Какая величина называется физической величиной. Единицы измерения физических величин

Физические величины

Физическая величина это характеристика физических объектов или явлений материального мира, общая для множества объектов или явлений в качественном отношении, но индивидуальная в количественном отношении для каждого из них . Например, масса, длина, площадь, температура и т.д.

Каждая физическая величина имеет свои качественную и количественную характеристики .

Качественная характеристика определяется тем, какое свойство материального объекта или какую особенность материального мира эта величина характеризует. Так, свойство "прочность" в количественном отношении характеризует такие материалы, как сталь, дерево, ткань, стекло и многие другие, в то время как количественное значение прочности для каждого из них совершенно разное

Для выявления количественного различия содержания свойства в каком-либо объекте, отображаемого физической величиной, вводится понятие размера физической величины . Этот размер устанавливается в процессе измерения - совокупность операций, выполняемых для определения количественного значения величины (ФЗ «Об обеспечении единства измерений»

Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, высоты здания -12 м и др.). Между размерами каждой физической величины существуют отношения в виде числовых форм (типа «больше», «меньше», «равенства», «суммы» и т.п.), которые могут служить моделью этой величины.

В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины .

Истинное значение физической величины - это значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство объекта. Из-за несовершенства средств и методов измерений истинные значения величин практически получить нельзя. Их можно представить только теоретически. А значения величины, полученные при измерении, лишь в большей или меньшей степени приближаются к истинному значению.

Действительное значение физической величины - это значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

Измеренное значение физической величины - это значение, полученное при измерении с применением конкретных методов и средств измерений.

При планировании измерений следует стремиться к тому, чтобы номенклатура измеряемых величин соответствовала требованиям измерительной задачи (например, при контроле измеряемые величины должны отражать соответствующие показатели качества продукции).

Для каждого параметра продукции должны соблюдаться требования:

Корректность формулировки измеряемой величины, исключающая возможность различного толкования (например, необходимо четко определять, в каких случаях определяется "масса" или "вес" изделия, "объем" или "вместимость" сосуда и т.д.);

Определенность подлежащих измерению свойств объекта (например, "температура в помещении не более...°С " допускает возможность различного толкования. Необходимо так изменить формулировку требования, чтобы было ясно, установлено ли это требование к максимальной или к средней температуре помещения, что будет в дальнейшем учтено при выполнении измерений);

Использование стандартизованных терминов.

Физические единицы

Физическая величина, которой по определению присвоено числовое значение, равное единице, называетсяединицей физической величины.

Многие единицы физических величин воспроизводятся мерами, применяемыми для измерений (например, метр, килограмм). На ранних стадиях развития материальной культуры (в рабовладельческих и феодальных обществах) существовали единицы для небольшого круга физических величин - длины, массы, времени, площади, объёма. Единицы физических величин выбирались вне связи друг с другом, и притом различные в разных странах и географических районах. Так возникло большое количество часто одинаковых по названию, но различных по размеру единиц - локтей, футов, фунтов.

По мере расширения торговых связей между народами и развития науки и техники количество единиц физических величин увеличивалось и всё более ощущалась потребность в унификации единиц и в создании систем единиц. О единицах физических величин и их системах стали заключать специальные международные соглашения. В 18 в. во Франции была предложена метрическая система мер, получившая в дальнейшем международное признание. На её основе был построен целый ряд метрических систем единиц. В настоящее время происходит дальнейшее упорядочение единиц физических величин на базе Международной системы единиц (СИ).

Единицы физических величин делятся на системные, т. е. входящие в какую-либо систему единиц, и внесистемные единицы (например, мм рт. ст., лошадиная сила, электрон-вольт).

Системные единицы физических величин подразделяются на основные , выбираемые произвольно (метр, килограмм, секунда и др.), и производные , образуемые по уравнениям связи между величинами (метр в секунду, килограмм на кубический метр, ньютон, джоуль, ватт и т. п.).

Для удобства выражения величин, во много раз больших или меньших единиц физических величин, применяются кратные единицы (например, километр - 10 3 м, киловатт - 10 3 Вт) и дольные единицы (например, миллиметр - 10 -3 м, миллисекунда - 10-3 с)..

В метрических системах единиц кратные и дельные единицы физических величин (за исключением единиц времени и угла) образуются умножением системной единицы на 10 n , где n - целое положительное или отрицательное число. Каждому из этих чисел соответствует одна из десятичных приставок, принятых для образования кратных и дельных единиц.

В 1960 г. на XI Генеральной конференции по мерам и весам Международной организации мер и весов (МОМВ) была принята Международная системаединиц (SI).

Основными единицами в международной системе единиц являются: метр (м) – длина, килограмм (кг) – масса, секунда (с) – время, ампер (А) – сила электрического тока, кельвин (К) – термодинамическая температура, кандела (кд) – сила света, моль – количество вещества.

Наряду с системами физических величин в практике измерений по-прежнему используются так называемые внесистемные единицы. К их числу относятся, например: единицы давления – атмосфера, миллиметр ртутного столба, единица длины – ангстрем, единица количество теплоты – калория, единицы акустических величин – децибел, фон, октава, единицы времени – минута и час и т. п. Однако в настоящее время наметилась тенденция к их сокращению до минимума.

