Какие органические вещества входят в состав живой клетки. Многообразие органических и неорганических веществ


1 Органические и неорганические вещества

I. Неорганические соединения.

1.Вода, её свойства и значение для биологических процессов.

Вода - универсальный растворитель. Она имеет высокую теплоёмкость и одновременно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной жидкостью для подержания теплового равновесия организма.

Благодаря полярности своих молекул вода выступает в роли стабилизатора структуры.

Вода - источник кислорода и водорода, она является основной средой где протекают биохимические и химические реакции, важнейшим реагентом и продуктом биохимических реакций.

Для воды характерна полная прозрачность в видимом участке спектра, что имеет значение для процесса фотосинтеза, транспирации.

Вода практически не сжимается, что очень важно для придания формы органам, создания тургора и обеспечения определённого положения органов и частей организма в пространстве.

Благодаря воде возможно осуществление осмотических реакций в живых клетках.

Вода - основное средство передвижения веществ в организме (кровообращение, восходящий и нисходящий токи растворов по телу растения и т.д.).

2. Минеральные вещества.

В составе живых организмов современными методами химического анализа обнаружено 80 элементов периодической системы. По количественному составу их разделяют на три основные группы.

Макроэлементы составляют основную массу органических и неорганических соединений, концентрация их колеблется от 60% до 0.001% массы тела (кислород, водород, углерод, азот, сера, магний, калий, натрий, железо и др.).

Микроэлементы - преимущественно ионы тяжёлых металлов. Содержатся в организмах в количестве 0.001% - 0.000001% (марганец, бор, медь, молибден, цинк, йод, бром).

Концентрация ультрамикроэлементов не превышает 0.000001%. Физиологическая роль их в организмах полностью ещё не выяснена. К этой группе относятся уран, радий, золото, ртуть, цезий, селен и много других редких элементов.

Основную массу тканей живых организмов, населяющих Землю составляют органогенные элементы: кислород, углерод, водород и азот, из которых преимущественно построены органические соединения - белки, жиры, углеводы.

II. Роль и функция отдельных элементов.

Азот у автотрофных растений является исходным продуктом азотного и белкового обмена. Атомы азоты входят в состав многих других небелковых, однако важнейших соединений: пигментов (хлорофилл, гемоглобин), нуклеиновых кислот, витаминов.

Фосфор входит в состав многих жизненно важных соединений. Фосфор входит в состав АМФ, АДФ, АТФ, нуклеотидов, фосфосфорилированных сахаридов, некоторых ферментов. Многие организмы содержат фосфор в минеральной форме (растворимые фосфаты клеточного сока, фосфаты костной ткани).

После отмирания организмов фосфорные соединения минерализуются. Благодаря корневым выделениям, деятельности почвенных бактерий осуществляется растворение фосфатов, что делает возможным усвоение фосфора растительными, а потом и животными организмами.

Сера участвует в построении серусодержащих аминокислот (цистина, цистеина), входит в состав витамина B1 и некоторых ферментов. Особенно большое значение имеет сера и её соединения для хемосинтезирующих бактерий. Соединения серы образуются в печени как продукты обеззараживания ядовитых веществ.

Калий содержится в клетках только в виде ионов. Благодаря калию цитоплазма имеет определённые коллоидные свойства; калий активирует ферменты белкового синтеза обусловливает нормальный ритм сердечной деятельности, участвует в генерации биоэлектрических потенциалов, в процессах фотосинтеза.

Натрий (содержится в ионной форме) составляет значительную часть минеральных веществ крови и благодаря этому играет важную роль в регуляции водного обмена организма. Ионы натрия способствуют поляризации клеточной мембраны; нормальный ритм сердечной деятельности зависит от наличия в питательной среде в необходимом количестве солей натрия, калия, а также кальция.

Кальций в ионном состоянии является антагонистом калия. Он входит в состав мембранных структур, в виде солей пектиновых веществ склеивает растительные клетки. В растительных клетках часто содержится в виде простых, игловидных или сросшихся кристаллов оксалата кальция.

Магний содержится в клетках в определённом соотношении с кальцием. Он входит в состав молекулы хлорофилла, активирует энергетический обмен и синтез ДНК.

Железо является составной частью молекулы гемоглобина. Оно участвует в биосинтезе хлорофилла, поэтому при недостатке железа в почве у растений развивается хлороз. Основная роль железа - участие в процессах дыхания, фотосинтеза путём перенесения электронов в составе окислительных ферментов - каталазы, ферредоксина. Определённый запас железа в организме животных и человека сохраняется в желесодержащем белке ферритине, содержащемся в печени, селезёнке.

