по этим орбитам. Также этот метод носит название МО ЛКАО, что расшифровывается как "молекулярная орбиталь - линейная комбинация

Метод валентных связей. Представляет молекулу системой двух центральных молекулярных орбиталей. При этом каждая из них соответствует одной связи между двумя расположенными по соседству атомами в молекуле. Основывается метод на следующих положениях:

  1. Образование химической связи осуществляется парой электронов, имеющих противоположные спины, которые расположены между двумя рассматриваемыми атомами. Образованная электронная пара принадлежит двум атомам в равной степени.
  2. Число связей, образованных тем или иным атомом, равняется числу неспаренных электронов в основном и возбужденном состоянии.
  3. Если электронные пары не принимают участия в образовании связи, то их называют неподеленными.

Электроотрицательность

Определить тип химической связи в веществах можно, основываясь на разнице в значениях электроотрицательностей составляющих ее атомов. Под электроотрицательностью понимают способность атомов оттягивать на себя общие электронные пары (электронное облако), что приводит к поляризации связи.

Существуют различные способы определения значений электроотрицательностей химических элементов. Однако наиболее применяемой является шкала, основанная на термодинамических данных, которая была предложена еще в 1932 году Л. Полингом.

Чем значительнее разница в электроотрицательностях атомов, тем в большей степени проявляется ее ионность. Напротив, равные или близкие значения электроотрицательности указывают на ковалентный характер связи. Иначе говоря, определить, какая химическая связь наблюдается в той или иной молекуле, можно математически. Для этого нужно вычислить ΔХ - разность электроотрицательностей атомов по формуле: ΔХ=|Х 1 2 |.

  • Если ΔХ>1,7, то связь является ионной.
  • Если 0,5≤ΔХ≤1,7, то ковалентная связь носит полярный характер.
  • Если ΔХ=0 или близка к нему, то связь относится к ковалентной неполярной.

Ионная связь

Ионной называется такая связь, которая появляется между ионами или за счет полного оттягивания общей электронной пары одним из атомов. В веществах этот тип химической связи осуществляется силами электростатического притяжения.

Ионы - это заряженные частицы, образующиеся из атомов в результате присоединения или отдачи электронов. Если атом принимает электроны, то приобретает отрицательный заряд и становится анионом. Если же атом отдает валентные электроны, то становится положительно заряженной частицей, называемой катионом.

Она характерна для соединений, образованных при взаимодействии атомов типичных металлов с атомами типичных неметаллов. Основной этого процесса является стремление атомов приобрести устойчивые электронные конфигурации. А типичным металлам и неметаллам для этого нужно отдать или принять всего 1-2 электрона, что они с легкостью и делают.

Механизм образования ионной химической связи в молекуле традиционно рассматривают на примере взаимодействия натрия и хлора. Атомы щелочного металла с легкостью отдают электрон, перетягиваемый атомом галогена. В результате образуется катион Na + и анион Cl - , которые удерживаются рядом с помощью электростатического притяжения.

Идеальной ионной связи не существует. Даже в таких соединениях, которые зачастую относят к ионным, окончательного перехода электронов от атома к атому не происходит. Образованная электронная пара все-таки остается в общем пользовании. Поэтому говорят о степени ионности ковалентной связи.

Ионная связь характеризуется двумя основными свойствами, связанными друг с другом:

  • ненаправленность, т. е. электрическое поле вокруг иона имеет форму сферы;
  • ненасыщаемость, т. е. число противоположно заряженных ионов, которое может разместиться вокруг какого-либо иона, определяется их размерами.

Ковалентная химическая связь

Связь, образующаяся при перекрывании электронных облаков атомов неметаллов, то есть осуществляющаяся общей электронной парой, называется ковалентной связью. Число обобществленных пар электронов определяет кратность связи. Так, атомы водорода связаны одинарной связью Н··Н, а атомы кислорода образуют двойную связь О::О.

Существует два механизма ее образования:

  • Обменный - каждый атом представляет для образования общей пары по одному электрону: А· + ·В= А:В, при этом в осуществлении связи участвуют внешние атомные орбитали, на которых расположены по одному электрону.
  • Донорно-акцепторный - для образования связи один из атомов (донор) предоставляет пару электронов, а второй (акцептор) - свободную орбиталь для ее размещения: А + :В= А:В.