Международная система единиц имеет целый ряд достоинств: универсальность, унификация единиц для всех видов измерений, когерентность (согласованность) системы (коэффициенты пропорциональности в физических уравнениях безразмерны), лучшее взаимопонимание между различными специалистами в процессе научно-технических и экономических связей между странами.

В настоящее время применение единиц физических величин в России узаконено Конституцией РФ (ст. 71) (стандарты, эталоны, метрическая система и исчисление времени находятся в ведении Российской Федерации) и федеральным законом "Об обеспечении единства измерений". Статья 6 Закона определяет применение в Российской Федерации единиц величин Международной системы единиц, принятых Генеральной конференцией по мерам и весам и рекомендованные к применению Международной организацией законодательной метрологии. В то же время в Российской Федерации могут быть допущены к применению наравне с единицами величин СИ внесистемные единицы величин, наименование, обозначения, правила написания и применения которых устанавливаются Правительством Российской Федерации.

В практической деятельности следует руководствоваться единицами физических величин, регламентированных ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин».

Стандартом наряду с обязательным применением основных и производных единиц Международной системы единиц, а также десятичных кратных и дольных этих единиц допускается применять некоторые единицы, не входящие в СИ, их сочетания с единицами СИ, а также некоторые нашедшие широкое применение на практике десятичные кратные и дольные перечисленных единиц.

Стандарт определяет правила образования наименований и обозначений десятичных кратных и дольных единиц СИ с помощью множителей (от 10 –24 до 10 24) и приставок, правила написания обозначений единиц, правили образования когерентных производных единиц СИ

Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ приведены в табл.

Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ

Десятичный множитель Приставка Обозначение приставки Десятичный множитель Приставка Обозначение приставки
межд. рус межд. русс
10 24 иотта Y И 10 –1 деци d д
10 21 зетта Z З 10 –2 санти c с
10 18 экса E Э 10 –3 милли m м
10 15 пета P П 10 –6 микро µ мк
10 12 тера T Т 10 –9 нано n н
10 9 гига G Г 10 –12 пико p п
10 6 мега M М 10 –15 фемто f ф
10 3 кило k к 10 –18 атто a а
10 2 гекто h г 10 –21 зепто z з
10 1 дека da да 10 –24 иокто y и

Когерентные производные единицы Международной системы единиц, как правило, образуют с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц обозначения величин в уравнениях связи заменяют обозначениями единиц СИ.

Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют обозначения величин со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное 1.

Физика как наука, изучающая явления природы, использует стандартную методику исследования. Основными этапами можно назвать: наблюдение, выдвижение гипотезы, проведение эксперимента, обоснование теории. В ходе наблюдения устанавливаются отличительные черты явления, ход его течения, возможные причины и последствия. Гипотеза позволяет пояснить ход явления, установить его закономерности. Эксперимент подтверждает (или не подтверждает) справедливость гипотезы. Позволяет установить количественное соотношение величин в ходе опыта, что приводит к точному установлению зависимостей. Подтвержденная в ходе опыта гипотеза ложится в основу научной теории.

Ни одна теория не может претендовать на достоверность, если не получила полного и безоговорочного подтверждения в ходе эксперимента. Проведение последнего сопряжено с измерениями физических величин, характеризующих процесс. - это основа измерений.

Что это такое

Измерение касается тех величин, которые подтверждают справедливость гипотезы о закономерностях. Физическая величина - это научная характеристика физического тела, качественное отношение которой является общим для множества аналогичных тел. Для каждого тела такая количественная характеристика сугубо индивидуальна.

Если обратиться к специальной литературе, то в справочнике М. Юдина и др. (1989 года издания) читаем, что физическая величина это: “характеристика одного из свойств физического объекта (физической системы, явления или процесса), общая в качественном отношении для многих физических объектов, но в количественном отношении индивидуальная для каждого объекта”.

Словарь Ожегова (1990 года издания) утверждает, что физическая величина это - "размер, объем, протяженность предмета".

К примеру, длина - физическая величина. Механика длину трактует как пройденное расстояние, электродинамика использует длину провода, в термодинамике аналогичная величина определяет толщину стенок сосудов. Суть понятия не меняется: единицы величин могут быть одинаковыми, а значение - различным.

Отличительной чертой физической величины, скажем, от математической, является наличие единицы измерения. Метр, фут, аршин - примеры единиц измерения длины.

Единицы измерения

Чтобы измерить физическую величину, ее следует сравнить с величиной, принятой за единицу. Вспомните замечательный мультфильм «Сорок восемь попугаев». Чтобы установить длину удава, герои измеряли его длину то в попугаях, то в слонятах, то в мартышках. В этом случае длину удава сравнивали с ростом других героев мультфильма. Результат количественно зависел от эталона.

Величины - мера ее измерения в определенной системе единиц. Путаница в этих мерах возникает не только вследствие несовершенства, разнородности мер, но иногда и из-за относительности единиц.

Русская мера длины - аршин - расстояние между указательным и большим пальцами руки. Однако руки у всех людей разные, и аршин, измеренный рукой взрослого мужчины, отличается от аршина на руке ребенка или женщины. Такое же несоответствие мер длины касается сажени (расстояние между кончиками пальцев расставленных в стороны рук) и локтя (расстояние от среднего пальца до локтя руки).

