Какие бывают дифракционные решетки. Формула дифракционной решетки

Дифракция света – явление отклонения света от прямолинейного распространения при встрече с препятствием, когда свет, огибая препятствие, заходит в область его геометрической тени.

Опыт Юнга: В непрозрачном экране на небольшом расстоянии друг от друга имеются два маленьких отверстия S 1 и S 2 . Эти отверстия освещаются узким световым пучком, прошедшим в свою очередь через малое отверстие S в другом экране. Если бы не было явления дифракции, то мы должны были бы увидеть только светлое пятно от отверстия S на втором экране. На самом деле наблюдается устойчивая интерференционная картина на третьем экране (чередующиеся светлые и темные полосы).

Явление дифракции можно объяснить на основе принципа Гюйгенса-Френеля .

Согласно Гюйгенсу , все точки поверхности, которой достигла в данный момент волна, являются центрами вторичных сферических волн. При этом в однородной среде вторичные волны излучаются только вперед.

Согласно Френелю , волновая поверхность в любой момент времени представляет собой результат интерференции когерентных вторичных волн.

Объяснение опыта Юнга

Возникшая в соответствии с принципом Гюйгенса-Френеля сферическая волна от отверстия S возбуждает в отверстиях S 1 и S 2 когерентные колебания. Вследствие дифракции из отверстий S 1 и S 2 выходят два световых конуса, которые частично перекрываются и интерферируют. В результате интерференции световых волн на экране появляются чередующиеся светлые и темные полосы. При закрывании одного из отверстий интерференционные полосы исчезают.

Дифракция обнаруживается в непосредственной близости от препятствия только в том случае, когда размеры препятствия соизмеримы с длиной волны (для видимого света λ ~ 100 нм).

Дифракция света на одномерной дифракционной решетке.

Дифракционная решетка – оптическое устройство, представляющее собой совокупность большого числа параллельных, равноотстоящих друг от друга щелей одинаковой ширины. Число штрихов может доходить до 2000-3000 тысяч на 1 мм. Прозрачные дифракционные решетки изготавливают из прозрачного твердого вещества, например, плоскопараллельных стеклянных или кварцевых пластинок. Алмазным резцом наносят штрихи. Там, где прошелся резец, образуется непрозрачная поверхность, рассеивающая свет. Промежутки между штрихами играют роль щелей. Отражательные дифракционные решетки представляют собой зеркальную (металлическую) поверхность, на которую нанесены параллельные штрихи. Световая волна рассеивается штрихами на отдельные когерентные пучки, которые, претерпев дифракцию, на штрихах, интерферируют. Результирующая интерференционная картина образуется в отраженном свете.

Если ширина прозрачных щелей (или отражательных полос) равна а , а ширина непрозрачных промежутков (или рассеивающих свет полос) b , то величина называется периодом или постоянной дифракционной решетки .

Рассмотрим дифракцию на прозрачной дифракционной решетке. Пусть на решетку падает плоская монохроматическая волна длиной l. Для наблюдения дифракции на близком расстоянии за решеткой помещают собирающую линзу и за ней экран на фокусном расстоянии от линзы. В каждой точке фокальной плоскости линзы происходит интерференция N волн, приходящих в эту точку от N щелей решетки. Это так называемая многоволновая или многолучевая интерференция. Выберем некоторое направление вторичных волн под углом φ относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода. Такая же разность хода будет для вторичных волн, идущих от других пар точек соседних щелей, отстоящих на расстояние d друг от друга. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы :

основная формула дифракционной решетки ,

где k = 0, 1, 2… - порядок главных максимумов. На экране наблюдаются узкие одноцветные линии (в зависимости от цвета падающей волны). Линия под углом φ = 0 называется спектральной линией первого порядка (k = 0) по обе стороны от нее симметрично расположены спектральные линии первого порядка (k = 1, k = -1), второго порядка (k = 2, k = -2) и т.д. Интенсивность этих линий в N 2 раз больше интенсивности, создаваемой в направлении φ одной щелью. С ростом k спектральные линии становятся менее яркими и перестают наблюдаться вовсе. Максимально наблюдаемое число линий ограничивается по следующим причинам. Во-первых, с ростом угла φ уменьшается интенсивность света, испускаемого отдельной щелью. Во-вторых, даже очень узкие щели с шириной близкой к λ , не могут отклонять свет под углом большим, чем. Поэтому, . Увеличение числа щелей не меняет положения главных максимумов, но делает их более интенсивными. При наклонном падении света под углом , условие главных максимумов имеет вид: .

