Как определить вероятность события формула. Различные определения вероятности случайного события

Сложение и умножение вероятностей. В этой статье речь пойдёт о решении задач по теории вероятностей. Ранее мы с вами уже разбирали некоторые простейшие задания, для их решения достаточно знать и понимать формулу (советую повторить).

Есть тины задачи немного сложнее, для их решения необходимо знать и понимать: правило сложения вероятностей, правило умножения вероятностей, понятия зависимые и независимые события, противоположные события, совместные и несовместные события. Не пугайтесь определений, все просто)). В этой статье мы с вами именно такие задачи и рассмотрим.

Немного важной и простой теории:

несовместными , если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

Классический пример: при бросании игральной кости (кубика) может выпасть только единица, либо только двойка, либо только тройка и т.д. Каждое из этих событий несовместно с другими и совершение одного из них исключает совершение другого (в одном испытании). Тоже самое с монетой — выпадение «орла» исключает возможность выпадение «решки».

Также это относится и к более сложным комбинациям. Например, горят две лампы освещения. Каждая из них может перегореть или не перегореть в течение какого-то времени. Существую варианты:

  1. Перегорает первая и перегорает вторя
  2. Перегорает первая и не перегорает вторая
  3. Не перегорает первая и перегорает вторая
  4. Не перегорает первая и перегорает вторая.

Все эти 4 варианта событий несовместны — они вместе произойти просто не могут и никакое из них с любым другим...

Определение: События называются совместными , если появление одного из них не исключает появление другого.

Пример: из колоды карт будет взята дама и из колоды карт будет взята карта пик. Рассматриваются два события. Данные события не исключают друг друга — можно вытащить даму пик и, таким образом, произойдут оба события.

О сумме вероятностей

Суммой двух событий А и В называется событие А+В, которое состоит в том, что наступит или событие А или событие В или оба одновременно.

Если происходят несовместные события А и В, то вероятность суммы данных событий равна сумме вероятностей событий:


Пример с игральной костью:

Бросаем игральную кость. Какова вероятность выпадения числа меньшего четырёх?

Числа меньшие четырёх это 1,2,3. Мы знаем, что вероятность выпадения единицы равна 1/6, двойки 1/6, тройки 1/6. Это несовместные события. Можем применить правило сложения. Вероятность выпадения числа меньшего четырёх равна:

Действительно, если исходить из понятия классической вероятности: то число всевозможных исходов равно 6 (число всех граней кубика), число благоприятных исходов равно 3 (выпадение единицы, двойки или тройки). Искомая вероятность равна 3 к 6 или 3/6 = 0,5.

*Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без учёта их совместного появления: Р(А+В)=Р(А)+Р(В) -Р(АВ)

Об умножении вероятностей

Пусть происходят два несовместных события А и В, их вероятности соответственно равны Р(А) и Р(В). Произведением двух событий А и В называют такое событие А·В, которое состоит в том что эти события произойдут вместе, то есть произойдёт и событие А и событие В. Вероятность такого события равна произведению вероятностей событий А и В. Вычисляется по формуле:

Как вы уже заметили логическая связка «И» означает умножение.

Пример с той же игральной костью: Бросаем игральную кость два раза. Какова вероятность выпадения двух шестёрок?

Вероятность выпадения шестёрки первый раз равна 1/6. Во второй раз так же равна 1/6. Вероятность выпадения шестёрки и в первый раз и во второй раз равна произведению вероятностей:

Говоря простым языком: когда в одном испытании происходит некоторое событие, И далее происходит(ят) другое (другие), то вероятность того что они произойдут вместе равна произведению вероятностей этих событий.

Задачи с игральной костью мы решали, но пользовались только логическими рассуждениями, формулу произведения не использовали. В рассматриваемых же ниже задачах без формул не обойтись, вернее с ними будет получить результат проще и быстрее.

Стоит сказать ещё об одном нюансе. При рассуждениях в решении задач используется понятие ОДНОВРЕМЕННОСТЬ совершения событий. События происходят ОДНОВРЕМЕННО — это не означает, что они происходят в одну секунду (в один момент времени). Это значит, что они происходят в некоторый промежуток времени (при одном испытании).

Например:

Две лампы перегорают в течение года (может быть сказано — одновременно в течение года)

Два автомата ломаются в течении месяца (может быть сказано — одновременно в течение месяца)

Игральная кость бросается три раза (очки выпадают одновременно это означает при одном испытании)

Биатлонист делает пять выстрелов. События (выстрелы) происходят во время одного испытания.

События А и В являются НЕзависимыми, если вероятность любого из них не зависит от появления либо непоявления другого события.

Рассмотрим задачи:

Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 35 % этих стекол, вторая –– 65%. Первая фабрика выпускает 4% бракованных стекол, а вторая –– 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Первая фабрика выпускает 0,35 продукции (стёкол). Вероятность купить бракованное стекло с первой фабрики равна 0,04.

Вторая фабрика выпускает 0,65 стёкол. Вероятность купить бракованное стекло со второй фабрики равна 0,02.

Вероятность того, что стекло куплено на первой фабрике И при этом оно окажется бракованным равна 0,35∙0,04 = 0,0140.

Вероятность того, что стекло куплено на второй фабрике И при этом оно окажется бракованным равна 0,65∙0,02 = 0,0130.

Покупка в магазине бракованного стекла подразумевает, что оно (бракованное стекло) куплено ЛИБО с первой фабрики, ЛИБО со второй. Это несовместные события, то есть полученные вероятности складываем:

0,0140 + 0,0130 = 0,027

Ответ: 0,027

Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,62. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,2. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Возможность выиграть первую и вторую партию не зависят друг от друга. Сказано, что гроссмейстер должен выиграть оба раза, то есть выиграть первый раз И при этом выиграть ещё и второй раз. В случае, когда независимые события должны произойти совместно вероятности этих событий перемножаются, то есть используется правило умножения.