Способы перекрывания электронных облаков при образовании ковалентной химической связи также различны.

  1. Прямое. Область перекрывания облаков лежит на прямой воображаемой линии, соединяющей ядра рассматриваемых атомов. При этом образуются σ-связи. От типа электронных облаков, подвергающихся перекрыванию, зависит вид химической связи, которая при этом возникает: s-s, s-p, p-p, s-d или p-d σ-связи. В частице (молекуле или ионе) между двумя соседними атомами возможно осуществление только одной σ-связи.
  2. Боковое. Осуществляется по обе стороны от линии, соединяющей ядра атомов. Так образуется π-связь, причем также возможны ее разновидности: p-p, p-d, d-d. Отдельно от σ-связи π-связь никогда не образуется, она может быть в молекулах, содержащих кратные (двойные и тройные) связи.

Свойства ковалентной связи

Именно ими определяются химические и физические особенности соединений. Главными свойствами любой химической связи в веществах является ее направленность, полярность и поляризуемость, а также насыщаемость.

Направленностью связи обусловлены особенности молекулярного строения веществ и геометрическая форма их молекул. Суть ее состоит в том, что наилучшее перекрывание электронных облаков возможно при определенной их ориентации в пространстве. Выше уже рассмотрены варианты образования σ- и π-связи.

Под насыщаемостью понимают способность атомов образовывать определенное число химических связей в молекуле. Количество ковалентных связей для каждого атома ограничивается числом внешних орбиталей.

Полярность связи зависит от разницы в значениях электроотрицательностей атомов. От нее зависит равномерность распределения электронов между ядрами атомов. Ковалентная связь по данному признаку может быть полярной или неполярной.

  • Если общая электронная пара в равной степени принадлежит каждому из атомов и расположена от их ядер на одинаковом расстоянии, то ковалентная связь является неполярной.
  • Если же общая пара электронов смещается к ядру одного из атомов, то образуется ковалентная полярная химическая связь.

Поляризуемость выражается смещением электронов связи под действием внешнего электрического поля, которое может принадлежать другой частице, соседним связям в той же молекуле или исходить от внешних источников электромагнитных полей. Так, ковалентная связь под их влиянием может менять свою полярность.

Под гибридизацией орбиталей понимают изменение их форм при осуществлении химической связи. Это необходимо для достижения наиболее эффективного их перекрывания. Существуют следующие виды гибридизации:

  • sp 3 . Одна s- и три p-орбитали образуют четыре "гибридные" орбитали одинаковой формы. Внешне напоминает тетраэдр с углом между осями 109°.
  • sp 2 . Одна s- и две p-орбитали образуют плоский треугольник с углом между осями 120°.
  • sp. Одна s- и одна p-орбиталь образуют две "гибридные" орбитали с углом между их осями 180°.

Особенностью строения атомов металлов является довольно большой радиус и наличие небольшого количества электронов на внешних орбиталях. Вследствие этого в таких химических элементах связь ядра и валентных электронов относительно слаба и легко разрывается.

Металлической связью называют такое взаимодействие между атомами-ионами металлов, которое осуществляется с помощью делокализованных электронов.

В частицах металла валентные электроны могут легко покидать внешние орбитали, как, впрочем, и занимать вакантные места на них. Таким образом, в разные моменты времени одна и та же частица может быть атомом и ионом. Оторвавшиеся от них электроны свободно перемещаются по всему объему кристаллической решетки и осуществляют химическую связь.

Этот тип связи имеет сходства с ионной и ковалентной. Так же как и для ионной, для существования металлической связи необходимы ионы. Но если для осуществления электростатического взаимодействия в первом случае нужны катионы и анионы, то во втором роль отрицательно заряженных частиц играют электроны. Если сравнивать металлическую связь с ковалентной, то для образования обеих необходимы общие электроны. Однако, в отличие от полярной химической связи, они локализованы не между двумя атомами, а принадлежат всем частицам металла в кристаллической решетке.