Между главными максимумами появляются добавочные минимумы , число которых равно N – 1, где N общее число щелей решетки. (На рис. слева для N = 8 и N = 16 нарисованы не все добавочные минимумы). Они появляются за счет взаимной компенсации волн от всех N щелей. Чтобы N волн погасили друг друга, разность фаз должна отличаться на. А оптическая разность хода, соответственно, должна быть равна. Направления добавочных минимумов определяются условием, где k принимает целочисленные значения кроме 0, N , 2N , 3N ,…, то есть тех, при которых данное условие переходит в основную формулу дифракционной решетки.

Между добавочными минимумами находится N – 2 добавочных максимумов , интенсивность которых очень слаба.

При нормальном освещении решетки белым светом на экране наблюдается белый центральный максимум нулевого порядка, а по обе стороны от него – дифракционные спектры 1-го, 2-го и т.д. порядков. Спектры имеют вид радужных полосок, в которых наблюдается непрерывный переход от фиолетового цвета у внутреннего края спектра к красному цвету у внешнего края.

Со спектров 2-го и 3-го порядков начинается их частичное перекрывание (т.к. выполняется условие).

Спектроскопическими характеристиками решетки являются: разрешающая способность и угловая дисперсия.

Разрешающая способность дифракционной решетки – безразмерная величина, где  - минимальная разность волн двух спектральных линий, при которой эти линии воспринимаются раздельно, λ – среднее значение длин волн этих линий. Можно доказать, что, где L – ширина дифракционной решетки.

Угловая дисперсия характеризует степень пространственного (углового) разделения световых лучей с разной длиной волны: , где φ – угловое расстояние между спектральными линиями, отличающимися по длине волны на . Несложно доказать, что.

Таким образом, решетка является спектральным устройством, который можно использовать в различных оптических приборах, например, в дифракционных спектрофотометрах, в качестве монохроматоров, т.е. устройств, позволяющих освещать объект светом в узком диапазоне длин волн.

Дифракционная решетка может быть использована для определения длины волны света (по основной формуле дифракционной решетки). С другой стороны, основная формула дифракционной решетки может быть использована для решения обратной задачи – нахождения постоянной дифракционной решетки по длине волны. Этот способ лег в основу рентгеноструктурного анализа – измерения параметров кристаллической решетки посредством дифракции рентгеновских лучей. В настоящее время широко используют рентгеноструктурный анализ биологических молекул и систем. Именно этим методом Дж. Уотсон и Ф. Крик установили структуру молекулы ДНК (двойная спираль) и были удостоены в 1962 г. Нобелевской премии.

ОПРЕДЕЛЕНИЕ

Дифракционной решеткой называют спектральный прибор, который является системой некоторого количества щелей, разделенных непрозрачными промежутками.

Очень часто на практике используют одномерную дифракционную решетку, состоящую из параллельных щелей одинаковой ширины, находящихся в одной плоскости, которые разделяют равными по ширине непрозрачными промежутками. Такую решетку изготавливают при помощи специальной делительной машины, которая наносит на пластине из стекла параллельные штрихи. Количество таких штрихов может быть более чем тысяча на один миллиметр.

Лучшими считаются отражательные дифракционные решетки. Это совокупность участков, которые отражают свет с участками, которые свет отражают. Такие решетки представляют собой отшлифованную металлическую пластину, на которой рассеивающие свет штрихи нанесены резцом.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Допустим, что на дифракционной решетке ширина щели будет a, ширина непрозрачного участка — b, тогда величина:

называется периодом (постоянной) дифракционной решетки.

Картина дифракции на одномерной дифракционной решетке

Представим, что нормально к плоскости дифракционной решетки падает монохроматическая волна. Вследствие того, что щели расположены на равных расстояниях друг от друга, то разности хода лучей (), которые идут от пары соседних щелей, для избранного направления будут одинаковы для всей данной дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Помимо главных минимумов, в результате взаимной интерференции лучей света, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, это значит, что появляются дополнительные минимумы. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; k’ принимает любые целые значения кроме 0, . Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Так как величина синуса не может быть больше единицы, то количество главных максимумов:

Если через решетку пропускать белый свет, то все максимумы (кроме центрального m=0), будут разложены в спектр. При этом фиолетовая область данного спектра будет обращена к центру картины дифракции. Данное свойство дифракционной решетки применяется для изучения состава спектра света. Если известен период решетки, то вычисление длины волны света можно свести к нахождению угла , который соответствует направлению на максимум.