Вероятность произведения указанных событий будет равна 0,62∙0,2 = 0,124.

Ответ: 0,124

На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,3. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

То есть необходимо найти вероятность того, что школьнику достанется вопрос ЛИБО по теме «Вписанная окружность», ЛИБО по теме «Параллелограмм». В данном случае вероятности суммируются, так как это события несовместные и произойти может любое из этих событий: 0,3 + 0,25 = 0,55.

*Несовместные события – это события, которые не могут произойти одновременно.

Ответ: 0,55

Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,9. Найдите вероятность того, что биатлонист первые четыре раза попал в мишени, а последний промахнулся. Результат округлите до сотых.

Поскольку биатлонист попадает в мишень с вероятностью 0,9, то он промахивается с вероятностью 1 – 0,9 = 0,1

*Промах и попадание это события, которые при одном выстреле не могут произойти одновременно, сумма вероятностей этих событий равна 1.

Речь идёт о совершении нескольких (независимых) событий. Если происходит событие и при этом происходит другое (последующие) в одно время (испытание), то вероятности этих событий перемножаются.

Вероятность произведения независимых событий равна произведению их вероятностей.

Таким образом, вероятность события «попал, попал, попал, попал, промахнулся» равна 0,9∙0,9∙0,9∙0,9∙0,1 = 0,06561.

Округляем до сотых, получаем 0,07

Ответ: 0,07

В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,07 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Найдем вероятность того, что неисправны оба автомата.

Эти события независимые, значит вероятность будет равна произведению вероятностей этих событий: 0,07∙0,07 = 0,0049.

Значит, вероятность того, что исправны оба автомата или какой-то из них будет равна 1 – 0,0049 = 0,9951.

*Исправны оба и какой-то один полностью – отвечает условию «хотя бы один».

Можно представить вероятности всех (независимых) событий для проверки:

1. «неисправен-неисправен» 0,07∙0,07 = 0,0049

2. «исправен-неисправен» 0,93∙0,07 = 0,0651

3. «неисправен-исправен» 0,07∙0,93 = 0,0651

4. «исправен-исправен» 0,93∙0,93 = 0,8649

Чтобы определить вероятность того, что исправен хотя бы один автомат, необходимо сложить вероятности независимых событий 2,3 и 4: Достоверным событием называется событие, которое наверняка произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта.

Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.

Определение: События называются равновозможными , если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью.

В приведенном выше примере появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров. Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.

В мы рассмотрим ещё задачи, где используется сумма и произведение вероятностей событий, не пропустите!

На этом всё. Успехов вам!

С уважением, Александр Крутицких.

Марья Ивановна ругает Васю:
— Петров, ты почему вчера не был в школе?!
— Мне мама вчера штаны постирала.
— Ну и что?
— А я шел мимо дома и увидел, что Ваши висят. Думал, не придете.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

1. Изложение основных теорем и формул вероятностей: теорема сложения, условная вероятность, теорема умножения, независимость событий, формула полной вероятности.

Цели: создание благоприятных условий для введения понятия вероятности события; знакомство с основными теоремами и формулами теории вероятностей; ввести формулу полной вероятности.

Ход занятия:

Случайным экспериментом (опытом) называют процесс, при котором возможны различные исходы, причем заранее нельзя предсказать, каков будет результат. Возможные исключающие друг друга исходы опыта называются его элементарными событиями . Множество элементарных событий обозначим через W.

Случайным событием называется событие, о котором нельзя заранее сказать, произойдет оно в результате опыта или нет. Каждому случайному событию А, происшедшему в результате опыта, можно поставить в соответствие группу элементарных событий из W. Элементарные события, входящие в состав этой группы, называют благоприятствующими появлению события А.

Множество W также можно рассматривать как случайное событие. Поскольку оно включает все элементарные события, то обязательно произойдет в результате опыта. Такое событие называют достоверным .

Если для данного события нет благоприятствующих элементарных событий из W, то и результате опыта оно произойти не может. Такое событие называют невозможным.

События называют равновозможными , если в результате испытания обеспечиваются равные возможности осуществления этих событий. Два случайных события называются противоположными , если в результате проведения опыта одно из них происходит тогда и только тогда, когда не происходит другое. Событие, противоположное событию А, обозначают .

События А и В называют несовместными , если появление одного из них исключает появление другого. События А 1 , А 2 , ..., А n называют попарно несовместными, если любые два из них несовместны. События А 1 , А 2 , ..., Аn образуют полную систему попарно несовместных событий , если в результате испытания обязательно произойдет одно и только одно из них.

Суммой (объединением) событий А 1 , А 2 , ..., А n называется такое событие С, которое состоит в том, что произошло хотя бы одно из событий А 1 , А 2 , ..., А n Сумма событий обозначается следующим образом:

C = A 1 +A 2 +…+A n .

Произведением (пересечением) событий А 1 , А 2 , ..., А n называется такое событие П, которое состоит в том, что одновременно произошли все события А 1 , А 2 , ..., А n . Произведение событий обозначается

Вероятность Р(А) в теории вероятностей выступает как числовая характеристика степени возможности появления какого-либо определенного случайного события А при многократном повторении испытаний.



Допустим, при 1000 бросаний игральной кости цифра 4 выпадает 160 раз. Отношение 160/1000 = 0,16 показывает относительную частоту выпадений цифры 4 в данной серии испытаний. В более общем случае частотой случайного события А при проведении серии опытов называют отношение числа опытов, в которых произошло данное событие, к общему числу опытов:

где Р*(А) - частота события А; m - число опытов, в которых произошло событие А; n - общее число опытов.

Вероятностью случайного события А называют постоянное число, около которого группируются частоты данного события по мере увеличения количества опытов (статистическое определение вероятности события ). Вероятность случайного события обозначают Р(А).