Металлической связью обусловлены особенные свойства практически всех металлов:

  • пластичность, присутствует благодаря возможности смещения слоев атомов в кристаллической решетке, удерживаемых электронным газом;
  • металлический блеск, который наблюдается из-за отражения световых лучей от электронов (в порошкообразном состоянии нет кристаллической решетки и, значит, перемещающихся по ней электронов);
  • электропроводность, которая осуществляется потоком заряженных частиц, а в данном случае мелкие электроны свободно перемещаются среди крупных ионов металла;
  • теплопроводность, наблюдается благодаря способности электронов переносить теплоту.

Этот тип химической связи иногда называют промежуточной между ковалентной и межмолекулярным взаимодействием. Если атом водорода имеет связь с одним из сильно электроотрицательных элементов (таких как фосфор, кислород, хлор, азот), то он способен образовывать дополнительную связь, называемую водородной.

Она гораздо слабее всех рассмотренных выше типов связей (энергия не более 40 кДж/моль), но пренебрегать ею нельзя. Именно поэтому водородная химическая связь на схеме выглядит в виде пунктирной линии.

Возникновение водородной связи возможно благодаря донорно-акцепторному электростатическому взаимодействию одновременно. Большая разница в значениях электроотрицательности приводит к появлению избыточной электронной плотности на атомах О, N, F и других, а также к ее недостатку на атоме водорода. В том случае если между такими атомами нет существующей химической связи, при их достаточно близком расположении активизируются силы притяжения. При этом протон является акцептором электронной пары, а второй атом - донором.

Водородная связь может возникать как между соседними молекулами, например, воды, карбоновых кислот, спиртов, аммиака, так и внутри молекулы, например, салициловой кислоты.

Наличием водородной связи между молекулами воды объясняется ряд ее уникальных физических свойств:

  • Значения ее теплоемкости, диэлектрической проницаемости, температур кипения и плавления в соответствии с расчетами должны быть значительно меньше реальных, что объясняется связанностью молекул и необходимостью затрачивать энергию на разрыв межмолекулярных водородных связей.
  • В отличие от других веществ, при понижении температуры объем воды увеличивается. Это происходит благодаря тому, что молекулы занимают определенное положение в кристаллической структуре льда и отдаляются друг от друга на длину водородной связи.

Особую роль эта связь играет для живых организмов, поскольку ее наличием в молекулах белков обуславливается их особая структура, а значит, и свойства. Кроме того, нуклеиновые кислоты, составляя двойную спираль ДНК, также связаны именно водородными связями.

Связи в кристаллах

Подавляющее большинство твердых тел имеет кристаллическую решетку - особое взаимное расположение образующих их частиц. При этом соблюдается трехмерная периодичность, а в узлах располагаются атомы, молекулы или ионы, которые соединены воображаемыми линиями. В зависимости от характера этих частиц и связей между ними все кристаллические структуры делят на атомные, молекулярные, ионные и металлические.

В узлах ионной кристаллической решетки находятся катионы и анионы. Причем каждый из них окружен строго определенным числом ионов только с противоположным зарядом. Типичный пример - хлорид натрия (NaCl). Для них обычны высокие температуры плавления и твердость, так как для их разрушения требуется много энергии.

В узлах молекулярной кристаллической решетки расположены молекулы веществ, образованные ковалентной связью (например, I 2). Связаны они друг с другом слабым ван-дер-ваальсовым взаимодействием, а следовательно, такую структуру легко разрушить. Такие соединения имеют низкие температуры кипения и плавления.

Атомную кристаллическую решетку образуют атомы химических элементов, обладающих высокими значениями валентности. Связаны они прочными ковалентными связями, а значит, вещества отличаются высокими температурами кипения, плавления и большой твердостью. Пример - алмаз.

Таким образом, все типы связей, имеющихся в химических веществах, имеют свои особенности, которыми объясняются тонкости взаимодействия частиц в молекулах и веществах. От них зависят свойства соединений. Ими обуславливаются все процессы, происходящие в окружающей среде.

Благодаря которой образуются молекулы неорганических и органических веществ. Химическая связь появляется при взаимодействии электрических полей, которые создаются ядрами и электронами атомов. Следовательно, образование ковалентной химической связи связано с электрической природой.