Медь встречается в организмах животных и растений, где она играет важную роль. Медь входит в состав некоторых ферментов(оксидаз). Установлено значение меди для процессов кроветворения, синтеза гемоглобина и цитохромов.

Ежесуточно в организм человека с пищей поступает 2 мг меди. У растений медь входит в состав многих ферментов, которые участвуют в темновых реакциях фотосинтеза и других биосинтезах. У больных недостатком меди животных наблюдается анемия, потеря аппетита, заболевания сердца.

Марганец - микроэлемент, при недостаточном количестве которого у растений возникает хлороз. Большая роль принадлежит марганцу и в процессах восстановления нитратов в растениях.

Цинк входит в состав некоторых ферментов, активизирующих расщепление угольной кислоты.

Бор влияет на ростовые процессы, особенно растительных организмов. При отсутствии в почве этого микроэлемента у растений отмирают проводящие ткани, цветки и завязь.

В последнее время микроэлементы достаточно широко применяются в растениеводстве (предпосевная обработка семян), в животноводстве (микроэлементные добавки к корму).

Другие неорганические компоненты клетки чаще всего находятся в виде солей, диссоциированных в растворе на ионы, или в нерастворённом состоянии (соли фосфора костной ткани, известковые или кремниевые панцири губок, кораллов, диатомовых водорослей и др.).

III. Органические соединения.

Углеводы (сахариды). Молекулы этих веществ построены всего из трёх элементов - углерода, кислорода и водорода. Углероды являются основным источником энергии для живых организмов. Кроме того, они обеспечивают организмы соединениями, которые используются в дальнейшем для синтеза других соединений.

Наиболее известными и распространёнными углеводами являются растворённые в воде моно- и дисахариды. Они кристаллизуются, сладкие на вкус.

Моносахариды (монозы) - соединения, которые не могут гидролизоваться. Сахариды могут полимеризоваться, образуя более высокомолекулярные соединения - ди-, три- , и полисахариды.

Олигосахариды. Молекулы этих соединений построены из 2 - 4 молекул моносахаридов. Эти соединения также могут кристаллизоваться, легко растворимы в воде, сладкие на вкус и имеют постоянную молекулярную массу. Примером олигосахаридов могут быть дисахариды сахароза, мальтоза, лактоза, тетрасахарид стахиоза и др.

Полисахариды (полиозы) - нерастворимые в воде соединения (образуют коллоидный раствор), не имеющие сладкого вкуса, Как и предыдущая группа углеводов способны гидролизоваться (арабаны, ксиланы, крахмал, гликоген). Основная функция этих соединений - связывание, склеивание клеток соединительной ткани, защита клеток от неблагоприятных факторов.

Липиды - группа соединений, которые содержатся во всех живых клетках, они нерастворимы в воде. Структурными единицами молекул липидов могут быть либо простые углеводородные цепи, либо остатки сложных циклических молекул.

В зависимости от химической природы липиды разделяют на жиры и липоиды.

Жиры (триглицериды, нейтральные жиры) являются основной группой липидов. Они представляют собой сложные эфиры трёхатомного спирта глицерина и жирных кислот или смесь свободных жирных кислот и триглицеридов.

Встречаются в живых клетках и свободные жирные кислоты: пальмитиновая, стеариновая, рициновая.

Липоиды - жироподобные вещества. Имеют большое значение, так как благодаря своему строению образуют чётко ориентированные молекулярные слои, а упорядочённое расположение гидрофильных и гидрофобных концов молекул имеет первоочередное значение для формирования мембранных структур с избирательной проницаемостью.

Ферменты. Это биологические катализаторы белковой природы, способные ускорять биохимические реакции. Ферменты не разрушаются в процессе биохимических превращений, поэтому сравнительно небольшое их количества катализируют реакции большого количества вещества. Характерным отличием ферментов от химических катализаторов является их способность ускорять реакции при обычных условиях.

По химической природе ферменты делятся на две группы - однокомпонентные (состоящие только из белка, их активность обусловлена активным центром - специфической группы аминокислот в белковой молекуле (пепсин, трипсин)) и двухкомпонентные (состоящие из белка (апофермента - носителя белка) и белкового компонента (коферментом), причём химическая природа коферментов бывает разной, так как они могут состоять из органических (многие витамины, НАД, НАДФ) или неорганических (атомы металлов: железа, магния, цинка)).

Функция ферментов заключается в снижении энергии активации, т.е. в снижении уровня энергии, необходимой для придания реакционной способности молекуле.

