Какая кристаллическая решетка у хлорида натрия. Формула соли поваренной
























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Комбинированный.

Основная цель урока: Дать учащимся конкретные представления об аморфных и кристаллических веществах, типах кристаллических решеток, установить взаимосвязь между строением и свойствами веществ.

Задачи урока.

Образовательная: сформировать понятия о кристаллическом и аморфном состоянии твердых тел, ознакомить учащихся с различными типами кристаллических решеток, установить зависимость физических свойств кристалла от характера химической связи в кристалле и типа кристаллической решетки, дать учащимся основные представления о влиянии природы химической связи и типов кристаллических решеток на свойства вещества, дать учащимся представление о законе постоянства состава.

Воспитательная: продолжить формирование мировоззрения учащихся, рассмотреть взаимное влияние компонентов целого- структурных частиц веществ, в результате которого появляются новые свойства, воспитывать умения организовать свой учебный труд, соблюдать правила работы в коллективе.

Развивающая: развивать познавательный интерес школьников, используя проблемные ситуации; совершенствовать умения учащихся устанавливать причинно-следственную зависимость физических свойств веществ от химической связи и типа кристаллической решетки, предсказывать тип кристаллической решетки на основе физических свойств вещества.

Оборудование: Периодическая система Д.И.Менделеева, коллекция “Металлы”, неметаллы: сера, графит, красный фосфор, кислород; Презентация “Кристаллические решетки”, модели кристаллических решеток разных типов (поваренной соли, алмаза и графита, углекислого газа и йода, металлов), образцы пластмасс и изделий из них, стекло, пластилин, смолы, воск, жевательная резинка, шоколад, компьютер, мультимедийная установка, видеопыт “Возгонка бензойной кислоты”.

Ход урока

1. Организационный момент.

Учитель приветствует учеников, фиксирует отсутствующих.

Затем сообщает тему урока и цель урока. Учащиеся записывают тему урока в тетрадь. (Cлайд 1, 2).

2. Проверка домашнего задания

(2 ученика у доски: Определить вид химической связи для веществ с формулами:

1) NaCl, CO 2 , I 2 ; 2) Na, NaOH, H 2 S (записывают ответ на доске и включаются в опрос).

3. Анализ ситуации.

Учитель: Что изучает химия? Ответ: Химия - это наука о веществах, их свойствах и превращениях веществ.

Учитель: Что же такое вещество? Ответ: Вещество - это то, из чего состоит физическое тело. (Cлайд 3).

Учитель: Какие агрегатные состояния веществ вы знаете?

Ответ: Существует три агрегатных состояния: твердое, жидкое и газообразное. (Cлайд 4).

Учитель: Приведите примеры веществ, которые при различных температурах могут существовать во всех трех агрегатных состояниях.

Ответ: Вода. При обычных условиях вода находится в жидком состоянии, при понижении температуры ниже 0 0 С вода переходит в твердое состояние - лед, а при повышении температуры до 100 0 С мы получим водяной пар (газообразное состояние).

Учитель (дополнение): Любое вещество можно получить в твердом, жидком и газообразном виде. Кроме воды – это металлы, которые при нормальных условиях находятся в твердом состоянии, при нагревании начинают размягчаться, и при определенной температуре(t пл) переходят в жидкое состояние - плавятся. При дальнейшем нагревании, до температуры кипения, металлы начинают испаряться, т.е. переходить в газообразное состояние. Любой газ можно перевести в жидкое и твердое состояние, понижая температуру: например, кислород, который при температуре (-194 0 С) превращается в жидкость голубого цвета, а при температуре (-218,8 0 С) затвердевает в снегообразную массу, состоящую из кристаллов синего цвета. Сегодня на уроке мы будем рассматривать твердое состояние вещества.

Учитель: Назовите, какие твердые вещества находятся у вас на столах.

Ответ: Металлы, пластилин, поваренная соль: NaCl, графит.

Учитель: Как вы думаете? Какое из этих веществ лишнее?

Ответ: Пластилин.

Учитель: Почему?

Делаются предположения. Если ученики затрудняются, то с помощью учителя приходят к выводу, что пластилин в отличие от металлов и хлорида натрия не имеет определенной температуры плавления - он (пластилин) постепенно размягчается и переходит в текучее состояние. Таков, например, шоколад, который тает во рту, или жевательная резинка, а также стекло, пластмассы, смолы, воск (при объяснении учитель демонстрирует классу образцы этих веществ). Такие вещества называют аморфными. (слайд 5), а металлы и хлорид натрия - кристаллические. (Cлайд 6).

Таким образом, различают два вида твердых веществ: аморфные и кристаллические. (слайд7).

1) У аморфных веществ нет определенной температуры плавления и расположение частиц в них строго не упорядочено.

Кристаллические вещества имеют строго определенную температуру плавления и, главное, характеризуются правильным расположением частиц, из которых они построены: атомов, молекул и ионов. Эти частицы расположены в строго определенных точках пространства, и, если эти узлы соединить прямыми линиями, то образуется пространственный каркас - кристаллическая решетка .

Учитель задает проблемные вопросы

Как объяснить существование твердых веществ со столь различными свойствами?

2) Почему кристаллические вещества при ударе раскалываются в определенных плоскостях, а аморфные вещества этим свойством не обладают?

Выслушать ответы учеников и подвести их к выводу :

Свойства веществ в твердом состоянии зависят от типа кристаллической решетки (прежде всего от того, какие частицы находятся в ее узлах), что, в свою очередь, обусловлено типом химической связи в данном веществе.