Интересно, что в лавки приказчиками брали мужчин небольшого роста. Хитрые купцы экономили ткань при помощи несколько меньших мерил: аршин, локоть, сажень.

Системы мер

Такое разнообразие мер существовало не только в России, но и в других странах. Введение единиц измерения зачастую было произвольным, иногда эти единицы вводились только вследствие удобства их измерения. Например, для измерения атмосферного давления ввели мм ртутного столба. Известный в котором использовалась трубка, заполоненная ртутью, позволил ввести такую необычную величину.

Мощность двигателей сравнивали с (что практикуется и в наше время).

Различные физические величины измерение физических величин делали не только сложными и недостоверными, но и усложняющими развитие науки.

Единая система мер

Единая система физических величин, удобная и оптимизированная в каждой промышленно развитой стране, стала насущной необходимостью. За основу была принята идея выбора как можно меньшего количества единиц, с помощью которых в математических соотношениях можно было бы выразить и другие величины. Такие основные величины не должны быть связаны друг с другом, их значение определяется однозначно и понятно в любой экономической системе.

Эту проблему решить пытались в различных странах. Создание единой СГС, МКС и другие) предпринималось неоднократно, но эти системы были неудобны либо с научной точки зрения, либо в бытовом, промышленном применении.

Задачу, поставленную в конце 19 века, решить получилось только в 1958 году. На заседании Международного комитета законодательной метрологии была представлена унифицированная система.

Унифицированная система мер

1960 год ознаменовался историческим заседанием Генеральной конференции по мерам и весам. Уникальная система, названная «Systeme internationale d"unites» (сокращенно SI) была принята решением этого почетного собрания. В российской версии эта система названа Система интернациональная (аббревиатура СИ).

За основу приняты 7 основных единиц и 2 дополнительных. Их численное значение определяется в виде эталона

Таблица физических величин СИ

Наименование основной единицы

Измеряемая величина

Обозначение

Интернациональное

российское

Основные единицы

килограмм

Сила тока

Температура

Количество вещества

Сила света

Дополнительные единицы

Плоский угол

Стерадиан

Телесный угол

Сама система не может состоять только из семи единиц, поскольку разнообразие физических процессов в природе требует введения все новых и новых величин. В самой структуре предусмотрено не только внедрение новых единиц, но и их взаимосвязь в виде математических соотношений (их чаще называют формулами размерностей).

Единица физической величины получается с применением умножения, и деления основных единиц в формуле размерностей. Отсутствие числовых коэффициентов в таких уравнениях делает систему не только удобной во всех отношениях, но и когерентной (согласованной).

Производные единицы

Единицы измерения, которые формируются из семи основных, получили название производных. Кроме основных и производных единиц, возникла необходимость введения дополнительных (радиан и стерадиан). Их размерность принято считать нулевой. Отсутствие измерительных приборов для их определения делает невозможным их измерение. Их введение обусловлено применением в теоретических исследованиях. Например, физическая величина «сила» в этой системе измеряется в ньютонах. Поскольку сила - мера взаимного действия тел друг на друга, являющаяся причиной варьирования скорости тела определенной массы, то определить ее можно как произведение единицы массы на единицу скорости, деленную на единицу времени:

F = k٠M٠v/T, где k - коэффициент пропорциональности, M - единица массы, v - единица скорости, T - единица времени.

СИ дает следующую формулу размерностей: Н = кг٠м/с 2 , где использованы три единицы. И килограмм, и метр, и секунда отнесены к основным. Коэффициент пропорциональности равен 1.

Возможно введение безразмерных величин, которые определяются в виде соотношения однородных величин. К таковым можно отнести как известно, равный отношению силы трения к силе нормального давления.

Таблица физических величин, производных от основных

Наименование единицы

Измеряемая величина

Формула размерностей

кг٠м 2 ٠с -2

давление

кг٠ м -1 ٠с -2

магнитная индукция

кг ٠А -1 ٠с -2

электрическое напряжение

кг ٠м 2 ٠с -3 ٠А -1

Электрическое сопротивление

кг ٠м 2 ٠с -3 ٠А -2

Электрический заряд

мощность

кг ٠м 2 ٠с -3

Электрическая емкость

м -2 ٠кг -1 ٠c 4 ٠A 2

Джоуль на Кельвин

Теплоемкость

кг ٠м 2 ٠с -2 ٠К -1

Беккерель

Активность радиоактивного вещества

Магнитный поток

м 2 ٠кг ٠с -2 ٠А -1

Индуктивность

м 2 ٠кг ٠с -2 ٠А -2

Поглощенная доза

Эквивалентная доза излучения

Освещенность

м -2 ٠кд ٠ср -2

Световой поток

Сила, вес

м ٠кг ٠с -2

Электрическая проводимость

м -2 ٠кг -1 ٠с 3 ٠А 2

Электрическая емкость

м -2 ٠кг -1 ٠c 4 ٠A 2

Внесистемные единицы

Использование исторически сложившихся величин, не входящих в СИ или отличающихся только числовым коэффициентом, допускается при измерении величин. Это внесистемные единицы. Например, мм ртутного столба, рентген и другие.