Примеры решения задач

ПРИМЕР 1

Задание Каков максимальный порядок спектра, который можно получить при помощи дифракционной решетки с постоянной м, если на нее перпендикулярно поверхности падает монохроматический пучок света с длиной волны м?
Решение В качестве основы для решения задачи используем формулу, которая является условием наблюдения главных максимумов для дифракционной картины, полученной при прохождении света сквозь дифракционную решетку:

Максимальным значением является единица, поэтому:

Из (1.2) выразим , получим:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Через дифракционную решетку пропускают монохроматический свет с длиной волны . На расстоянии L от решетки поставлен экран. На него при помощи линзы, находящейся около решетки, создают проекцию дифракционной картины. При этом первый максимум дифракции находится на расстоянии l от центрального. Каково количество штрихов на единицу длины дифракционной решетки (N), если свет падает на нее нормально?
Решение Сделаем рисунок.

Дифракционная решетка –оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равностоящих друг от друга щелей. Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места – щели – будут пропускать свет, штрихи – рассеивать и не пропускать (рис. 3).

Рис. 3. Сечение дифракционной решетки (а) и ее графическое изображение (б)

Для вывода формулы рассмотрим дифракционную решетку при условии перпендикулярного падения света (рис. 4). Выберем два параллельных луча, прошедших две щели и направленных под углом φ к нормали.

С помощью собирающей линзы (глаза) эти два луча попадут в одну точку фокальной плоскости Р и результат их интерференции будет зависеть от разности фаз или от их разности хода. Если линза стоит перпендикулярно лучам, то разность хода будет определяться отрезком ВС, где АС – перпендикуляр к лучам А и В. В треугольнике АВС имеем: АВ = а + b = d – период решетки, ВАС = φ, как углы с взаимно перпендикулярными сторонами.

Из формул (8) и (9) получим формулу дифракционной решетки :

Рис. 4. Дифракция света на дифракционной решетке

Т.е. положение световой линии в дифракционном спектре не зависит от вещества решетки, а определяется периодом решетки, который равен сумме ширины щели и промежутка между щелями.

Разрешающая способность дифракционной решетки.

Если свет, падающий на дифракционную решетку полихроматический, т.е. состоит из нескольких длин волн, то в спектре максимумы отдельных  будут под разнымиуглами. Характеризовать разрешение можно угловой дисперсией:

Следовательно, угловая дисперсия тем больше, чем больше порядок спектра k.

II. Работа студентов во время практического занятия.

Задание 1.

Получить допуск к занятию. Для этого необходимо:

– иметь конспект в рабочей тетради, содержащий название работы, основные теоретические понятия изучаемой темы, задачи эксперимента, таблицу по образцу для внесения экспериментальных результатов;

– успешно пройти контроль по методике проведения эксперимента;

– получить у преподавателя разрешение выполнять экспериментальную часть работы.

Задание 2.

Выполнение лабораторной работы, обсуждение полученных результатов, оформление конспекта.

Приборы и принадлежности

Рис. 5 Схема установки

1. Дифракционная решетка.

2. Источник света.

4. Линейка.

В данной лабораторной работе предлагается определить длины волн для красного и зеленого цветов, которые получаются при прохождении света через дифракционную решетку. При этом на экране наблюдается дифракционный спектр. Дифракционная решетка состоит из большого числа параллельных щелей, очень малых по сравнению с длиной волны. Щели позволяют проходить свету, в то время как пространство между щелями непрозрачно. Общее количество щелей – N, с расстоянием между их центрами – d. Формула дифракционной решетки:

где d – период решетки; sin φ – синус угла отклонения от прямолинейного распространения света; k – порядок максимума; λ – длина волны света.

Экспериментальная установка состоит из дифракционной решетки, источника света и подвижного экрана с линейкой. На экране наблюдается дифракционный спектр (рис. 5).

Расстояние от дифракционной решетки до экрана L может изменяться перемещением экрана. Расстояние от центрального луча света до отдельной линии спектра l. При малых углах φ.

На свойстве дифракции основано устройство дифракционной решетки. Дифракционная решетка - это совокупность очень большого количества узких щелей, которые разделены непрозрачными промежутками.

Общий вид дифракционной решетки представлен на следующем рисунке.