Проверка домашнего задания:

1) NaCl – ионная связь,

СО 2 – ковалентная полярная связь

I 2 – ковалентная неполярная связь

2) Na – металлическая связь

NаОН - ионная связь между Na + иОН - (О и Н ковалентная)

Н 2 S - ковалентная полярная

Фронтальный опрос.

  • Какая связь называется ионной?
  • Какая связь называется ковалентной?
  • Какая связь называется ковалентной полярной? неполярной?
  • Что называется электроотрицательностью?

Вывод: Прослеживается логическая последовательность, взаимосвязь явлений в природе: Строение атома->ЭО->Виды химической связи->Тип кристаллической решетки->Свойства веществ. (слайд 10).

Учитель: В зависимости от вида частиц и от характера связи между ними различают четыре типа кристаллических решеток : ионные, молекулярные, атомные и металлические. (Cлайд 11).

Результаты оформляются в следующую таблицу-образец таблицы у учеников на парте. (см. Приложение 1). (Cлайд 12).

Ионные кристаллические решетки

Учитель: Как вы думаете? Для веществ с каким видом химической связи будет характерен такой вид решетки?

Ответ: Для веществ с ионной химической связью будет характерна ионная решетка.

Учитель: Какие частицы будут находиться в узлах решетки?

Ответ: Ионы.

Учитель: Какие частицы называются ионами?

Ответ: Ионы-это частицы, имеющие положительный или отрицательный заряд.

Учитель: Какие ионы бывают по составу?

Ответ: Простые и сложные.

Демонстрация - модель кристаллической решетки хлорида натрия (NaCl).

Объяснение учителя: В узлах кристаллической решетки хлорида натрия находятся ионы натрия и хлора.

В кристаллах NaCl отдельных молекул хлорида натрия не существует. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Na + и Cl - , Na n Cl n , где n – большое число.

Связи между ионами в таком кристалле очень прочные. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки, нелетучи, хрупки. Расплавы их проводят электрический ток (Почему?), легко растворяются в воде.

Ионные соединения - это бинарные соединения металлов (I А и II A), соли, щелочи.

Атомные кристаллические решетки

Демонстрация кристаллических решеток алмаза и графита.

У учеников на столе образцы графита.

Учитель: Какие частицы будут находиться в узлах атомной кристаллической решетки?

Ответ: В узлах атомной кристаллической решетки находятся отдельные атомы.

Учитель: Какая химическая связь между атомами будет возникать?

Ответ: Ковалентная химическая связь.

Объяснения учителя.

Действительно, в узлах атомных кристаллических решеток находятся отдельные атомы, связанные между собой ковалентными связями. Так как атомы, подобно ионам, могут по-разному располагаться в пространстве, то образуются кристаллы разной формы.

Атомная кристаллическая решетка алмаза

В данных решетках молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Примером веществ с таким типом кристаллических решеток могут служить аллотропные модификации углерода: алмаз, графит; а также бор, кремний, красный фосфор, германий. Вопрос: Какие эти вещества по составу? Ответ: Простые по составу.

Атомные кристаллические решетки имеют не только простые, но и сложные. Например, оксид алюминия, оксид кремния. Все эти вещества имеют очень высокие температуры плавления (у алмаза свыше 3500 0 С), прочны и тверды, нелетучи, практически нерастворимы в жидкостях.

Металлические кристаллические решетки

Учитель: Ребята, у вас на столах коллекция металлов, рассмотрим эти образцы.

Вопрос: Какая химическая связь характерна для металлов?

Ответ: Металлическая. Связь в металлах между положительными ионами посредством обобществленных электронов.

Вопрос: Какие общие физические свойства для металлов характерны?

Ответ: Блеск, электропроводность, теплопроводность, пластичность.

Вопрос: Объясните, в чем причина того, что у такого числа разнообразных веществ одинаковые физические свойства?

Ответ: Металлы имеют единое строение.

Демонстрация моделей кристаллических решеток металлов.

Объяснение учителя.

Вещества с металлической связью имеют металлические кристаллические решетки

В узлах таких решеток находятся атомы и положительные ионы металлов, а в объеме кристалла свободно перемещаются валентные электроны. Электроны электростатически притягивают положительные ионы металлов. Этим объясняется стабильность решетки.

Молекулярные кристаллические решетки

Учитель демонстрирует и называет вещества: йод, сера.

Вопрос: Что объединяет эти вещества?

Ответ: Эти вещества являются неметаллами. Простые по составу.

Вопрос: Какая химическая связь внутри молекул?

Ответ: Химическая связь внутри молекул ковалентная неполярная.

Вопрос: Какие физические свойства для них характерны?

Ответ: Летучие, легкоплавкие, малорастворимые в воде.

Учитель: Давайте сравним свойства металлов и неметаллов. Ученики отвечают, что свойства принципиально отличаются.

Вопрос: Почему свойства неметаллов сильно отличаются от свойств металлов?

Ответ: У металлов связь металлическая, а у неметаллов ковалентная неполярная.

Учитель: Следовательно, и тип решетки другой. Молекулярная.

Вопрос: Какие частицы находятся в узлах решетки?

Ответ: Молекулы.

Демонстрация кристаллических решеток углекислого газа и йода.

Объяснение учителя.

Молекулярная кристаллическая решетка

Как видим, молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H 2 ,O 2 ,N 2, I 2 , O 3 , белый фосфор Р 4 , но и сложные : твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

В узлах решеток находятся неполярные или полярные молекулы. Несмотря на то, что атомы внутри молекул связаны прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного взаимодействия.