Числовые коэффициенты используются для введения дольных и кратных величин. Приставки соответствуют определенному числу. Примером могут служить санти-, кило-, дека-, мега- и многие другие.

1 километр = 1000 метров,

1 сантиметр = 0,01 метра.

Типология величин

Попытаемся указать несколько основных признаков, которые позволяют установить тип величины.

1. Направление. Если действие физической величины напрямую связано с направлением, ее называют векторной, иные - скалярные.

2. Наличие размерности. Существование формулы физических величин дает возможность называть их размерными. Если в формуле все единицы имеют нулевую степень, то их называют безразмерными. Правильнее было бы назвать их величинами с размерностью, равной 1. Ведь понятие безразмерной величины нелогично. Основное свойство - размерность - никто не отменял!

3. По возможности сложения. Аддитивная величина, значение которой можно складывать, вычитать, умножать на коэффициент и т. д. (например, масса) - физическая величина, являющаяся суммируемой.

4. По соотношению с физической системой. Экстенсивная - если ее значение можно составить из значений подсистемы. Примером может служить площадь, измеряемая в метрах квадратных. Интенсивная - величина, значение которой не зависит от системы. К таковым можно отнести температуру.

Изучение физических явлений и их закономерностей, а также использование этих закономерностей в практической деятельности человека связано с измерением физических величин.

Физическая величина - это свойство, в качественном отношении общее многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта.

Физической величиной является например, масса. Массой обладают разные физические объекты: все тела, все частицы вещества, частицы электромагнитного поля и др. В качественном отношении все конкретные реализации массы, т. е. массы всех физических объектов, одинаковы. Но масса одного объекта может быть в определенное число раз больше или меььше, чем масса другого. И в этом количественном смысле масса есть свойство, индивидуальное для каждого объекта. Физическими величинами являются также длина, температура, напряженность электрического поля, период колебаний и др.

Конкретные реализации одной и той же физической величины называются однородными величинами. Например, расстояние между зрачками ваших глаз и высота Эйфелевой башни есть конкретные реализации одной и той же физической величины - длины и потому являются однородными величинами. Масса данной книги и масса спутника Земли «Космос-897» также однородные физические величины.

Однородные физические величины отличаются друг от друга размером. Размер физической величины - это

количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина».

Размеры однородных физических величин различных объектов можно сравнивать между собой, если определить значения этих величин.

Значением физической величины называется оценка физической величины в виде некоторого числа принятых для нее единиц (см. с. 14). Например, значение длины некоторого тела, 5 кг - значение массы некоторого тела и т. д. Отвлеченное число, входящее в значение физической величины (в наших примерах 10 и 5), называется числовым значением. В общем случае значение X некоторой величины можно выразить в виде формулы

где числовое значение величины, ее единица.

Следует различать истинное и действительное значения физической величины.

Истинное значение физической величины - это значение величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта.

Действительное значение физической величины есть значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

Нахождение значения физической величины опытным путем при помощи специальных технических средств называется измерением.

Истинные значения физических величин, как правило, неизвестны. Например, никто не знает истинных значений скорости света, расстояния от Земли до Луны, массы электрона, протона и других элементарных частиц. Мы не знаем истинного значения своего роста и массы своего тела, не знаем и не можем узнать истинного значения температуры воздуха в нашей комнате, длины стола, за которым работаем, и т. д.

Однако, пользуясь специальными техническими средствами, можно определить действительные

значеиия всех этих и многих других величин. При этом степень приближения этих действительных значений к истинным значениям физических величин зависит от совершенства применяемых при этом технических средств измерения.

К средствам измерений относятся меры, измерительные приборы и др. Под мерой понимают средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря - мера массы, линейка с миллиметровыми делениями - мера длины, измерительная колба - мера объема (вместимости), нормальный элемент - мера электродвижущей силы, кварцевый генератор - мера частоты электрических колебаний и др.

Измерительный прибор - это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдением. К измерительным приборам относятся динамометр, амперметр, манометр и др.

Различают измерения прямые и косвенные.

Прямым измерением называют измерение, при котором искомое значение величины находят непосредственно из опытных данных. К прямым измерениям относятся, например, измерение массы на равноплечных весах, температуры - термометром, длины - масштабной линейкой.

Косвенное измерение - это измерение, при котором искомое значение величины находят на основании известной зависимости между ней и величинами, подвергаемыми прямым измерениям. Косвенными измерениями являются, например, нахождение плотности тела по его массе и геометрическим размерам, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

Измерения физических величин основываются на различных физических явлениях. Например, для измерения температуры используется тепловое расширение тел или термоэлектрический эффект, для измерения массы тел взвешиванием - явление тяготения и т.д. Совокупность физических явлений, на которых основаны измерения, называют принципом измерения. Принципы измерений не рассматриваются в данном пособии. Изучением принципов и методов измерений, видов средств измерений, погрешностей измерений и других вопросов, связанных с измерениями, занимается метрология.

Что означает измерить физическую величину? Что называют единицей физической величины? Здесь вы найдете ответы на эти очень важные вопросы.