Естественно, что никто и никогда не сможет проделать неограниченное число испытаний для того, чтобы определить вероятность. В этом нет и необходимости. Практически за вероятность можно принять частоту события при большом числе испытаний. Так, например, из статистических закономерностей рождения, установленных за много лет наблюдений, вероятность того события, что новорожденный будет мальчиком, оценивается в 0,515.

Если при испытании нет каких-либо причин, вследствие которых одно случайное событие появилось бы чаще других (равновозможные события ), можно определить вероятность исходя из теоретических соображений. Например, выясним в случае бросания монеты частоту выпадения герба (событие А). разными экспериментаторами при нескольких тысячах испытаний было показано, что относительная частота такого события принимает значения, близкие к 0,5. учитывая, что появление герба и противоположной стороны монеты (событие В) являются событиями равновозможными, если монета симметрична, суждение Р(А)=Р(В)=0,5 можно было бы сделать и без определения частоты этих событий. На основе понятия «равновозможности» событий формулируется другое определение вероятности.

Пусть рассматриваемое событие А происходит в m случаях, которые называются благоприятствующими А, и не происходит при остальных n-m, неблагоприятствующих А.

Тогда вероятность события А равна отношению количества благоприятствующих ему элементарных событий к их общему числу (классическое определение вероятности события ):

где m - количество элементарных событий, благоприятствующих событию А; n - Общее количество элементарных событий.

Рассмотрим несколько примеров:

Пример №1: В урне находится 40 шаров: 10 черных и 30 белых. Найти вероятность того, что наугад выбранный шар будет черным.

Число благоприятствующих случаев равно числу черных шаров в урне: m = 10. общее число равновозможных событий (вынимание одного шара) равна полному числу шаров в урне: n = 40. Эти события несовместны, так как вынимается один и только один шар. Р(А) = 10/40 = 0,25

Пример №2: найти вероятность выпадения четного числа при бросании игральной кости.

При бросании кости реализуется шесть равновозможных несовместных событий: появление одной цифры:1,2,3,4,5 или 6, т.е. n = 6. благоприятствующими случаями являются выпадение одной из цифр 2,4 или 6: m = 3. искомая вероятность Р(А) = m/N = 3/6 = ½.

Как видим из определения вероятности события, для всех событий

0 < Р(А) < 1.

Очевидно, что вероятность достоверного события равна 1, вероятность невозможного события равна 0.

Теорема сложения вероятностей: вероятность появления одного (безразлично какого) события из нескольких несовместных событий равна сумме их вероятностей.

Для двух несовместных событий А и В вероятностей этих событий равна сумме их вероятностей:

Р(А или В)=Р(А) + Р(В).

Пример №3: найти вероятность выпадения 1 ил 6 при бросании игральной кости.

Событие А (выпадение 1) и В(выпадение 6) являются равновозможными: Р(А) = Р(В) = 1/6, поэтому Р(А или В) = 1/6 + 1/6 = 1/3

Сложение вероятностей справедливо не только для двух, но и для любого числа несовместных событий.

Пример №4: в урне находится 50 шаров: 10 белых, 20 черных, 5 красных и 15 синих. Найти вероятность появления белого, или черного, или красного шара при однократной операции изъятия шара из урны.

Вероятность вынимания белого шара (событие А) равна Р(А) = 10/50 = 1/5, черного шара (событие В) равна Р(В) = 20/50 = 2/5 и красного шара (событие С) равно Р(С) = 5/50 = 1/10. Отсюда по формуле сложения вероятностей получим Р(А или В или С) = Р(А) +Р(В) =Р(С) = 1/5 + 2/5 + 1/10 = 7/10

Сумма вероятностей двух противоположных событий, как следует из теоремы сложения вероятностей, равна единице:

Р(А) + Р() = 1

В выше рассмотренном примере вынимание белого, черного и красного шара будет событием А 1 , Р(А 1) = 7/10. Противоположным событием 1 является доставание синего шара. Так как синих шаров 15, а общее количество шаров 50, то получаем Р( 1) = 15/50 = 3/10 и Р(А) + Р() = 7/10 +3/10 = 1.

Если события А 1 , А 2 , ..., А n образуют полную систему попарно несовместных событий, то сумма их вероятностей равна 1.

В общем случае вероятность суммы двух событий А и В вычисляется как

Р(А+В) = Р(А) + Р(В) - Р (АВ).

Теорема умножения вероятностей:

События А и В называются независимыми , если вероятность появления события А не зависит от того, произошло событие В или нет, и наоборот, вероятность появления события В не зависит от того, произошло событие А или нет.

Вероятность совместного появления независимых событий равна произведению их вероятностей . Для двух событий Р(А и В)=Р(А)·Р(В).

Пример: В одной урне 5 черных и 10 белых шаров, в другой 3 черных и 17 белых. Найти вероятность того, что при первом вынимании шаров из каждой урны оба шара окажутся черными.

Решение: вероятность вытаскивания черного шара из первой урны (событие А) – Р(А) = 5/15 = 1/3, черного шара из второй урны (событие В) – Р(В) = 3/20

Р(А и В)=Р(А)·Р(В) = (1/3)(3/20) = 3/60 = 1/20.

На практике нередко вероятность события В зависит оттого, произошло некоторое другое событие А или нет. В этом случае говорят об условной вероятности , т.е. вероятности события В при условии, что событие А произошло. Условную вероятность обозначают P(B/A).

Иногда ее выражают в процентах: Р(А) 100% есть средний процент числа появлений события A . Конечно, следует помнить, что речь идет о некоторой массовой операции, т. е. условия S производства испытаний - определенные; если их существенно изменить, то может измениться вероятность события A : то будет вероятность события A в другой массовой операции, с другими условиями испытаний. В дальнейшем будем считать, не оговаривая это каждый раз, что речь идет об определенной массовой операции; если же условия, при которых осуществляются испытания, меняются, то это будет специально отмечаться.