Вывод: Вещества непрочные, имеют малую твердость, низкую температуру плавления, летучи, способны к возгонке.

Вопрос : Какой процесс называется возгонкой или сублимацией?

Ответ : Переход вещества из твердого агрегатного состояния сразу в газообразное, минуя жидкое, называется возгонкой или сублимацией .

Демонстрация опыта: возгонка бензойной кислоты (видеоопыт).

Работа с заполненной таблицей.

Приложение 1. (Слайд 17)

Кристаллические решетки, вид связи и свойства веществ

Тип решетки

Виды частиц в узлах решетки

Вид связи между частицами Примеры веществ Физические свойства веществ
Ионная Ионы Ионная – связь прочная Соли, галогениды (IA,IIA),оксиды и гидроксиды типичных металлов Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток
Атомная Атомы 1. Ковалентная неполярная - связь очень прочная

2. Ковалентная полярная - связь очень прочная

Простые веществ а : алмаз(C), графит(C) , бор(B), кремний(Si).

Сложные вещества:

оксид алюминия (Al 2 O 3), оксид кремния (IY)-SiO 2

Очень твердые, очень тугоплавкие, прочные,нелетучие, не растворимы в воде
Молекулярная Молекулы Между молекуми- слабые силы межмолекулярного притяжения, а вот внутри молекулпрочная ковалентная связь Твердые вещества при особых условиях, которые при обычных- газы или жидкости

(О 2 ,Н 2 ,Cl 2 ,N 2 ,Br 2 ,

H 2 O, CO 2 ,HCl);

сера, белый фосфор, йод; органические вещества

Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую твердость
Металлическая Атом-ионы Металлическаяразной прочности Металлы и сплавы Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

Вопрос: Какой тип кристаллической решетки из рассмотренных выше не встречается в простых веществах?

Ответ: Ионные кристаллические решетки.

Вопрос: Какие кристаллические решетки характерны для простых веществ?

Ответ: Для простых веществ-металлов- металлическая кристаллическая решетка; для неметаллов - атомная или молекулярная.

Работа с Периодической системой Д.И.Менделеева.

Вопрос: Где в Периодической системе находятся элементы-металлы и почему? Элементы-неметаллы и почему?

Ответ: Если провести диагональ от бора до астата, то в нижнем левом углу от этой диагонали будут находиться элементы-металлы, т.к. на последнем энергетическом уровне они содержат от одного до трех электронов. Это элементы I A, II A, III A (кроме бора), а также олово и свинец, сурьма и все элементы побочных подгрупп.

Элементы-неметаллы находятся в верхнем правом углу от этой диагонали, т.к. на последнем энергетическом уровне содержат от четырех до восьми электронов. Это элементы IY A,Y A, YI A, YII A, YIII A и бор.

Учитель: Давайте найдем элементы неметаллы, у которых простые вещества имеют атомную кристаллическую решетку (Ответ: С, В, Si) и молекулярную (Ответ: N, S, O , галогены и благородные газы ).

Учитель: Сформулируйте вывод, как можно определить тип кристаллической решетки простого вещества в зависимости от положения элементов в Периодической системе Д.И.Менделеева.

Ответ: Для элементов-металлов, которые находятся в I A, II A, IIIA (кроме бора), а также олова и свинца, и всех элементов побочных подгрупп в простом веществе тип решетки-металлическая.

Для элементов-неметаллов IY A и бора в простом веществе кристаллическая решетка атомная; а у элементов Y A, YI A, YII A, YIII A в простых веществах кристаллическая решетка молекулярная.

Продолжаем работать с заполненной таблицей.

Учитель: Посмотрите внимательно на таблицу. Какая закономерность прослеживается?

Внимательно слушаем ответы учеников, после чего вместе с классом делаем вывод:

Существует следующая закономерность: если известно строение веществ, то можно предсказать их свойства, или наоборот: если известны свойства веществ, то можно определить строение. (Cлайд 18).

Учитель: Посмотрите внимательно на таблицу. Какую еще классификацию веществ вы можете предложить?

Если ученики затрудняются, то учитель объясняет, что вещества можно разделить на вещества молекулярного и немолекулярного строения. (Cлайд 19).

Вещества молекулярного строения состоят из молекул.

Вещества немолекулярного строения состоят из атомов, ионов.

Закон постоянства состава

Учитель: Сегодня мы познакомимся с одним из основных законом химии. Это закон постоянства состава, который был открыт французским химиком Ж.Л.Прустом. Закон справедлив только для веществ молекулярного строения. В настоящее время закон читается так:”Молекулярные химические соединения независимо от способа их получения имеют постоянный состав и свойства”. Но для веществ с немолекулярным строением этот закон не всегда справедлив.

Теоретическое и практическое значение закона состоит в том, что на его основе состав веществ можно выразить с помощью химических формул(для многих веществ немолекулярного строения химическая формула показывает состав не реально существующей, а условной молекулы).

Вывод: химическая формула вещества заключает в себе большую информацию. (Cлайд 21)

Например, SO 3:

1. Конкретное вещество - серный газ, или оксид серы (YI).

2.Тип вещества - сложное; класс - оксид.

3. Качественный состав - состоит из двух элементов: серы и кислорода.

4. Количественный состав - молекула состоит из1 атома серы и 3 атомов кислорода.

5.Относительная молекулярная масса - M r (SO 3)= 32 + 3 * 16 = 80.