Что такое связь

Под этим термином подразумевают результат действия двух либо более атомов, которые приводят к формированию прочной многоатомной системы. Основные виды химической связи образуются при уменьшении энергии реагирующих атомов. В процессе формирования связи атомы стараются завершить свою электронную оболочку.

Виды связи

В химии выделяют несколько видов связи: ионной, ковалентной, металлической. Ковалентная химическая связь имеет две разновидности: полярная, неполярная.

Каков механизм ее создания? Ковалентная неполярная химическая связь образуется между атомами одинаковых неметаллов, имеющих одну электроотрицательность. При этом образуются общие электронные пары.

Неполярная связь

Среди примеров молекул, у которых ковалентная химическая связь неполярного вида, можно назвать галогены, водород, азот, кислород.

Впервые эта связь была обнаружена в 1916 году американским химиком Льюисом. Сначала им была выдвинута гипотеза, а подтверждена она была только после экспериментального подтверждения.

Ковалентная химическая связь связана с электроотрицательностью. У неметаллов она имеет высокое значение. В ходе химического взаимодействия атомов не всегда возможен перенос электронов от одного атома к другому, в результате осуществляется их объединение. Между атомами появляется подлинная ковалентная химическая связь. 8 класс обычной школьной программы предполагает детальное рассмотрение нескольких видов связи.

Вещества, имеющие данный вид связи, при нормальных условиях - жидкости, газы, а также твердые вещества, имеющие невысокую температуру плавления.

Типы ковалентной связи

Подробнее остановимся на данном вопросе. Какие выделяют типы химической связи? Ковалентная связь существует в обменном, донорно-акцепторном вариантах.

Первый тип характеризуется отдачей каждым атомом одного неспаренного электрона на образование общей электронной связи.

Электроны, объединяемые в общую связь, должны обладать противоположными спинами. В качестве примера подобного вида ковалентной связи можно рассмотреть водород. При сближении его атомов наблюдается проникновение их электронных облаков друг в друга, именуемое в науке перекрыванием электронных облаков. В результате увеличивается электронная плотность между ядрами, а энергия системы понижается.

При минимальном расстоянии ядра водорода отталкиваются, в итоге образуется некое оптимальное расстояние.

В случае донорно-акцепторного типа ковалентной связи у одной частицы есть электроны, ее называют донором. Вторая частица имеет свободную ячейку, в которой будет размещаться пара электронов.

Полярные молекулы

Как образуются ковалентные полярные химические связи? Они возникают в тех ситуациях, когда у связываемых атомов неметаллов различная электроотрицательность. В подобных случаях обобществленные электроны размещаются ближе к тому атому, у которого значение электроотрицательности выше. В качестве примера ковалентной полярной связи могут рассматриваться связи, которые возникают в молекуле бромоводорода. Здесь общественные электроны, которые отвечают за формирование ковалентной связи, ближе находятся к брому, чем к водороду. Причина подобного явления в том, что у брома электроотрицательность выше, чем у водорода.

Способы определения ковалентной связи

Как определить ковалентные полярные химические связи? Для этого необходимо знать состав молекул. Если в ней присутствуют атомы разных элементов, в молекуле существует ковалентная полярная связь. В неполярных молекулах присутствуют атомы одного химического элемента. Среди тех заданий, которые предлагаются в рамках школьного курса химии, есть и такие, которые предполагают выявление вида связи. Задания подобного типа включены в задания итоговой аттестации по химии в 9 классе, а также в тесты единого государственного экзамена по химии в 11 классе.

Ионная связь

Чем отличается ковалентная и ионная химическая связь? Если ковалентная связь характерна для неметаллов, то ионная связь образуется между атомами, имеющими существенные отличия по электроотрицательности. К примеру, это характерно для соединений элементов первой и второй групп главных подгрупп ПС (щелочных и щелочноземельных металлов) и элементов 6 и 7 групп главных подгрупп таблицы Менделеева (халькогенов и галогенов).

Она формируется в результате электростатического притяжения ионов, обладающих противоположными зарядами.