37 Основные правила нахождения вероятности события.38,39

Комбинаторика это раздел математики в котором изучается вопрос о том сколько

различных комбинаций подчиненных тем или иным условиям можно составить из

конечного числа различных элементов.

Комбинации отличающиеся друг от друга составом элементов или их порядком

называются соединениями различают три вида соединений.

Размещениями называются соединения составленные из n-различных элементов по

m-элементам, которые отличаются друг от друга либо составом эл-тов либо их

порядком.

Перестановки называют соединения составленные из одних и тех же n-элементов,

которые отличаются друг от друга только их порядком размещения

Сочетаниями называются соединения составленные из n-различных элементов по m-

элементам, которые отличаются друг от друга хотя бы одним элементом.

Сочетания с повторениями это такие соединения состоящие из n-различных

элементов по m-элементам отличающиеся друг от друга или хотя бы одним

элементом или тем что хотя бы один элемент входит различное число раз

Правило суммы

Если некоторый объект А может быть выбран из совокупности объектов М

способами, а объект В N способами, то выбор либо объекта А либо объекта В

может быть осуществлен М+N способами.

Правило произведения

Если объект А может быть выбран из совокупности объектов М способами, а после

такого выбора объект В может быть выбран N способами, то пара объесков А и В

могут быть выбраны А*В способами.

Основные понятия теории вероятностей

Событием называется любой исход опыта, различают следующие виды событий:

Случайные

Достоверные

Невозможные

Понятие достоверного и невозможного события используется для количественной

оценки возможности появления того или иного явления, а с количественной

оценкой связана вероятность.

События называется несовместными в данном опыте если появление одного из

них исключает появление другого.

События называется совместными если появление одного из них не исключает

появление остальных.

Несколько событий образуют полную группу событий если в результате опыта

обязательно появится хотя бы одно из них.

Если два несовместных события образуют полную группу они называются

противоположными

События называется равновозможными если появление ни одного из них не

является объективно более возможным чем другие.

События называются неравновозможными если появление хотя бы одного из

них является более возможным чем другие.

Случаями называются несовместные равновозможные и образующие полную

группу события.

Вычисление вероятностей

1. классический способ

2. геометрический

3. статистический

Первые два способа называются способами непосредственного подсчета

вероятности, а классический основан на подсчете числа опытов

благоприятствующих данному событию среди всех его возможных исходах.

Основы теории вероятности

Суммой событий А i называется событие С состоящее в появлении события

А или события В или их обоих вместе.

Суммой события А и В называется событие С заключенное в выполнении хотя бы

одного из названых событий.

Произведением нескольких событий называется событие заключающееся в

совместном выполнении всех этих событий.

Теорема умножения вероятностей .

Событие А называется зависимым от события В если его вероятность меняется в

зависимости от того произошло событие В или нет.

Для независимых событий условная и безусловная вероятность совпадают.

Вероятность появления двух зависимых событий равна произведению вероятностей

одного из них на вероятность другого вычисленную при условии, что первое

событие имело место.

Р(А*В)=Р(А)*Р(В/А)=Р(В)*Р(В/А)

Вероятность произведения нескольких событий равна произведению вероятностей

этих событий причем вероятность каждого следующего события вычисляется при

условии, что все предыдущие имели место.

Р(А 1 ;А 2 .А n)=Р(А 1)*Р(А 2 /А 1)*.

*Р(А n /А 1 ,А 2 .А n-1)

Теорема сложения вероятностей совместных событий

Вероятность суммы двух совместных событий равна сумме вероятностей этих

событий без вероятности их совместного появления.

Р(А)+Р(В)=Р(А)+Р(В)-Р(А*В)

Вероятность появления хотя бы одного события

Вероятность появления события А заключающееся в наступлении хотя бы одного из

независимых совокупностей событий.А 1 ,А 2 .А n

равна разности между единицей и произведением вероятности противоположных

событий А 1 ,А 2 .А n

Р(А)=1-q 1 *q 2 *.*q n

Формула полной вероятности

Пусть событие А может появиться вместе с одним из образующих полную группу

попарнонесовместных событий Н 1 ,Н 2 .Н n

называемых гипотезами, тогда вероятность события А вычисляется как сумма

произведений вероятностей каждой гипотезы на вероятность события А при этой

гипотезе

Формула Бейса

Пусть имеется полная группа попарнонесовместных гипотез Н 1 ,Н 2

Н n с известными вероятностями появления. В результате проведения

опыта появилось некоторое события А, требуется переоценить вероятности гипотез

при условии, что событие А произошло

Повторение опытов

Несколько опытов называются независимыми, если вероятность одного или иного

из исходов каждого их опытов не зависит от того какие исходы имели другие

Теорема. Если производится n независимых опытов в каждом из которых

событие А появляется с одинаковой вероятностью р, причем то тогда вероятность

того, что событие А появится ровно m раз определяется по формуле.

Формула Бернули

формула Бернули применяется в тех случаях, когда число опытов невелико, а

вероятности появления достаточно велики.

Если число испытаний n стремится к 0, а вероятность появления события А в каждом

из опытов р стремится к 0, то для определения вероятности появления события А

ровно m раз применяют формулу Пуассона

Если число опытов достаточно велико но не бесконечно, а вероятность появления

события А в каждом опыте не стремится к 0, применяют локальную и интегральную

теоремы Лапласа

Локальная теорема Лапласа. Вероятность того, что в n независимых

испытаниях в каждом из которых вероятность появления события А равно р причем

1>р>0, то это событие наступает ровно m раз приблизительно равна

Интегральная теорема Лапласа . Вероятность того, что в n независимых

испытаниях в каждом из которых вероятность появления события А равно р, причем

1>р>0, то событие А наступит не менее m 1 раз и не более m

2 раза приблизительно равно

Случайные величины и законы их распределения

Опытом называется всякое осуществление определенных условий и действий при

которых наблюдается изучаемое случайное явление. Опыты можно характеризовать

качественно и количественно.