6. Молярная масса - М(SO 3) = 80 г/моль.

7. Много другой информации.

Закрепление и применение полученных знаний

(Слайд 22, 23).

Игра в крестики-нолики: зачеркните по вертикали, горизонтали, диагонали вещества, имеющие одинаковую кристаллическую решетку.

Рефлексия.

Учитель задает вопрос: “Ребята, что нового вы узнали на уроке?”.

Подведение итогов занятия

Учитель: Ребята, давайте подведем основные итоги нашего урока - ответьте на вопросы.

1. Какие классификации веществ вы узнали?

2. Как вы понимаете термин кристаллическая решетка.

3. Какие типы кристаллических решеток вы теперь знаете?

4. О какой закономерности строения и свойств веществ вы узнали?

5. В каком агрегатном состоянии вещества имеют кристаллические решетки?

6. С каким основным законом химии вы познакомились на уроке?

Домашнее задание: §22, конспект.

1. Составьте формулы веществ: хлорид кальция, оксид кремния (IY), азот, сероводород.

Определите тип кристаллической решетки и попытайтесь прогнозировать: каковы должны быть температуры плавления у этих веществ.

2. Творческое задание -> составить вопросы к параграфу.

Учитель благодарит за урок. Выставляет отметки ученикам.

Испарение жидкости или плавление твердого тела относится к категории процессов, которые называются в физике фазовыми переходами или превращениями. Состояния вещества, между которыми происходит фазовый переход, называется его фазами. Характерной особенностью этих переходов является их скачкообразность. Например, при охлаждении воды ниже комнатной температуры, её тепловое состояние меняется постепенным образом, понижение температуры на десять-пятнадцать градусов к каким-либо видимым изменениям не приводит, и вдруг, при охлаждении на ничтожную долю градуса, вода переходит в совершенно иное состояние, состояние льда. Вода и лёд – две фазы одного и того же вещества.

Фазовые переходы бывают двух типов - первого и второго рода. К фазовым переходам первого рода относится изменение агрегатного состояния вещества: процессы плавления и кристаллизации, испарения и конденсации, сублимации или возгонки , при этом скачком изменяются плотность, внутренняя энергия, энтропия.

Следует заметить, что твердым считается кристаллическое состояние, т.е. состояние, в котором атомы располагаются в узлах кристаллической решетки. На рис. 2-5.1 изображена кристаллическая решетка каменной соли NaCl . Как видно из рисунка, кристалл, благодаря пространственной периодичности структуры, состоит как бы из повторяющихся частей.

В кристалле размером 1 мм повторяющееся расположение атомов встречается сотни тысяч раз. Поэтому к такому расположению атомов применяется термин “дальний порядок ”. Большинство твердых тел являются кристаллическими телами. В обычных условиях они состоят из сросшихся зерен размером порядка 0,001 мм. В таком зернышке отчетливо выражен дальний порядок.

Однако в природе встречаются твердые вещества со сложным молекулярным строением, например, стекла, смолы, пластики, которые не имеют периодической структуры. Это аморфные твердые тела, которые на самом деле являются жидкостями с аномально большой вязкостью. Такие тела приобретают свойство текучести не скачком, а путём постепенного уменьшения вязкости, которое вызывается повышением температуры. Аморфные твердые тела противопоставляются кристаллам, которые имеют форму правильного многогранника. Следует подчеркнуть, что кристалличность не обязательно проявляется в особенностях их внешней формы, это структура решетки (кусок металла не имеет правильной формы, но не является аморфным).

Каков же основной признак кристаллов? Этим признаком является наличие резко выраженной температуры плавления. Если подводить тепло к кристаллическому телу, то температура его будет повышаться до тех пор, пока не начнёт плавиться. После чего подъем температуры прекратится, и весь процесс плавления будет происходить при строго определённой постоянной температуре, называемой температурой плавления Т пл .

На рис. 2-5.2 изображены схемы строения кварца и кварцевого стекла. Одно и то же в химическом отношении вещество, но одно в кристаллическом, другое в аморфном виде. Характер окружения ближайшими соседями в обоих случаях одинаков, но в аморфном теле отсутствует дальний порядок; аморфное тело – это “испорченный кристалл”. Отсутствие дальнего порядка, характерного признака кристаллических тел, является непосредственной причиной отсутствия выраженной точки плавления. В точке плавления совершается переход, при котором дальний порядок исчезает и решетка распадается на легкоподвижные субмикроскопические области, имеющие то же расположение атомов, что и исходный кристалл, но статически беспорядочно ориентированные друг относительно друга, остаётся лишь ближний порядок в расположении атомов.

Схема строения кварца

а) кристаллический, б) аморфный

(рисунок соответствует упрощенной плоской модели)

В аморфных телах при повышении температуры характер расположения атомов не меняется, увеличивается их подвижность, атомы с увеличением температуры “выскальзывают” из своего окружения, меняя соседей. Наконец число таких перемен в секунду становится таким же большим, как для жидкости.

Выше мы говорили, что при всех агрегатных превращениях поглощается или выделяется энергия. Например, для превращения килограмма воды в пар необходимо затратить энергию 2,3×10 6 Дж. Эта энергия необходима для преодоления сил притяжения, действующих между молекулами воды.