Особенности ионной связи

Так как силовые поля противоположно заряженных ионов распределяются равномерно во всех направлениях, каждый из них способен притягивать к себе противоположные по знаку частицы. Это и характеризует ненаправленность ионной связи.

Взаимодействие двух ионов, обладающих противоположными знаками, не предполагает полной взаимной компенсации индивидуальных силовых полей. Это способствует сохранению способности притягивать по остальным направлениям ионы, следовательно, наблюдается ненасыщенность ионной связи.

В ионном соединении у каждого иона есть возможность притягивать к себе некое число других, обладающих противоположных знаком, чтобы сформировать кристаллическую решетку ионного характера. В таком кристалле не существует молекул. Каждый ион окружается в веществе неким конкретным числом ионов иного знака.

Металлическая связь

Данный вид химической связи обладает определенными индивидуальными особенностями. Металлы имеют избыточное количество валентных орбиталей при недостатке электронов.

При сближении отдельных атомов происходит перекрывание их валентных орбиталей, что способствует свободному перемещению электронов из одной орбитали в другую, осуществляя между всеми атомами металла связь. Эти свободные электроны и являются основным признаком металлической связи. Она не обладает насыщенностью и направленностью, поскольку валентные электроны распределяются по кристаллу равномерно. Присутствие в металлах свободных электронов объясняет их некоторые физические свойства: металлический блеск, пластичность, ковкость, теплопроводность, непрозрачность.

Разновидность ковалентной связи

Она образуется между атомом водорода и элементом, который имеет высокую электроотрицательность. Существуют внутри- и межмолекулярные водородные связи. Эта разновидность ковалентной связи является самой непрочной, она появляется благодаря действию электростатических сил. У атома водорода небольшой радиус, и при смещении либо отдаче этого одного электрона водород становится положительным ионом, действующим на атом с большой электроотрицательностью.

Среди характерных свойств ковалентной связи выделяют: насыщаемость, направленность, поляризуемость, полярность. Каждый из этих показателей имеет определенное значение для образуемого соединения. К примеру, направленность обуславливается геометрической формой молекулы.

Любое взаимодействие между атомами возможно лишь при наличии химической связи. Такая связь является причиной образования устойчивой многоатомной системы - молекулярного иона, молекулы, кристаллической решетки. Прочная химическая связь требует много энергии для разрыва, поэтому она и является базовой величиной для измерения прочности связи.

Условия образования химической связи

Образование химической связи всегда сопровождается выделением энергии. Этот процесс происходит за счет уменьшения потенциальной энергии системы взаимодействующих частиц - молекул, ионов, атомов. Потенциальная энергия образовавшейся системы взаимодействующих элементов всегда меньше энергии несвязанных исходящих частиц. Таким образом, основанием для возникновения химической связи в системе является спад потенциальной энергии ее элементов.

Природа химического взаимодействия

Химическая связь - это следствие взаимодействия электромагнитных полей, возникающих вокруг электронов и ядер атомов тех веществ, которые принимают участие в образовании новой молекулы или кристалла. После открытия теории строения атома природа этого взаимодействия стала более доступной для изучения.

Впервые идея об электрической природе химической связи возникла у английского физика Г. Дэви, который предположил, что молекулы образуются по причине электрического притяжения разноименно заряженных частиц. Данная идея заинтересовала шведского химика и естествоиспытателя И.Я. Берцеллиуса, который разработал электрохимическую теорию возникновения химической связи.

Первая теория, объяснявшая процессы химического взаимодействия веществ, была несовершенной, и со временем от нее пришлось отказаться.

Теория Бутлерова

Более успешная попытка объяснить природу химической связи веществ была предпринята русским ученым А.М.Бутлеровым. В основу своей теории этот ученый положил такие предположения:

  • Атомы в соединенном состоянии связаны друг с другом в определенном порядке. Изменение этого порядка служит причиной образования нового вещества.
  • Атомы связываются между собой по законам валентности.
  • Свойства вещества зависят от порядка соединения атомов в молекуле вещества. Иной порядок расположения становится причиной изменения химических свойств вещества.
  • Атомы, связанные между собой, наиболее сильно влияют друг на друга.