1. Узнаем, что называется физической величиной

Издавна люди для более точного описания каких-нибудь событий, явлений, свойств тел и веществ используют их характеристики. Например, сравнивая тела, которые нас окружают, мы говорим, что книга меньше, чем книжный шкаф, а конь больше кошки. Это означает, что объем коня боль­ше объема кошки, а объем книги меньше объема шкафа.

Объем - пример физической величины, которая характеризует общее свойство тел занимать ту или иную часть пространства (рис. 1.15, а). При этом числовое значение объема каждого из тел индивидуально.

Рис. 1.15 Для характеристики свойства тел занимать ту или иную часть пространства мы используем физическую величину объем (о, б), для характеристики движения - скорость (б, в)

Общая характеристика многих материальных объектов или явлений, которая может приобретать индивидуальное значение для каждого из них, называется физической величиной .

Еще одним примером физической величины может служить известное вам понятие «скорость». Все движущиеся тела изменяют свое положение в про­странстве с течением времени, однако быстрота этого изменения для каждого тела различна (рис. 1.15, б, в). Так, самолет за I с полета успевает изменить свое положение в пространстве на 250 м, автомобиль - на 25 м, человек - на I м, а черепаха - всего на несколько сантиметров. Поэтому физики и говорят, что ско­рость - это физическая величина, которая характеризует быстроту движения.

Нетрудно догадаться, что объем и скорость,- это далеко не все физичес­кие величины, которыми оперирует физика. Масса, плотность, сила, темпе­ратура, давление, напряжение, освещенность - это лишь малая часть тех физических величин, с которыми вы познакомитесь, изучая физику .


2. Выясняем, что означает измерить физическую величину

Для того чтобы количественно описать свойства какого-либо матери­ального объекта или физического явления, необходимо установить значение физической величины, которая характеризует данный объект или явление.

Значение физических величин получают путем измерений (рис. 1.16- 1.19) или вычислений.


Рис. 1.16. «До отправления поезда осталось 5 минут»,- с волнением измеряете вы время

Рис. 1.17 «Я купила килограмм яблок»,- рассказывает мама о своих измерениях массы


Рис. 1.18. «Одевайся теплее, сегодня на улице прохладнее»,- заботится о вас бабушка после измерения температуры воздуха на улице

Рис. 1.19. «У меня снова поднялось давление»,- жалуется женщина после измерения кровяного давления

Измерить физическую величину - значит сравнить ее с однородной величиной, приня­той за единицу.

Рис. 1.20 Если бабушка и внук будут измерять расстояние в ша­гах, то они всегда будут получать разные результаты

Приведем пример из художественной лите­ратуры: «Пройдя шагов триста по берегу реки, маленький отряд вступил под своды дремучего леса, извилистыми тропами которого им надо было странствовать на протяжении десяти дней». (Ж. Верн «Пятнадцатилетний капитан»)


Рис. 1.21.

Герои романа Ж. Верна измеряли пройден­ный путь, сравнивая его с шагом, то есть еди­ницей измерения служил шаг. Таких шагов оказалось триста. В результате измерения было получено числовое значение (триста) физиче­ской величины (пути) в избранных единицах (шагах).

Очевидно, что выбор такой единицы не поз­воляет сравнивать результаты измерений, полу­ченные разными людьми, поскольку длина шага у всех разная (рис. 1.20). Поэтому ради удобства и точности люди давным-давно начали договари­ваться о том, чтобы измерять одну и ту же фи­зическую величину одинаковыми единицами. Ныне в большинстве стран мира действует при­нятая в 1960 году Международная система еди­ниц измерения, которая носит название «Систе­ма Интернациональная» (СИ) (рис. 1.21).

В этой системе единицей длины является метр (м), времени - секунда (с); объем изме­ряется в метрах кубических (м 3), а скорость - в метрах в секунду (м/с). Об остальных единицах СИ вы узнаете позже.

3. Вспоминаем кратные и дольные единицы

Из курса математики вы знаете, что для сокращения записи больших и малых значе­ний разных величин пользуются кратными и дольными единицами.

Кратные единицы - это единицы, кото­рые больше основных единиц в 10, 100, 1000 и более раз. Дольные единицы - это единицы, которые меньше основных в 10, 100, 1000 и более раз.

Для записи кратных и дольных единиц используют приставки. Например, единицы длины , кратные одному метру,- это километр (1000 м), декаметр (10 м).

Единицы длины, дольные одному метру,- это дециметр (0,1 м), сантиметр (0,01 м), микрометр (0,000001 м) и так далее.

В таблице приведены наиболее часто употребляемые приставки.

4. Знакомимся с измерительными приборами

Измерение физических величин ученые проводят с помощью измери­тельных приборов. Простейшие из них - линейка, рулетка - служат для измерения расстояния и линейных размеров тела. Вам также хорошо известны такие измерительные приборы, как часы - прибор для измерения време­ни, транспортир - прибор для измерения углов на плоскости , термометр - прибор для измерения температуры и некоторые другие (рис. 1.22, с. 20). Co многими измерительными приборами вам еще предстоит познакомиться.

Большинство измерительных приборов имеют шкалу, которая обеспечи­вает возможность измерения. Кроме шкалы, на приборе указывают едини­цы, в которых выражается измеренная данным прибором величина*.