Металлы начинают плавиться только тогда, когда начинает разрушаться их кристаллическая решетка, на что также необходимо затрачивать энергию. Эта энергия называется скрытой теплотой плавления. Теплота плавления, отнесённая к массе вещества, называется удельной скрытой теплотой плавления. Например, для цинка она составляет 1.11×10 5 Дж/кг, т.е. нужно количество теплоты 111 кДж/кг, чтобы при Т пл = 419.5°С перевести 1 кг цинка из твердого состояния в жидкое. На рис. 2-5.3 представлена кривая фазового перехода твердого тела в жидкость (1). Обратное превращение – кристаллизация (2) происходит при той же температуре и сопровождается поглощением того же количества энергии, что и при плавлении – скрытой теплоты кристаллизации. Скрытой теплота перехода называется потому, что подвод (поглощение) и отвод (выделение) этой теплоты не сопровождается таким эффектом, как повышение и понижение температуры. Несмотря на то, что мы продолжаем нагревать тело (кривая правления 1), во время плавления температура не повышается, так же во время кристаллизации (кривая кристаллизации 2) температура не понижается, хотя мы продолжаем охлаждать жидкость. Переход жидкость - твердое тело сопровождается выделением энергии. Энергия взаимодействия микроскопических кристаллов становится значительно выше энергии тепловых колебаний, жидкость кристаллизуется. Однако новая фаза при таком переходе образуется не сразу во всем объеме, сначала образуются зародыши ее, которые затем растут, распространяясь на весь объем.

К числу фазовых превращений первого рода относятся и некоторые переходы твердого тела из одной кристаллической модификации в другую. Эти превращения называются полиморфными. Кристаллы различной модификации состоят из одного и того же вещества и отличаются друг от друга лишь строением кристаллической решетки. Например, графит и алмаз состоят из одного и того же элемента – углерода. Разные структуры означают и разные физические свойства. Алмаз по физическим свойствам очень не похож на графит. Графит имеет черный цвет, он совершенно непрозрачен, алмаз же прозрачен и бесцветен; графит не горит даже при очень высоких температурах (он плавится при 385 °С), алмаз же в струе кислорода сгорает при 720 °С. Другой пример – белое и серое олово. Белое олово – блестящий, легкий и очень пластичный металл, серое олово – хрупкое и легко превращается в порошок.

Как объясняет свойства кристаллов молекулярная теория? В начале XIX века впервые было высказано предположение, что внешне правильная форма кристаллов обусловлена внутренне правильным расположением частиц, из которых состоят кристаллы, т. е. атомов. На основании исследований посредством рентгеновских лучей было выяснено, что это предположение справедливо.

Частицы, составляющие кристаллы, расположены друг относительно друга в определенном порядке, на определенных расстояниях друг от друга. Конечно, вследствие теплового движения расстояния между частицами все время немного меняются, но можно говорить о некотором среднем для каждой температуры расстоянии. Совокупность узлов, т. е. точек, соответствующих средним положениям частиц, составляющих кристалл, называют пространственной решеткой этого кристалла.

Частицами, из которых состоят кристаллы, в некоторых случаях являются электрически заряженные частицы - ионы. Ионами называют атомы (или группы атомов), потерявшие или, наоборот, присоединившие к себе один, два или больше электронов. Если атом потерял электроны, он является положительно заряженной частицей - положительным ионом. Если же к атому присоединились электроны, то он является отрицательным ионом. Кристаллы, состоящие из ионов, называют ионными кристаллами.

Простой пример пространственной решетки ионного кристалла представляет собой решетка кристалла хлористого натрия (поваренной соли). Молекулу этого вещества мы представляем себе состоящей из одного атома хлора и одного атома натрия . Такими являются эти молекулы в парах соли. Экспериментальное исследование показало, что в твердом кристалле нет молекул в том смысле, как это упоминалось выше. Кристаллическая решетка хлористого натрия состоит не из молекул хлористого натрия, а из чередующихся ионов хлора и натрия (рис. 444). Каждый ион натрия окружен шестью ионами хлора, расположенными по трем взаимно перпендикулярным направлениям, а каждый ион хлора в свою очередь окружен шестью ионами натрия.

Рис. 444. Схема расположения узлов в пространственной решетке кристалла хлористого натрия

Подобные решетки имеют многие соли, состоящие из двух атомов (бромистое и хлористое серебро, йодистый калий, многие сернистые металлы и т. д.). Расстояния между средними положениями ионов в решетках разных веществ неодинаковы. У хлористого натрия расстояние между соседними ионами равно , у хлористого серебра , у йодистого калия и т.д.). Существуют и более сложные ионные кристаллы. Так, например, решетка исландского шпата состоит из ионов и ионов .

Кроме ионных кристаллов, существуют также кристаллы, состоящие из незаряженных частиц - атомов или молекул. Например, решетка алмаза состоит из атомов углерода, решетка кристаллов льда - из молекул воды , решетка нафталина - из больших молекулярных групп и т. д. Расстояния между атомами таких кристаллов также порядка .

Далеко не всегда атомы или ионы расположены в решетке, представляющей совокупность кубов (кубические решетки), как это имеет место у и др. Большинство решеток имеет гораздо более сложный вид. Примером является решетка льда (рис. 445). Как же объяснить зависимость физических свойств кристаллов от направления?

Рис. 445. Пространственная решетка кристаллов льда: а) вид сверху; б) вид сбоку. Шарики изображают атомы кислорода; положения атомов водорода не показаны

Пусть на рис. 446, а кружки изображают атомы жидкости (например, ртути), расположенные в некоторой плоскости. Выберем некоторый атом и проведем через него прямые линии по разным направлениям. Ясно, что благодаря полной хаотичности расположения атомов на одинаковых отрезках любой из этих прямых будет находиться практически одно и то же число атомов. Это значит, что при хаотическом расположении атомов все направления равноправны.