Случайной называется величина, которая в результате опыта может принимать то

или иное значение., причем заранее не известно какое именно. Случайные

величины принято обозначать (X,Y,Z), а соответствующие им значения (x,y,z)

Дискретными называются случайные величины принимающие отдельные

изолированные друг от друга значения, которые можно переоценить.

Непрерывными величины возможные значение которых непрерывно заполняют

некоторый диапазон.

Законом распределения случайной величины называется всякое соотношение

устанавливающее связь между возможными значениями случайных величин и

соответствующими им вероятности.

Ряд и многоугольник распределения.

Простейшей формой закона распределения дискретной величины является ряд

распределения.

Графической интерпретацией ряда распределения является многоугольник

распределения.

Функция распределения случайной величины.

Для непрерывных случайных величин применяют такую форму закона распределения,

как функция распределения.

Функция распределения случайной величины Х, называется функцией аргумента х,

что случайная величина Х принимает любое значение меньшее х (Х<х)

F(х)=Р(Х<х)

F(х) - иногда называют интегральной функцией распределения или интегральным

законом распределения.

Функция распределения обладает следующими свойствами:

1. 0

2. если х 1 >х 2 ,то F(х 1)>F(х 2)

функция может быть изображена в виде графика. Для непрерывной величины это

будет кривая изменяющееся в пределах от 0 до 1, а для дискретной величины -

ступенчатая фигура со скачками.

С помощью функции распределения легко находится вероятность попадания

величины на участок от α до β

Р(α<х<β) рассмотрим 3 события

В - α<Х<β

Р(С)=Р(А)+Р(В)

Р(α<х<β)=Р(α)-Р(β)

Плотность распределения вероятности непрерывной случайной величины.

Плотность распределения вероятности непрерывной случайной величины Х

называется функция f(х) равная первой производной от функции распределения

График плотности распределения называется кривой распределения.

Основные свойства плотности функции распределения:

Характеристики положения случайной величины.

Модой (Мо) случайной величины х называется наиболее вероятное ее

значение. Это определение строго относится к дискретным случайным величинам.

Для непрерывной величины модой называется такое ее значение для которого

ф-ция плотности распределения имеет максимальную величину.

Медианой (Ме) случайной величины называется такое ее значение для

которого окажется ли случайная величина меньше этого значения.

Для непрерывной случайной величины медиана это абсцисса точки в которой

площадь под кривой распределяется пополам.

Для дискретной случайной величины значение медианы зависит от того четное или

нечетное значение случайной величины

n=2k+1, то Ме=х к+1 (среднее по порядку значение)

Если значение случайных величин четное, т.е n=2k, то

Математическое ожидание случайной величины.

Математическим ожиданием случайной величины х (M[x] )называется средне

взвешенно значение случайной величины причем в качестве весов выступают

вероятности появления тех или иных значений.

Для дискретной случайной величины

Для непрерывной

С механической точки зрения мат. Ожидание это абсцисса центра тяжести системы

точек расположенных по одноименной оси. Размерность мат. Ожидания совпадает с

размерностью самой случайной величины.

Математическое ожидание случайной величины всегда больше наименьшего значения

и меньше наибольшего.

Характеристики рассеяния.

Дисперсия

Дисперсия (D[x]) характеризует рассеивание или разряженность случайной

величины около ее математического ожидания.

Для дискретных

Для непрерывных

Дисперсия случайной величины всегда величина положительная

Размерность дисперсии равна квадрату разности случайной величины

Среднеквадратическое (стандартное) отклонение.

Некоторые законы распределения случайных величин.

Для дискретных случайных величин - биномиальное распределение и распределение

Пуассона

Для непрерывных - равномерное показательное, экспоненциальное и нормальное

распределение.

Биномиальное распределение.

Биномиальным называют законы распределения случайной величины Х числа

появления некоторого события в n опытах если вероятность р появления события

в каждом опыте постоянна

Сумма вероятностей представляют собой бином Ньютона

Для определения числовых характеристик в биномиальное распределение

подставить вероятность которая определяется по формуле Бернули.

При биномиальном распределении дисперсия равна мат. Ожиданию умноженному на

вероятность появления события в отдельном опыте.

Распределение Пуассона

Когда требуется спрогнозировать ожидаемую очередь и разумно сбалансировать

число и производительность точек обслуживания и время ожидания в очереди.

Пуассоновским называют закон распределения дискретной случайной величины Х

числа появления некоторого события в n-независимых опытах если вероятность

того, что событие появится ровно m раз определяется по формуле.

n-число проведенных опытов

р-вероятность появления события в каждом опыте

В теории массового обслуживания параметр пуассоновского распределения

определяется по формуле

а=λt , где λ - интенсивность потока сообщений t-время

Необходимо отметить, что пуассоновское распределение является предельным

случаем биномиального, когда испытаний стремится к бесконечности, а

вероятность появления события в каждом опыте стремится к 0.

Пуассоновское распределение является единичным распределением для которого

такие характеристики как мат. Ожидание и дисперсия совпадают и они равны

параметру этого закона распределения а.

Закон равномерной плотности

Равномерным называется распределение непрерывной случайной величины Х все

значения которой лежат на отрезке и имеют при этом постоянную плотность

распределения

площадь под кривой распределения равна 1 и поэтому с(в-а)=1

вероятность попадания случайной величины Х на интервал от (α;β)

α=а, если α<а

β=в, если β>в

основные числовые характеристики закона распределения плотности вычисляются

по общим формулам и они равны

Показательное (экспоненциальное распределение)

Показательным называют распределение непрерывной случайной величины Х которое

описывается следующей дифференциальной функцией

Экспоненциальное распределение для непрерывных случайных величин является

аналогом распределения Пуассона для дискретных случайных величин и имеет

следующий вид.