По шкале можно установить две наиболее важные характеристики при­бора: пределы измерения и цену деления.

Пределы измерения - это наибольшее и наименьшее значения физической величины , которые можно измерить данным прибором.

В наши дни широко используются электронные измерительные приборы, в которых значение измеренных величин высвечивается на экране в виде цифр. Пределы измере­ния и единицы определяются по паспорту прибора или устанавливаются специальным переключателем на панели прибора.



Рис. 1.22. Измерительные приборы

Цена деления - это значение наименьшего деления шкалы измерительного прибора.

Например, верхний предел измерений ме­дицинского термометра (рис. 1.23) равен 42 °С, нижний - 34 °С, а цена деления шкалы этого термометра составляет 0,1 °С.

Напоминаем: чтобы определить цену де­ления шкалы любого прибора, необходимо разность двух любых значений величин, ука­занных на шкале , разделить на количество де­лений между ними.


Рис. 1.23. Медицинский термометр

  • Подводим итоги

Общая характеристика материальных объектов или явлений, которая может приоб­ретать индивидуальное значение для каждого из них, называется физической величиной.

Измерить физическую величину - значит сравнить ее с однородной величиной, принятой за единицу.

В результате измерений мы получаем зна­чение физических величин.

Говоря о значении физической величины, следует указать ее числовое значение и единицу.

Для измерения физических величин поль­зуются измерительными приборами.

Для сокращения записи числовых значений больших и малых физиче­ских величин используют кратные и дольные единицы. Они образуются с помощью приставок.

  • Контрольные вопросы

1. Дайте определение физической величины. Как вы его понимаете?
2. Что означает измерить физическую величину?

3. Что понимают под значением физической величины?

4. Назовите все физичес­кие величины, упомянутые в отрывке из романа Ж. Верна, приве­денном в тексте параграфа. Каково их числовое значение? единицы измерения?

5. С помощью каких приставок образуются дольные еди­ницы? кратные единицы?

6. Какие характеристики прибора можно установить с помощью шкалы?

7. Что называют ценой деления?

  • Упражнения

1. Назовите известные вам физические величины. Укажите единицы этих величин. Какими приборами их измеряют?

2. На рис. 1.22 изображены некоторые измерительные приборы. Мож­но ли, используя только рисунок, определить цену деления шкал этих приборов. Ответ обоснуйте.

3. Выразите в метрах следующие значения физической величины: 145 мм; 1,5 км; 2 км 32 м.

4. Запишите с помощью кратных или дольных единиц следующие значения физических величин: 0,0000075 м - диаметр красных кровяных телец; 5 900 000 000 000 м - радиус орбиты планеты Плутон; 6 400 000 м - радиус планеты Земля.

5 Определите пределы измерения и цену деления шкал приборов, ко­торые есть у вас дома.

6. Вспомните определение физической величины и докажите, что длина - это физическая величина.

  • Физика и техника в Украине

Один из выдающихся физиков современности - Лев Давидо­вич Ландау (1908- 1968) - продемонстрировал свои способности, еще учась в средней школе. После окончания университета он стажировался у одного из творцов квантовой физики Нильса Бора. Уже в 25-летнем возрасте он возглавил теоретический отдел Украинско­го физико-технического института и кафедру теоретической физики Харьковского университета. Как и большинство выдающихся физиков-теоретиков, Ландау обладал чрезвычайной широтой научных интересов. Ядерная физика, физика плазмы, теория сверхтекучести жидкого гелия, теория сверхпроводимости - во все эти разделы фи­зики Ландау внес значительный вклад. За работы по физике низких температур он был удостоен Нобелевской премии.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

1.2. Физические величины

1.2.1. Физические величины как объект измерений

Величина – это свойство чего-либо, что может быть выделено среди других свойств и оценено тем или иным способом, в том числе и количественно. Величина не существует сама по себе, она имеет место лишь постольку, поскольку существует объект со свойствами, выраженными данной величиной.

Величины можно разделить на два вида: реальные и идеальные. Идеальные величины главным образом относятся к математике и являются обобщением (моделью) конкретных реальных понятий (см. рис.1.1)

Реальные величины делятся на физические и нефизические. Физическая величина в общем случае может быть определена как величина, свойственная материальным объектам (процессам, явлениям), изучаемым в естественных и технических науках. К нефизическим следует отнести величины, присущие общественным (нефизическим) наукам – философии, социологии, экономике и др.

Рис.1.1 Классификация величин

Рекомендации РМГ 29-99 трактуют физическую величину, как одно из свойств физического объекта, в качественном отношении общее для многих физических объектов, а в количественном – индивидуальное для каждого из них. Индивидуальность в количественном отношении понимают в том смысле, что свойство может быть для данного объекта в определенное число раз больше или меньше, чем у другого. Таким образом, физические величины это измеренные свойства физических объектов и процессов, с помощью которых они могут быть изучены.

Физические величины бывают:

· измеряемые;

· оцениваемые.

Измеряемые физические величины могут быть выражены количественно в виде определенного числа установленных единиц измерения . Физические величины, для которых по тем или иным причинная не может быть введена единица измерения, могут быть только оценены. Величины оценивают при помощи шкал.

