Какая сила действует на проводник с током. Действие магнитного поля на ток

Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Рисунок 1 — правило левой руки

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.

Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.

С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Формула 2 — Сила Ампера для двух параллельных проводников.

Сила, действующая со стороны проводника номер один на второй проводник, будет иметь такой же вид. При этом если токи в проводниках текут в одном направлении, то проводнику будут притягиваться. Если же в противоположных, то они будут отталкиваться. Возникает некоторое замешательство, ведь токи текут в одном направлении, так как же они могут притягиваться. Ведь одноименные полюса и заряды всегда отталкивались. Или Ампер решил, что не стоит подражать остальным и придумал что то новое.

На самом деле Ампер ничего не выдумывал, так как если задуматься то поля, создаваемые параллельными проводниками, направлены встречно друг другу. И почему они притягиваются, вопроса уже не возникает. Чтобы определить, в какую сторону направлено поле создаваемое проводником, можно воспользоваться правилом правого винта.

Рисунок 2 — Параллельные проводники с током

Используя параллельные проводники и выражение силы Ампера для них можно определить единицу в один Ампер. Если по бесконечно длинным параллельным проводникам, находящимся на расстоянии в один метр, текут одинаковые токи силой в одни ампер, то силы взаимодействия между ними будет составлять в 2*10-7 Ньютона, на каждый метр длинны. Используя эту зависимость, можно выразить чему будет равен один Ампер.

Данное видео рассказывает о том, как постоянное магнитное поле, созданное подковообразным магнитом, воздействует на проводник с током. Роль проводника с током в данном случае выполняет алюминиевый цилиндр. Этот цилиндр лежит на медных шинах, по которым к нему подводится электрический ток. Сила, воздействующая на проводник с током, находящемся в магнитном поле, называется силой Ампера. Направление действия силы Ампера определяется с помощью правила левой руки.

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника - в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) - разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Рисунок 1. Действие магнитного поля на ток.

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп - магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.

Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера . Ее обозначения: . Сила Ампера векторная величина. Ее направление определяет правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее. Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на большой палец укажет направление силы Ампера (рис.1).

Закон Ампера

Элементарная сила Ампера определена законом (или формулой) Ампера:

где I – сила тока, – малый элемент длины проводника – это вектор, равный по модулю длине проводника, направленный в таком же направлении как вектор плотности тока, – индукция магнитного поля, в которое помещен проводник с током.

Иначе эту формулу для силы Ампера записывают как:

где – вектор плотности тока, dV – элемент объема проводника.

Модуль силы Ампера находят в соответствии с выражением:

где – угол между векторами магнитной индукции и направление течения тока. Из выражения (3) очевидно, что сила Ампера максимальна в случае перпендикулярности линий магнитной индукции поля по отношению к проводнику с током.

Силы, действующие на проводники с током в магнитном поле

Из закона Ампера следует, что на проводник с током, равным I, действует сила равная:

где магнитная индукция, рассматриваемая в пределах малого кусочка проводника dl. Интегрирование в формуле (4) проводят по всей длине проводника (l). Из выражения (4) следует, что на замкнутый контур с током I, в однородном магнитном поле действует сила Ампера равная

Сила Ампера, которая действует на элемент (dl) прямого проводника с током I 1 , помещённый в магнитное поле, которое создает другой прямой проводник, параллельный первому с током I 2 , равна по модулю:

где d – расстояние между проводниками, Гн/м(или Н/А 2) – магнитная постоянная. Проводники с токами одного направления притягиваются. Если направления токов в проводниках различны, то они отталкиваются. Для рассмотренных выше параллельных проводников бесконечной длины сила Амперана единицу длины может быть вычислена по формуле:

Формулу (6) в системе СИ применяют для получения количественного значения магнитной постоянной.