вероятность попадания случайной величины Х на интервал (α;β)

Следует отметить, что время безотказной работы удовлетворяется именно

показательному закону, а поэтому это понятие часто используется в понятии

надежности.

Нормальный закон распределения (закон Гаусса)

Нормальным называется распределение случайной величины Х если ф-ция плотности

распределения

Полученное выражение через элементарные функции не может быть выражено, такая

функция так называемый интеграл вероятности для которой составлены таблицы,

чаще всего в качестве такой функции используют

Часто по условию задачи необходимо определить вероятность попадания случайной

величины Х на участок симметричный математическому ожиданию.

Правило трех сигм это правило часто используется для подтверждения или

отбрасывания гипотезы о нормальном распределении случайной величины.

*Событие

*Вероятность события

СПОСОБЫ НЕПОСРЕДСТВЕННОГО ВЫЧИСЛЕНИЯ ВЕРОЯТНОСТЕЙ .

Классический

Если исходы опыта можно представить в виде полной группы событий кот несовместны и равновозможны,то вероятность события А м.б. вычислена по формуле:

Р(А)=m:n

m-общее число возможных случаев(общ число случаев)

n-число исходов благоприятствующих событию А(общ число благопр случаев)

благоприятствующий случай- если его появление влечет за собой событие

пример:

1) №:в урне 3 белых и 4 черных шара

А-событие вынуть белый шар.

Р(А)=m:n=3:7-0,43(43%)

2) Вероятность появл-я четного числа очков при однокр брос кости

А-событие выпад-я четн числа очков

Р(А)=m:n=3:6=0,5(50%)

m-благопр случай 3(2,4,6-четн цифры на кости)

n=6(всего цифр)

Геометрический

Исп-ся д/вычисл вероятностей события в том случае,когда рез-т испыт-я определ-ся случайным полож-ем точек в некот обл-ти,причем любые полож-я точек в этой обл-ти равновозможны.

Wm-размер всей площади

Wn-мера обл-ти,попад в кот благоприятствует событию А.

Примечание:

Единицы измерения обл-тей м.б. самые различн,в завис-ти от смысла задачи(S,V,t)

пример:

1) В некот точке С телеф линии АВ длиной L. Определ вероятность того,что С удал от А на расст не <,чем l

А-событие,что произошло в т.С→Р(А)

Р(А)= Wm:Wn=(L-l):L

Статистический

Частотой появл-я события А назыв отношение числа его появл-й к числу произвед опытов

P(A)=lim f(A) (внизу под lim n→∞)=lim m:n(внизу под lim n→∞)

Основные элементы комбинаторики: перестановки, размещения, сочетания.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Комбинаторика -спец раздел мат-ки интересующийся? «Сколько различн комбинаций можно сост из задан объектов.

Рассм 3 типа комбинаторики:

Перестановка

Перестановками из n элементов назыв всевозм комбинации из этих элементов,отлич друг от друга порядком располож-я элементов.

Рn=1×2×3…×n=n!(эн-факториал)

Пример:

123; 321; 231; 213; 132; 312

Р 3 =3!=1×2×3=6 Ответ:6

2) В ауд 5 столов. Сколькими способами м рассад 5 чел.

Р 5 =5!=120. Ответ: 120

Размещение

Размещениями из n элементов по m элементов называются все возможные комбинации (группы) из этих элементов, содержащие по m элементов в каждой и различающиеся между собой элементами или их расположением.

А n m =n(n-1)(n-2)…(n-m+1)

А n m =P n:P m - n

Пример:

1) Информация кодируется словами из 4 цифр,цифры в словах не повтор. Сколько м сост слов д/кодир-я информ.

n=10 (0,1,2..9), m=4

A 10 4 =10!:(10-4+1!)=10×9×8×7=5040

Ответ: 5040

3. Сочетания

Сочетаниями из n элементов по m элементов (m <n ) называются все возможные комбинации (группы) из этих элементов, содержащие по m элементов в каждой и отличающиеся друг от друга, по крайней мере, одним элементом.

С n m = А n m: P m =n!:(m!×(n-m)!)

n!-кол-во чисел

m!×(n-m)!-кол-во групп

пример:

1) в урне 3 белых и 7 черных шаров.Скольк сущ возм-тей вынуть из урны 2 шара одного цвета?

C 3 2 -число возм-тей вытянуть 2 белых шара

C 3 2 =3!:(2!1!)=3

C 7 2 -число возм-тей вытянуть 2 черных шара

С=C 3 2 +C 7 2 =21+3=24. Ответ: 24

Сумма событий. Теорема сложения вероятностей и следствия из нее.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Теорема сложения.

Суммой 2х событий А и В называют событие С состоящее в появлении хотя бы одного из событий А ИЛИ В

Пример:

1) А-событие вынуть из колоды красную карту

В-событие вынуть туза

(рисуются 2 раза 2 кружка, первый раз события несовпад и кружки не пересек, второй раз вынут красный туз-кружки пересек)

С=А+В

Теорема 1.Сложение вероятностей 2х несовместных событий

Вероятность суммы двух несовм событий А и В равна сумме вероятностей этих событий.

Р(А+В)=Р(А)+Р(В)

Если число несовм событий не 2, а более,то данная теорема справедлива,т.е.:

РS(сверху n,снизу i=1)А i =S(сверху n,снизу i=1) Р(А i)

Пример:

1) Произв выстрел по мешени сост из 3х зон

Вероятность попадания в первую зону-0,1

Во вторую-0,3

В третью – 0,4

Определ вероятность попадания в мешень.

1. Обозначение событий и их вероятностей.