Шкала величины – упорядоченная последовательность ее значений, принятая по соглашению на основании результатов точных измерений.

Для более детального изучения физических величин необходимо классифицировать и выявить общие метрологические особенности их отдельных групп.

По видам явлений физические величины делятся на следующие группы :

· вещественные , т. е. описывающие физические и физико-химические свойства веществ, материалов и изделий из них. К этой группе относятся масса, плотность, электрическое сопротивление, емкость, индуктивность и др. Иногда указанные физические величины называют пассивными. Для их измерения необходимо использовать дополнительный источник энергии, с помощью которого формируется сигнал измерительной информации. При этом пассивные физические величины преобразуются в активные, которые и измеряются;

· энергетические , т. е. величины, описывающие энергетические характеристики процессов преобразования, передачи и использования энергии. К ним относятся ток, напряжение, мощность, энергия. Эти величины называют активными. Они могут быть преобразованы в сигналы измерительной информации без использования вспомогательных источников энергии;

· характеризующие протекание процессов во времени . К этой группе относятся различного рода спектральные характеристики, корреляционные функции и др.

По принадлежности к различным группам физических процессов физические величины делятся:

· пространственно-временные;

· механические;

· тепловые;

· электрические;

· магнитные;

· акустические;

· световые;

· физико-химические;

· ионизирующих излучений;

· атомной и ядерной физики.

По степени условной независимости от других величин

· основные (условно не зависимые),

· производные (условно зависимые),

· дополнительные.

В настоящее время в системе SI используется семь физических величин, выбранных в качестве основных: длина, время, масса, температура, сила электрического тока, сила света и количество вещества. К дополнительным физическим величинам относятся плоский и телесный угол.

Единица физической величины – это физическая величина фиксированного размера, которой условно присвоено числовое значение равное единице. Единица физической величины применяется для количественного выражения однородных физических величин.

Значение физической величины – это оценка ее размера в виде некоторого числа принятых для нее единиц (Q) .

Числовое значение физической величины (q) – это отвлеченное число, выражающее отношение значения величины к соответствующей единице данной физической величины.

Уравнение Q= q[ Q] называют основным уравнением измерения . Суть простейшего измерения состоит в сравнении физической величины Q с размерами выходной величины регулируемой многозначной меры q[ Q] . В результате сравнения устанавливают, что q[Q] ‹ Q ‹ (q+1)[Q].

1.2.2. Системы единиц физических величин

Совокупность основных и производных единиц называется системой единиц физических величин.

Первой системой единиц считается метрическая система , где за основную единицу длины был принят метр, за единицу веса – 1 см3 химически чистой воды при температуре около +40оС. В 1799 году были изготовлены первые прототипы (эталоны) метра и килограмма. Кроме этих двух единиц метрическая система в своем первоначальном варианте включала еще и единицы площади (ар - площадь квадрата со стороной 10 м), объема (стер - объем куба с ребром 10 м), вместимости (литр, равный объему куба с ребром 0,1 м). В метрической системе еще не было четкого разделения единиц на основные и производные.


Рис.1.2. Классификация физических величин

Понятие системы единиц, как совокупности основных и производных, впервые было предложено немецким ученым Гауссом в 1832 г. В качестве основных в этой системе были приняты: единица длины – миллиметр, единица массы – миллиграмм, единица времени – секунда. Эту систему назвали абсолютной .

В 1881 г. была принята система СГС (сантиметр-грамм-секунда), в начале ХХ века существовала и система итальянского ученого Джорджи – МКСА (метр, килограмм, секунда, ампер). Существовали и другие системы единиц. Даже в настоящее время некоторые страны не отошли от исторически сложившихся единиц измерения. В Великобритании, США, Канаде единицей массы является фунт, причем его размер различен.

Наиболее широкое распространение в мире получила Международная система единиц SI – Systeme International.

Генеральная конференция по мерам и весам (ГКМВ) в 1954 г. определила шесть основных единиц физических величин для их использования в международных отношениях : метр, килограмм, секунда, ампер, Кельвин, свеча. В последствии система была дополнена одной основной, дополнительными и производными единицами. Кроме того, были разработаны определения основных единиц.

Единица длины – метр – длина пути, которую проходит свет в вакууме за 1/ долю секунды.

Единица массы – килограмм – масса, равная массе международного прототипа килограмма.

Единица времени – секунда – продолжительность периодов излучения, соответствующего переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133 при отсутствии возмущения со стороны внешних полей.

Единица силы электрического тока – ампер - сила не изменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого круглого сечения, расположенными на расстоянии 1 м один от другого в вакууме, создал бы между этими проводниками силу, равную 2·10-7 Н на каждый метр длины.

Единица термодинамической температуры – кельвин – 1/273,16 часть термодинамической температуры тройной точки воды. Допускается также применение шкалы Цельсия.

Единица количества вещества – моль – количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде углерода-12 массой 0,012 кг.

Единица силы света – кандела – сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила которого в этом направлении составляет 1/683 Вт/ср2.

Приведенные определения довольно сложны и требуют достаточного уровня знаний, прежде всего в физике. Но они дают представление о природном, естественном происхождении принятых единиц.