Рис. 446. а) Беспорядочное расположение частиц в жидкости. Любая прямая , проведенная через молекулу , встречает одинаковое число частиц (они отмечены черными кружками), б) Упорядоченное расположение атомов в кристалле. Различные прямые , проведенные через молекулу , встречают различное число атомов

Не то будет, если мы произведем такое же построение при правильном расположении атомов, характерном для кристалла, например таком, какое изображено на рис. 446, б. Видно, что прямые, проведенные по направлениям или , встретят много атомов, по направлению - несколько меньше, а по направлению - совсем мало. Это и объясняет, почему физические свойства кристалла зависят от направления. Так, например, в решетке поваренной соли раскалывание происходит легче всего по плоскостям, параллельным или (рис. 447). Поэтому, ударив молотком по кубику кристалла поваренной соли, мы разобьем его снова на правильные кубики, в то время как удар по куску аморфного стекла разбивает его на осколки самой разнообразной формы.

Рис. 447. В кристалле поваренной соли раскалывание происходит легче по плоскостям, параллельным или , чем по любым другим плоскостям, например

В заключение отметим, что в реальных кристаллах решетка обычно не является правильной во всем объеме кристалла. Кое-где решетка искажена, имеются участки, где атомы расположены в беспорядке, кое-где присутствуют вкрапления посторонних атомов. Эти местные искажения играют немаловажную роль для объяснения некоторых свойств реальных кристаллов.

Раздел 3. ХИМИЧЕСКИЙ СВЯЗЬ

§ 3.7. Типы кристаллических решеток

Твердые вещества, как правило, имеют кристаллическое строение. Она характеризуется правильным расположением частиц в четко определенных точках пространства. При мысленном соединении этих точек прямыми линиями, которые пересекаются, образуется пространственный каркас, который называют кристаллической решеткой. Точки, в которых размещены частицы, называются узлами кристаллической решетки. В узлах воображаемой решетки Могут находиться ионы, атомы или молекулы. Они совершают колебательное движение. С повышением температуры амплитуда колебаний увеличивается, что проявляется в тепловом расширении тел.

В зависимости от вида частиц и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Кристаллические решетки, состоящие из ионов, называются іонними. их образуют вещества с ионными связями. Примером может быть кристалл хлорида натрия, в котором, как уже отмечалось, каждый ион натрия окружен шестью хлорид-ионами, а каждый хлорид-ион - шестью ионами натрия. Такому размещению отвечает самая плотная упаковка, если ионы представить в виде шаров, размещенных в кристалле (рис. 3.15). Очень часто кристаллические решетки изображают так, как показано на рис. 3.16, где указано лишь взаимное размещение частиц, но не их размеры.

Число ближайших соседних частиц, плотно присоединяются к данной частицы в кристалле или в отдельной молекуле, называется координационным числом.

В решетке хлорида натрия координационные числа обоих ионов равны 6. Следовательно, в кристалле хлорида натрия невозможно выделить отдельные молекулы соли. их нет. Весь кристалл следует рассматривать как гігантськумакромолекулу, состоящая из одинакового числа ионов Na + и С l - , Na n Cl n , где n - большое число (см. рис. 3.15). Связи между ионами в таком кристалле достаточно прочные. Поэтому вещества с ионной решеткой имеют сравнительно высокую твердость. Они тугоплавкие и малолеткі.

Плавления ионных кристаллов вызывает в нарушение геометрически правильной ориентации ионов относительно друг друга и уменьшение прочности связи между ними. Поэтому их расплавы проводят электрический ток. Ионные соединения, как правило, легко растворяются в жидкостях, состоящих из полярных молекул, например в воде.

Рис. 3.15. Пространственное размещение ионов в ионной решетке NaCl (мелкие шарики - ионы натрия)

Рис. 3.16. Кристаллическая решетка NaCl

Кристаллические решетки,в узлах которых размещаются отдельные атомы, называются атомными. Атомы в таких решетках соединенные между собой прочными ковалентними связями. Примером может служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе - 4. Структура алмаза представлена на рис. 11.1. В решетке алмаза, как и в решетке хлорида натрия, молекул нет. Весь кристалл следует рассматривать как гигантскую молекулу. В неорганической химии известная значительное количество веществ с атомной кристаллической решеткой. Они имеют высокие температуры плавления (для алмаза свыше 500°С), крепкие и твердые, практически не растворимые в жидкостях. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с карбоном и силіцієм. Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными. Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость, низкие температуры плавления, нерастворимые или малорастворимые в воде, их растворы почти не проводят электрического тока. Число неорганических веществ с молекулярной решеткой незначительное. Примерами их являются лед, твердый оксид углерода(И V ) (“сухой лед”), твердые галогеноводні, твердые простые вещества, образованные одно- (благородные газы), двух- (F 2 , С l 2 , r 2 , l 2 , Н 2 , О 2 , N 2 ), трех- (О 3), четырех- (Г 4), восьми- (S 8) атомными молекулами. Молекулярная кристаллическая решетка йода представлена на рис. 3.17. Большинство кристаллических органических соединений имеют молекулярную решетку.