Период решетки и принцип ее работы

Период решетки - это сумма ширины одной щели и одного непрозрачного промежутка. Для обозначения используют букву d. Период дифракционный решетки часто колеблется около 10 мкм. Рассмотрим, как работает и для чего нужна дифракционная решетка.

На дифракционную решетку падает плоская монохроматическая волна. Длина этой волны равняется λ. Вторичные источники, расположенные в щелях решетки, создают световые волны, которые будут распространяться во всех направлениях. Будем искать условия, при которых волны, идущие от различных щелей, будут усиливать друг друга.

Для этого рассмотрим распространение волн, в каком либо одном направлении. Пусть это будут волны, распространяющиеся под углом φ.
Разность хода между волнами будет равна отрезку АС. Если в этом отрезке можно уложить целое число длин волн, то волны из всех щелей, будут накладываться друг на друга, и усиливать друг друга.

Длину Ас можно найти из прямоугольного треугольника АВС.

AC = AB*sin(φ) = d*sin(φ).

Можем записать условие для угла, при котором будут наблюдаться максимумы:

d*sin(φ) = ±k*λ.

Здесь k - любое положительное целое число или 0. Величина, определяющая порядок спектра.

За решеткой располагают собирающую линзу. С помощью нее фокусируются лучи идущие параллельно. Если угол удовлетворяет условию максимума, то на экране он определяет положение главных максимумов. Так как положение максимумов будет зависеть от длины волны, то решетка будет разлагать белый свет в спектр. Это представлено на следующем рисунке.

картинка

картинка

Между максимума будут промежутки минимума освещенности. Чем больше число щелей, тем четче будут очерчены максимумы, и тем больше будет ширина минимумов.

Дифракционная решетка используется для точного определения длины волны. При известном периоде решетки определить длину волны очень легко, достаточно лишь измерить угол φ направления на максимум.

дифракционная решётка картинка вики, дифракционная решётка
- оптический прибор, действие которого основано на использовании явления дифракции света. Представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.

  • 1 Виды решёток
  • 2 Описание явления
  • 3 Формулы
  • 4 Характеристики
  • 5 Изготовление
  • 6 Применение
  • 7 Примеры
  • 8 См. также
  • 9 Литература

Виды решёток

  • Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отражённом свете
  • Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Описание явления

Так выглядит свет лампы накаливания фонарика, прошедший через прозрачную дифракционную решётку. Нулевой максимум (m=0) соответствует свету, прошедшему сквозь решётку без отклонений. силу дисперсии решётки в первом (m=±1) максимуме можно наблюдать разложение света в спектр. Угол отклонения возрастает с ростом длины волны (от фиолетового цвета к красному)

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.

Формулы

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.

Если известно число штрихов (), приходящихся на 1 мм решётки, то период решётки находят по формуле: мм.

Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:

Период решётки, - угол максимума данного цвета, - порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки, - длина волны.

Если же свет падает на решётку под углом, то:

Характеристики

Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ - для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки

Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k.

Изготовление

Нарезка компакт-диска может считаться дифракционной решёткой.

Хорошие решётки требуют очень высокой точности изготовления. Если хоть одна щель из множества будет нанесена с ошибкой, то решётка будет бракована. Машина для изготовления решёток прочно и глубоко встраивается в специальный фундамент. Перед началом непосредственного изготовления решёток, машина работает 5-20 часов на холостом ходу для стабилизации всех своих узлов. Нарезание решётки длится до 7 суток, хотя время нанесения штриха составляет 2-3 секунды.

Применение

Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых «антибликовых» очках.

Примеры

Дифракция на компакт-диске

Один из простейших и распространённых в быту примеров отражательных дифракционных решёток - компакт-диск или DVD. На поверхности компакт-диска - дорожка в виде спирали с шагом 1,6 мкм между витками. Примерно треть ширины (0,5 мкм) этой дорожки занята углублением (это записанные данные), рассеивающим падающий на него свет, примерно две трети (1,1 мкм) - нетронутая подложка, отражающая свет. Таким образом, компакт диск - отражательная дифракционная решётка с периодом 1,6 мкм.

См. также

Воспроизвести медиафайл Видеоурок: дифракционная решетка
  • Дифракция на N-щелях
  • Дифракция Фраунгофера
  • Дифракция Френеля
  • Интерференция
  • Фурье-оптика
  • Оптическая решётка

Литература

дифракционная решётка, дифракционная решётка картинка, дифракционная решётка картинка вики

Дифракционная решётка Информацию О