Международная система SI является наиболее совершенной и универсальной по сравнению с предшествовавшими ей. Кроме основных единиц в системе SI есть дополнительные единицы для измерения плоского и телесного угла – радиан и стерадиан, соответственно, а также большое количество производных единиц пространства и времени, механических величин, электрических и магнитных величин, тепловых, световых и акустических величин, а также ионизирующих излучений (таблица 1.2.) Единая международная система единиц была принята ХІ Генеральной конференцией по мерам и весам в 1960 году. На территории нашей страны система единиц SI действует с 1 января 1982 года в соответствии с ГОСТ 8.417-81. Система SI является логическим развитием предшествовавших ей систем СГС и МКГСС. К достоинствам и преимуществам системы SI относятся:

· универсальность, т. е. охват всех областей науки и техники;

· унификация всех областей и видов измерений;

· когерентность величин;

· возможность воспроизведения единиц с высокой точностью в соответствии с их определением;

· упрощение записи формул в связи с отсутствием переводных коэффициентов;

· уменьшение числа допускаемых единиц;

· единая система кратных и дольных единиц;

Таблица 1.1

Основные и дополнительные единицы физических величин

Величина

Обозначение

Наименование

Размерность

Наименование

Международное

Основные

килограмм

Сила электрического тока

Термодинамическая температура

Количество вещества

Сила света

Дополнительные

Плоский угол

Телесный угол

стерадиан

Производная единица – это единица производной физической величины системы единиц, образованная в соответствии с уравнениями, связывающими ее с основными единицами или с основными и уже определенными производными. Производные единицы системы SI, имеющие собственное название, приведены в таблице 1.2.

Для установления производных единиц следует:

· выбрать физические величины, единицы которых принимаются в качестве основных;

· установить размер этих единиц;

· выбрать определяющее уравнение, связывающее величины, измеряемые основными единицами, с величиной, для которой устанавливается производная единица. При этом символы всех величин, входящих в определяющее уравнение, должны рассматриваться не как сами величины, а как их именованные числовые значения;

· приравнять единице (или другому постоянному числу) коэффициент пропорциональности k, входящий в определяющее уравнение. Это уравнение следует записать в виде явной функциональной зависимости производной величины от основных величин.

Установленные таким образом производные единицы могут быть использованы для введения новых производных величин.

Единицы физических величин делятся на системные и внесистемные. Системная единица – единица физической величины, входящая в одну из принятых систем. Все основные, производные, кратные и дольные единицы являются системными. Внесистемная единица – это единица физической величины, не входящая ни в одну из принятых систем единиц. Внесистемные единицы по отношению к единицам системы SI разделяют на четыре вида:

Таблица 1.2.

Производные единицы системы SI, имеющие специальное название

Величина

Название

Наименование

Обозначение

Выражение через единицы SI

Сила. Вес

Давление, механическое напряжение

м-1·кг·с-2

Энергия. Работа, количество теплоты

Мощность

Количество электричества

Электрическое напряжение, электродвижущая сила

м2·кг·с-3·А-1

Электрическая емкость

м-2·кг-1·с4·А2

Электрическое сопротивление

м2·кг·с-3·А-2

Электрическая проводимость

м-2·кг-1·с3·А2

Поток магнитной индукции

м2·кг·с-2·А-1

Магнитная индукция

кг·с-2·А-1

Индуктивность

м2·кг·с-2·А-2

Световой поток

Освещенность

м-2·кд·ср

Активность радионуклида

беккерель

Поглощенная доза ионизирующего излучения

Эквивалентная доза излучения

· допускаемые наравне с единицами SI, например, единицы массы – тонна; плоского угла – градус, минута, секунда; объема – литр и др. Внесистемные единицы, допускаемые к применению наравне с единицами SI, приведены в таблице 1.3;

· допускаемые к применению в специальных областях, например, астрономическая единица - парсек, световой год – единицы длины в астрономии; диоптрия – единица оптической силы в оптике; электрон-вольт – единица энергии в физике и т. д.;

· временно допускаемые к применению наравне с единицами SI, например, морская миля – в морской навигации; карат – единица массы в ювелирном деле и др. Эти единицы должны изыматься из употребления в соответствии с международными соглашениями;

· изъятые из употребления, например, миллиметр ртутного столба – единица давления; лошадиная сила – единица мощности и некоторые другие.

Таблица 1.3

Внесистемные единицы, допускаемые к применению

наравне с единицами SI

Наименование

величины

Наименование

Обозначение

атомная единица массы

Плоский угол

астрономическая единица

световой год

Оптическая сила

диоптрия

электрон-вольт

Полная мощность

вольт-ампер

Реактивная мощность

Различают кратные и дольные единицы физических величин.

Кратная единица – это единица физической величины, в целое число раз превышающая системную или внесистемную единицу. Дольная единица – это единица физической величины, значение которой в целое число раз меньше системной или внесистемной единицы. Приставки для образования кратных и дольных единиц приведены в таблице 1.4.

Таблица 1.4

Приставки для образования десятичных кратных

и дольных единиц и их наименований

Множитель

Приставка

Обозначение

приставки

Множитель

Приставка

Обозначение

приставки

народное

Народное