Рис. 3.17. Кристаллическая решетка йода

Рис. 3.18. Схематическое изображение металлической решетки

В твердом состоянии металлы образуют металлические кристаллические решетки. Последние обычно описывают как сочетание катионов металла, соединенных в одно целое валентными электронами, то есть негативно заряженным “электронным газом”. Электроны электростатически притягиваются катионами, что обеспечивает стабильность решетки. На рис. 3.18 представлено схематическое изображение металлической решетки. На рис. 3.18 представлено схематическое изображение металлической решетки (свободные электроны изображены точками). Сравните ее с другими типами кристаллических решеток.


Координационные структуры. Координационными называются решетки, Б которых каждый атом (нон) окружен определенным числом соседей, находящихся на равных расстояниях и удерживаемых одинаковым типом химической связи (ионной, ковалентной, металлической). К координационным относятся ранее рассмотренные решетки хлорида натрия и хлорида цезия (см. рис. 58), алмаза (см. рис. 64) и металлов (см. рис. 65). 

    В больщинстве случаев поляризующее влияние катиона и поляризуемость анионов (особенно таких, как анион иода, серы,кислорода) приводят к увеличению ковалентного характера связей. Другим фактором, оказывающим действие на состояние связей, является степень экранирования катиона соединенными с ним анионами. Так, например, в решетке хлорида натрия анионы хлора в гораздо меньшей степени экранируют катион, чем в решетке хлорида алюминия или олова (IV). Решетка хлорида алюминия, возникшая при конденсации газообразного хлорида, имеет все шансы сохранить в узлах молекулы - ее ионный характер выражен очень слабо. Но уже фторид алюминия, в молекуле которого ион алюминия окружен анионами меньшего радиуса, дает при конденсации решетку ионного типа и само соединение имеет солеобразный характер. 

Кристаллические решетки, в узлах которых находятся отделе-ные атомы, называют атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером можег служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе равно 4. Структура алмаза приведена на с. 127. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую макромолекулу. Число веществ с атомной кристаллической решеткой в неорганической химии велико. Они имеют высокие температуры плавления (у алмаза свыше 3500 °С), прочны и тверды, практически нерастворимы в жидкостях. 

Упрощенная модель ионной решетки хлорида натрия. 

Для оценки точности формулы (11.6) представляет интерес сопоставить АСкаС с изменением энтальпии в ходе разрушения кристаллической решетки хлорида натрия АВ аа- Величину A/fsaa можно определить при помощи следующего термодинамического цикла  

Чем отличаются ионы, содержащиеся в кристаллической решетке хлорида натрия и гидроксида натрия, от ионов, содержащихся в растворах этих веществ  

    Пространственное расположение ионов в ионной решетке хлорида натрия. 

Рассмотрим структуру типичных неорганических веществ. На рис. 1 приведена кристаллическая решетка хлорида натрия. Приня- 

Дефекты этого типа наблюдаются, например, в решетке хлорида натрия - некоторые узлы, отвечающие катионам и анионам, остаются пустыми. Анионы вообще редко смещаются в междоузлия, так как они, как правило, крупнее катионов. Для катионов возможны оба типа дефектов. 

В другом цикле, предложенном Майером (1930), используются энергии сублимации галогенидов шелочных металлов, энергии диссоциации их газообразных молекул и некоторые другие термохимические величины, уже фигурировавшие в цикле Габера - Борна. Для Na l этот цикл дает AG = 75(5 кДж-м оль. Таким образом, можно полагать, что энергия решетки хлорида натрия должна лежать в пределах от 760 до 790 кДж-моль, куда попадают значения, подсчитанные по уравнениям. (1.23) и (1.25) величину 762 кДж-моль- можно считать наиболее вероятным значением энергии решетки Na l. 

Кристаллические решетки, в узлах которых находятся отдельные атомы, называют атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе равно 4. Структура алмаза приведена на рис. 84. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую макромолекулу. 

Тепловой эффект здееь характеризует энергию кристаллической решетки хлорида натрия. 

Способ образования ионных решеток приводит к тому, что они обладают компактной структурой. Кристаллическая решетка хлорида натрия построена как бы взаимопроникновением гранецентрированных кубических систем, одна из которых содержит только катионы N3+, а другая - анионы С1 рис. 19). 

В решетке хлорида натрия координационные числа обоих ион зв равны 6. Итак, в кристалле хлорида натрия нельзя выделить отдельные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Ка+ и С1 , На С1 , где/г - большое число (см. рис. 3.15). Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи. 

Некоторые электролиты уже до растворения состоят из ионов. Так, например, кристаллическая решетка хлорида натрия построена из ионов натрия и хлорид-ионов, решетка нитрата калия - из. ионов калия и нитрат-ионов и т. п. При растворении таких веществ ионы сольватируются и переходят в жидкую фазу. В растворе нет молекул растворенного вещества, имеются только ионы. Такие электролиты называют сильными электролитами. 

Воспол11зуемся приведенными уравЕ(ениямн для оценки энергии решетки хлорида натрия. Формула Борна (1.23) после подстановки численных значений всех входящих в нее величин дает для энергии решетки 

Энергии и теплоты сольватации электролитов были рассчитаны впервые Борном и Габером (1919) фи помощи циклов, основанных на термохимическом законе Гесса. Так, например, при вычислении теплоты гидратации хлорида натрия 1 моль твердой кристаллической соли мысленно переводят в бесконечно большсш объем воды при зтом выделяется теплота растворения -AHl, = Qь Тот же раствор хлорида натрия можно получить, если сначала разрушить кристаллическую решетку с образованием ионов натрия и хлора в газовой фазе на это затрачивается элергия, равная энергии решетки хлорида натрия -Д(5р = - V Затем эти ионы переводят в бесконечно большой объем воды, при этом освобождается суммарная теплота гидратации ионов натрия и хлора - Д/У, + 