А 1 -событие попадания в первую зону

А 2 -во вторую

А 3 -в третью

А-событие попадания в мешень

2. Составим расчетную формулу:

А=А 1 +А 2 +А 3

А 1, А 2, А 3 -несовместные события

Р(А)= Р(А 1)+Р(А 2)+Р(А 3)

3. Расчет:

Р(А)=0,1+0,3+0,4=0,8(80%)

Противоположные события -если они несовместные и образуют полную группу.

А(с – сверху)- противоположное событие

Следствие 1 из теоремы 1:

Сумма вероятностей противоположных событий равна еденице: А(с – сверху)=1

Док-во:

Р(А+А с черточкой)=Р(U)=1 (как вероятность достоверного события)

* Событие назыв достоверным ,если в результате опыта оно обязат произойдет (№:при бросании 2 кубиков выпадет сумма >=2)

События А и А с черточкой – несовместны, тогда по теореме 1:

Р(А+А с черточкой)=Р(А)+Р(А с черточкой)=1

Запись формулы Р(А)+Р(А с черточкой)=1 Р(А)+Р(А с черточкой)=1 в других обозначениях:

где р А произошло; q - вероятность того, что событие А не произошло.

Следствие 2 из теоремы 1:

Если событие А 1 ,А 2 , … А n образуют полную несовм группу событий, то сумма их вероятностей:

Р(А 1)+Р(А 2)+…+Р(А n)=1

S(сверху n,снизу- i=1) Р(А i)=1

* сумма вероятностей несовместных событий, образующих полную группу, равна единице

Пример:

1) Определить вероятность промаха в условия предудущ задачи:

Р(А с -)=1-Р(А)=1-0,8=0,2(20%)

Теорема 2. Сложение вероятностей 2 совместных событий.

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий минус вероятность их совместного появления (т.е. вероятность произведения)

Р(А+В)=Р(А)+Р(В)-Р(АВ)

Произведением (∩) 2х событий А и В называется событие С,состоящее в проявлении А И В одновременно.

Произведение событий. Теорема умножения вероятностей для независисмых событий и следствия из нее.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Теорема умножения вероятностей.

О. событие А независимое от В , если вероятность события А не зависит от того,появ ли событие В или нет. В противном случае событие А зависимо от В .

Условная вероятность- Р(А/В)- вероятность события А выше при условии что событие В произошло.

Условная независимость событий.

Если выпад соотношение что:

Р(А/В)=Р(А/В с черточкой)=Р(А)

Р(В/А)=Р(В/Ас черточкой)=Р(В) – независимые события.

Пример :

1) В урне 10 шаров. 7-белых. 3-черных.

Наугад берется 1 шар, потом другой. Найти вероятность того,что оба шара белые.

1. Обозн событий:

А-событие что второй шар белый

В-событие что первый шар белый.

2. Расчеты:

Р(А/В)=(7-1):(10-1)=2/3

Р(А/Вс черточкой)=7:(10-1)=7/9

Р(А/В) ≠Р(А/Вс черточкой)→А,В зависимые.

Теорема 3. Умножение вероятностей 2 независимых событий.

Вероятность произведения 2х событий равна произведению вероятности одного из них на условную вероятность другого, вычисляемую при усл что первое событие имело место.

Р(А×В)=Р(А)×Р(В/А)= Р(В)×Р(А/В)

Если А и В независимы,то вероятность 2х событий равна произведению их вероятностей:

Р(А×В)=Р(А)×Р(В)

Если событий больше 2х,то:

Р(∩-сверху n снизу i=1 ×А i)=∩-сверху n снизу i=1Р(А i)

Следствие 1

Если события А 1 ,А 2 , … А n -равновероятны, т.е. вероятность

Р(А 1)=Р(А 2)=…=Р(А n)=Р у, то

Р(∩-сверху n снизу i=1 ×А i)=Р n

Следствие 1 (совместны)

Если события А 1 ,А 2 , … А n -независимы, но м.б. совместны, то вероятность появл хотя бы одного из них определ формулой:

Р >=1 =1-(1-Р(А 1))(1-Р(А 2))…(1-Р(А n))

Р(А 1)=Р(А 2)=…=Р(А n)=Р

Р >=1 =1-(1-Р) n

Пример :

1) Определить вероятность исправной работы цепочки состоящей из 2х элементов.

а) случай параллельного соединения

б) последовательного

если вероятность исправной работы первого 0.5, второго 0,6

1. Обозн событий:

А 1 -событие исправной работы 1ого элемента

А 2 -второго

2. Расчет формулы:

а) А=А 1 +А 2 (или 1 или 2 событие, события совсм могут произойти одноврем) необх применить формулу вероятности суммы 2х совм событий :

Р(А)=Р(А 1)+Р(А 2)-Р(А 1 ×А 2)

Вероятность двух независ событий равна произведению их вероятностей.

б) А=А 1 ×А 2

Р(А)=Р(А 1)×Р(А 2)

3. Расчеты:

а) Р(А)=0,5+0,6-0,5*0,6=0,8(80%)

б) Р(А)=0,5*0,6=30%

Условная вероятность. Условие зависимости событий. Теорема умножения вероятностей.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Формула полной вероятности.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Пусть треб определ вероятность события А,кот может произойти только вместе с одним из событий:Н 1 ,Н 2 , … H n образующих полную группу несовместных событий

Данные события называются ГИПОТЕЗЫ поэтому формула полн вер им вид:

Р(А)=S(сверху n,снизу i=1) Р(Н i)× Р(А/Н i)

Полн вероятность события А равна сумме произведения вероятностей гипотез на условные вероятности событий.

По данным событиям требования к гипотезам: несовместные,сост полн группу
Пример :

1) Имеется 3 урны. В первой-4 белых,6 черных шаров,во второй-3 и 5,в третьей только белые. К одной из урн подх и выним шар. Какова вероятность вытащить белый?