Теория Бутлерова объясняла свойства химических веществ не только их составом, но и порядком расположения атомов. Такой внутренний порядок А.М. Бутлеров назвал «химическим строением».

Теория русского ученого позволила навести порядок в классификации веществ и предоставила возможность определять строение молекул по их химическим свойствам. Также теория дала ответ на вопрос: почему молекулы, содержащие одинаковое количество атомов, имеют разные химические свойства.

Предпосылки создания теорий химической связи

В своей теории химического строения Бутлеров не касался вопроса о том, что такое химическая связь. Для этого тогда было слишком мало данных о внутреннем строении вещества. Лишь после открытия планетарной модели атома американский ученый Льюис принялся разрабатывать гипотезу о том, что химическая связь возникает посредством образования электронной пары, которая одновременно принадлежит двум атомам. Впоследствии эта идея стала фундаментом для разработки теории ковалентной связи.

Ковалентная химическая связь

Устойчивое химическое соединение может быть образовано при перекрытии электронных облаков двух соседних атомов. Результатом такого взаимного пересечения становится возрастающая электронная плотность в межъядерном пространстве. Ядра атомов, как известно, заряжены положительно, и поэтому стараются как можно ближе притянуться к отрицательно заряженному электронному облаку. Это притяжение значительно сильнее, чем силы отталкивания между двумя положительно заряженными ядрами, поэтому такая связь является устойчивой.

Впервые расчеты химической связи были выполнены химиками Гейтлером и Лондоном. Ими была рассмотрена связь между двумя атомами водорода. Простейшее наглядное представление о ней может выглядеть следующим образом:

Как видно, электронная пара занимает квантовое место в обоих атомах водорода. Такое двуцентровое размещение электронов получило название «ковалентная химическая связь». Ковалентная связь типична для молекул простых веществ и их соединений неметаллов. Вещества, созданные в результате ковалентной связи, обычно не проводят электрический ток или же являются полупроводниками.

Ионная связь

Химическая связь ионного типа возникает при взаимном электрическом притяжении двух противоположно заряженных ионов. Ионы могут быть простыми, состоящими из одного атома вещества. В соединениях подобного типа простые ионы - чаще всего положительно заряженные атомы металлов 1,2 группы, потерявшие свой электрон. Образование отрицательных ионов присуще атомам типичных неметаллов и оснований их кислот. Поэтому среди типичных ионных соединений имеется множество галогенидов щелочных металлов, например CsF, NaCl, и других.

В отличие от ковалентной связи, ион не обладает насыщенностью: к иону или группе ионов может присоединиться различное число противоположно заряженных ионов. Количество присоединенных частиц ограничивается лишь линейными размерами взаимодействующих ионов, а также условием, при котором силы притяжения противоположно заряженных ионов должны быть больше, чем силы отталкивания одинаково заряженных частиц, участвующих в соединении ионного типа.

Водородная связь

Еще до создания теории химического строения опытным путем было замечено, что соединения водорода с различными неметаллами обладают несколько необычными свойствами. Например, температура кипения фтороводорода и воды значительно выше, чем это можно было ожидать.

Эти и другие особенности водородных соединений можно объяснить способностью атома Н + образовывать еще одну химическую связь. Такой тип соединения получил название «водородная связь». Причины возникновения водородной связи кроются в свойствах электростатических сил. Например, в молекуле фтороводорода общее электронное облако настолько смещено в сторону фтора, что пространство вокруг атома этого вещества насыщенно отрицательным электрическим полем. Вокруг атома водорода, лишенного своего единственного электрона, поле значительно слабее, и имеет положительных заряд. В результате возникает дополнительная взаимосвязь между положительными полями электронных облаков Н + и отрицательными F - .

Химическая связь металлов

Атомы всех металлов расположены в пространстве определенным образом. Порядок расположения атомов металлов называется кристаллической решеткой. При этом электроны различных атомов слабо взаимодействуют друг с другом, образуя общее электронное облако. Такой вид взаимодействия между атомами и электронами получил название «металлическая связь».

Именно свободным передвижением электронов в металлах можно объяснить физические свойства металлических веществ: электропроводность, теплопроводность, прочность, плавкость и другие.