Энтропия метанола, СН3ОН, при растворении возрастает лишь незначительно, поскольку моль молекул метанола, диспергированных между молекулами воды, оказывается нена шого больше неупорядоченным, чем моль чистого жидкого метанола. Растворение муравьиной кислоты, НСООН, приводит к большему возрастанию энтропии, поскольку ее молекулы частично диссоциируют на протоны и формиат-ионы, НСОО в результате чего из одной частицы образуются две. Кристаллическая решетка хлорида натрия при растворении полностью разрушается, и при этом образуются гидратированные ионы Na и С1 , что обусловливает значительное возрастание неупорядоченности, хотя часть молекул воды оказывается связанной вследствие гидратирования ионов. Заметим, что энтропия раствора Na l получена из данньк приложения 3 путем сум шрования энтропий водных растворов двух ионов  

Следовательно, энергия кулононского взаимодействия одною иона со всеми другими ионами в решетке хлорида натрия в а раз превышает энергию взаимодействия двух однозарядных иоков, находящихся на расстоянии г. Таким образом, коэффициент Маделунга а для Na l равен 1,7475. Аналогичным методом можно вычислить эти величины и для других кристаллических решеток. Значения коэффициентов Маделунга для некоторых типов кристаллических структур приведены в табл. 24. 

Помимо типов связи кристаллы отличаются своей геометрией. Кубическая решетка хлорида натрия является простейшим примером. Кристалл СзС1 образует так называемую объемно-центрированную кубическую решетку. В вершинах куба, образующего элементарную ячейку, находятся одноименно заряженные ионы, скажем, ионы С1 , а в центре куба - ион Сз+. В то же время этот центр может рассматриваться, как вершина другого куба, в вершинах которого находятся ионы цезия, а в центре-анион С1 . В этом варианте каждый ион окружен восемью (а не шестью, как в случае ЫаС1) противоионами, т. е. координационное число равно восьми (рис. 55). 

Для галидов щелочных и щелочноземельных металлов харак-кулярных, образующих молекулярные решетки. Степень ковалент-рированная решетка хлорида натрия. Хлорид, бромид и иодид цезия кристаллизуются в решетке типа объемно центрированного куба. Тип решетки ионного кристалла определяется правилом, основанным на простых геометрических соображениях отношение радиусов катиона и аниона 0,2 соответствует решетке типа сульфида цинка если это отношение лежит в пределах от 0,22 до 0,41, мож- 

Число ближайших соседних частиц, вплотную примыкающих к данной частице в кристалле или в отдельной молекуле, назысается координационным числом. В решетке хлорида натрия координационные числа обоих ионов равны 6. Итак, в кристалле хлорида натрия нельзя выделить отдельные ионные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов и С1 , например Ыа,Х, где п- большое число (см. рис. 1.21). Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высоко11 твердостью. Они тугоплавки и малолетучи. 

Существенно то, что в структуре поваренной соли нельзя очертить отдельные молекулы ЫаС1, так как их нет. Атомы натрия и хлора в решетке хлорида натрия не связаны попарно между собой. Между тем в условиях повышенной температуры в парах хлорида натрия существуют молекулы ЫаС1. При этом равновесное расстояние между натрием и хлором в кристалле на 15% больше, чем в газообразной молекуле Na l, т. е. последняя менее ионна. 

Таким образом, во всех рассмотренных структурах нельзя выделить обособленные молекулы в кристаллической решетке. Такие кристаллические решетки, в которых отсутствуют дискретные молекулы, называются координационными решетками. Для большинства неорганических веществ (более 95%) характерны именно координационные решетки. К ним относятся условно ионные, металлические и ковалентные решетки. К условно ионным решеткам принадлежит решетка хлорида натрия, металлическим - решетка натрия и ковалентным - решетки кремния и сульфида цинка. Это деление, основанное на преобладающем типе химической связи, условно. В реальных кристаллах сосуществуют различные типы химической связи, и можно рассматривать решетки ионно-ко-валентные, ковалентно-металлические и т. п. На рис. 5 для сравнения приведены элементарные ячейки м.о. 1екулярных решеток иода (а) и диоксида углерода (б). Их важнейшей особенностью в отличие от предыдущих типов кристаллов является то, что в узлах кристаллической решетки находятся не атомы, а молекулы. При этом расстояния между атомами в молекуле меньше, чем межмолекулярные расстояния в кристалле, в то время как в координационных решетках все расстояния одинаковы. Однако молекулярные решетки не характерны для твердых неорганических веществ. В неорганической химии молекулы являются типичной формой существования химического соединения в наро- и газообразном состоянии. 

Отсюда Ещ, = -772,4 кДж/моль. Большая отрицательная величина энергии кристаллической решетки хлорида натрия указывает на экзотермичность процесса образования и значительную стабильность кристаллического Na l. Расчеты по приведенной схеме, называемой циклом Борна - Габера, крайне важны в неорганической химии, поскольку позволяют оценить энергию связи в соединении и другие важные энергетические характеристики твердых тел. 

Отсюда и = -772,А кДж/моль. Большая отрицательная величина энергии кристаллической решетки хлорида натрия указывает на экзотермичность процесса образования и значительную стабильность кристаллического Na l. 

Термохимический цикл для расчета эиергаи кристаллической решетки хлорида натрия складывается из следующих реакций

Смотреть страницы где упоминается термин Решетка хлорида натрия :                   Общая химия (1968) -- [