1. Обозн событий:

А-событие, что вынутый шар белый

Н 1 - гипотеза,шар вынут из 1 урны, Н 2 -из второй, Н 3 -из третьей.

2. Расчет формула:

Р(А)=S(сверху 3,снизу i=1) Р(Н i)× Р(А/Н i) *3-т.к. 3 урны

3. Расчеты:

Р(Н 1 )= Р(Н 2 )= Р(Н 3 )=1/3- вероятность что он подойдет к урне

Р(А/ Н 1 )=4:(4+6)=0,4(40%)

Р(А/ Н 2 )=3/8

Р(А/ Н 3 )=1

Р(А)=1/3*4/10+1/3*3/8+1/3*1=59%

*59% означают,что при проведении достаточно большого кол-ва опятов в одинак условиях в средем в 59 случаях из 100 будет вынут белый шар.

2) Из 2х швейных фабрик поступ на базу внешне одинак изделия. С 1ой фабрики поступ втрое больше изделий,чем со второй. Вероятность брака изд с первой фабрике 0,1, со второй 0,05. Найти вероятность того, что наудачу взятое изделии окаж НЕ браков.

1. А-событие, что изделие вытащ из урны БЕЗ брака

Н 1 -гипотеза,что изд будет с первой фабрики, Н 2 -со второй

2. Расчетная формула: Р(А)= S(сверху 2,снизу i=1) Р(Н i) × Р(А/Н i) *2-т.к. 2 фабрики

3. Р(Н 1 )* Р(Н 2 )=3/4*1/4

Р(А/ Н 1 )=1-0,1=0,9 – вероятность без брака, а нам дан брак, значит 1-…

Р(А/ Н 2 )=1-0,05=0,95

Р(А)=9/10*3/4+1/4*95/100=91%

3) Предприятие выпуск за смену изделие 3х видов в кол-ве 160,430,360 шт. каждого вида. ОТК ставит штамп «Брак» или «Экспорт». Найти вероятность того,что наудачу взятое изделие пойдет на экспорт,если вероятность этого для каждого изделия вида 1,2,3=0.9, 0,8 и 0,6 соотв-но.

1. А-событие, что изделие пойдет на экспорт

Н 1 -гипотеза,изделие 1ого вида Н 2 -2ого вида Н 3 -3его вида

2. Р(А)=S(сверху 3,снизу i=1) Р(Н i)× Р(А/Н i) *3-т.к. 3 вида изделий

3. Р(Н 1 )=160/950

Р(Н 2 )= 430/950

Р(Н 3 )=360/950

Р(А)= 160/950*0,9+430/950*0,8+360/950*0,6=74%

Теорема гипотез (формула Байеса)

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Формула Байеса исп д/определ вероятности гипотезы после испытания,когда событие А УЖЕ имело место.

Если событие А уже произошло,какие-то гипотезы отпадут,значит уменьшится их кол-во. А след-но каким-то образом изменятся их вероятности.

Теорема. Вероятность гипотезы после испытания собятия А,кот уже произошло опред по формуле:

Р(Н i /А)= (Р(Н i)× Р(А/Н i)):(S(сверху n,снизу i=1) Р(Н i)× Р(А/Н i))

Вероятность равна произведению вероятности до испытания на условную вероятность события делить на полную вероятность события.

Пример :

1) В пирамиде 5 винтовок.3-с оптикой,2-без.Вероятность попад из оптич винт-0,95,без-0,7. После выстрела из наугад взятой винтовки мишень оказалась поражена. Что вероятнее: стреляли из винт с оптикой или без?

1. Обозн событий и их вероятностей:

А-событие попадания в цель

Н 1 -гипотеза,из опт винтовки

Н 2 -без оптики

2. Расчетн формулы:

Вероятность гипотезы Н i до испытания на условную вероятность события,делить на полн вероятность события:

Р(Н 1 /А)= (Р(Н 1)× Р(А/Н 1)):(S(сверху 2,снизу i=1) Р(Н i)× Р(А/Н i))

Р(Н 2 /А)= (Р(Н 2)× Р(А/Н 2)):(S(сверху 2,снизу i=1) Р(Н i)× Р(А/Н i))

3. Расчеты:

Р(Н 1)=3/5 *3-винт с оптикой,5-всего винтовок

Р(Н 2)=2/5

Р(А/Н 1)=95/100

Р(А/Н 2)=70/100

Р(Н 1 /А)=(3/5*95/100):(3/5*95/100+2/5*70/100)=57/85

Р(Н 2 /А)=(2/5*70/100):(3/5*95/100+2/5*70/100)=28/85

Ответ:Вероятнее что стреляли из оптич винтовки.

2) С 3х конвееров поступ на склад детали в кол-ве 150,300,350 шт. вероятность брака 0,3 0,2 0,2. Наудачу взятая дет НЕбрак. Найти вероятность того,что деталь с третьего конвеера.

1. А-событие что деталь небрак

Н 1 -гипотеза,что с первого конвеера

Н 2 -со второго

Н 3 -с третьего.

2. Р(Н 3 /А)= (Р(Н 3)× Р(А/Н 3)):(S(сверху 2,снизу i=1) Р(Н i)× Р(А/Н i))

3. Р(Н 1 )=m/n=150/(150+300+350)=150/800

Р(Н 2 )= 300/800

Р(Н 3 )=350/800

Р(Н 1 )+Р(Н 2 )+Р(Н 3 )=1

Р(А/Н 1)=1-0,3=0,7

Р(А/Н 2)=1-0,2=0,8

Р(А/Н 3)=1-0,2=0,8 *0,7 0,8 0,8-имела место та или иная гипотеза.

Р(Н 3 /А)=(7/16*8/10):(3/16*7/10+3/8*8/10+7/16*8/10)=44,8%

В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

Событие называется случайным , если в результате опыта оно может произойти или не произойти.

Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Противоположными называются два единственно возможных события, образующих полную группу.

Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.