Единицы измерения силы Ампера

Основной единицей измерения силы Ампер (как и любой другой силы) в системе СИ является: =H

В СГС: =дин

Примеры решения задач

Пример

Задание. Прямой проводник длины l с током I находится в однородном магнитном поле B. На проводник действует сила F. Каков угол между направлением течения тока и вектором магнитной индукции?

Решение. На проводник с током, находящийся в магнитном поле действует сила Ампера, модуль которой для прямолинейного проводника с током расположенном в однородном поле можно представить как:

где – искомый угол. Следовательно:

Ответ.

Пример

Задание. Два тонких, длинных проводника с токами лежат в одной плоскости на расстоянии d друг от друга. Ширина правого проводника равна a. По проводникам текут токи I 1 и I 2 (рис.1). Какова, сила Ампера, действующая на проводники в расчете на единицу длины?

Решение. За основу решения задачи примем формулу элементарной силы Ампера:

Будем считать, что проводник с током I 1 создает магнитное поле, а другой проводник в нем находится.Станем искать силу Ампера, действующую на проводник с током I 2 . Выделим в проводнике (2) маленький элемент dx (рис.1), который находится на расстоянии x от первого проводника. Магнитное поле, которое создает проводник 1 (магнитное поле бесконечного прямолинейного проводника с током) в точке нахождения элементаdxпо теореме о циркуляции можно найти как.

Французский физик Доминик Франсуа Араго (1786-1853) на заседании Парижской академии наук рассказал об опытах Эрстеда и повторил их. Араго предложил естественное, как всем казалось, объяснение магнитного действия электрического тока: проводник в результате протекания по нему электрического тока превращается в магнит. На демонстрации присутствовал другой академик, математик Андре Мари Ампер. Он предположил, что суть вновь открытого явления - в движении заряда, и решил сам провести необходимые измерения. Ампер был уверен, что замкнутые токи эквивалентны магнитам. 24 сентября 1820 г. он подключил к вольтову столбу две проволочные спирали, которые превратились в магниты.

Т.о. катушка с током создает такое же поле, что и полосовой магнит. Ампер создал прообраз электромагнита , обнаружив, что стальной брусок, помещенный внутрь спирали с током, намагничивается, многократно усиливая магнитное поле . Ампер предположил, что магнит представляет собой некоторую систему внутренних замкнутых токов и показал (и на основе опытов, и помощью расчетов), что малый круговой ток (виток) эквивалентен маленькому магнитику, расположенному в центре витка перпендикулярно его плоскости, т.о. всякий контур с током можно заменить магнитом бесконечно малой толщины.

Гипотеза Ампера, что внутри любого магнита существуют замкнутые токи, наз. гипотезой о молекулярных токах и легла в основу теории взаимодействия токов - электродинамики .

На проводник с током, находящийся в магнитном поле, действует сила, которая определяется только свойствами поля в том месте, где расположен проводник, и не зависит от того, какая система токов или постоянных магнитов создала поле. Магнитное поле оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные ее элементы.

Закон Ампера может быть использован для определения модуля вектора магнитной индукции. Модуль вектора индукции в данной точке однородного магнитного поля равен наибольшей силе, которая действует на помещенный в окрестности данной точки проводник единичной длины, по которому протекает ток в единицу силы тока: . Значение достигается при условии, что проводник расположен перпендикулярно к линиям индукции.

Закон Ампера применяется для определения силы взаимодействия двух токов.

Между двумя параллельно расположенными бесконечно длинными проводниками, по которым протекают постоянные токи, возникает сила взаимодействия. Проводники с одинаково направленными токами притягиваются, с противоположно направленными токами - отталкиваются.

Сила взаимодействия , приходящаяся на единицу длины каждого из параллельных проводников, пропорциональна величинам токов и и обратно пропорциональна расстоянию между R между ними. Такое взаимодействие проводников с параллельными токами объясняется правилом левой руки. Модуль силы, действующий на два бесконечных прямолинейных тока и , расстояние между которыми равно R .