Современная классификация ферментов основывается на типах катализируемых ими химических реакций. Ферменты гидролазы ускоряют реакцию расщепления сложных соединений на мономеры (амилаза (гидролизует крахмал), целлюлаза (разлагает целлюлозу до моносахаридов), протеаза (гидролизует белки до аминокислот)).

Ферменты оксидоредуктазы катализируют окислительно-восстановительные реакции.

Трансферазы переносят альдегидные, кетонные и азотистые группы от одной молекулы к другой.

Лиазы отщепляют отдельные радикалы с образованием двойных связей или катализируют присоединение групп к двойным связям.

Изомеразы осуществляют изомеризацию.

Лигазы катализируют реакции соединения двух молекул, используя энергию АТФ или другого триофасфата.

Пигменты - высокомолекулярные природные окрашенные соединения. Из нескольких сотен соединений этого типа важнейшими являются металлопорфириновые и флавиновые пигменты.

Металлопорфирин, в состав которого входит атом магния, образует основание молекулы зелёных растительных пигментов - хлорофиллов. Если на месте магния стоит атом железа, то такой металлопорфирин называют гемом.

В состав гемоглобина эритроцитов крови человека, всех других позвоночных и некоторых беспозвоночных входит окисное железо, которое и придаёт крови красный цвет. Гемеритрин придаёт крови розовый цвет (некоторые многощетинковые черви). Хлорокруорин окрашивает кровь, тканевую жидкость в зелёный цвет.

Наиболее распространенными дыхательными пигментами крови являются гемоглобин и гемоциан (дыхательный пигмент высших ракообразных, паукообразных, некоторых моллюсков спрутов).

К хромопротеидам относятся также цитохромы, каталаза, пероксидаза, миоглобин (содержится в мышцах и создаёт запас кислорода, что позволяет морским млекопитающим длительное время пребывать под водой).

Существует несколько определений, что такое органические вещества, чем они отличаются от другой группы соединений — неорганических. Одно из наиболее распространенных объяснений вытекает из названия «углеводороды». Действительно, в основе всех органических молекул находятся цепочки атомов углерода, связанные с водородом. Присутствуют и другие элементы, получившие наименование «органогенные».

Органическая химия до открытия мочевины

Издавна люди пользуются многими природнымие веществами и минералами: серой, золотом, железной и медной рудой, поваренной солью. За все время существования науки — с древнейших времен и до первой половины XIX века — ученые не могли доказать связь живой и неживой природы на уровне микроскопического строения (атомов, молекул). Считалось, что своим появлением органические вещества обязаны мифической жизненной силе — витализму. Бытовал миф о возможности вырастить человечка «гомункулуса». Для этого надо было сложить в бочонок разные продукты жизнедеятельности, подождать определенное время, пока зародится жизненная сила.

Сокрушительный удар по витализму нанесли работы Веллера, который синтезировал органическое вещество мочевину из неорганических компонентов. Так было доказано, что никакой жизненной силы нет, природа едина, организмы и неорганические соединения образованы атомами одних и тех же элементов. Состав мочевины был известен и до работ Веллера, изучение этого соединения не составляло в те годы большого труда. Замечательным был сам факт получения вещества, характерного для обмена веществ, вне тела животного или человека.

Теория А. М. Бутлерова

Велика роль русской школы химиков в становлении науки, изучающей органические вещества. С именами Бутлерова, Марковникова, Зелинского, Лебедева связаны целые эпохи в развитии органического синтеза. Основоположником теории строения соединений является А. М. Бутлеров. Знаменитый ученый-химик в 60-х годах XIX века объяснил состав органических веществ, причины многообразия их строения, вскрыл взаимосвязь, существующую между составом, строением и свойствами веществ.

На основе выводов Бутлерова удалось не только систематизировать знания об уже существующих органических соединениях. Появилась возможность предсказать свойства еще не известных науке веществ, создать технологические схемы для их получения в промышленных условиях. В полной мере воплощаются в жизнь многие идеи ведущих химиков-органиков в наши дни.

При окислении углеводородов получаются новые органические вещества — представители других классов (альдегидов, кетонов, спиртов, карбоновых кислот). Например, большие объемы ацетилена идут на производство уксусной кислоты. Часть этого продукта реакции в дальнейшем расходуется для получения синтетических волокон. Раствор кислоты (9% и 6%) есть в каждом доме — это обычный уксус. Окисление органических веществ служит основой для получения очень большого числа соединений, имеющих промышленное, сельскохозяйственное, медицинское значение.

Ароматические углеводороды

Ароматичность в молекулах органических веществ — это присутствие одного или нескольких бензольных ядер. Цепочка из 6 атомов углерода замыкается в кольцо, в нем возникает сопряженная связь, поэтому свойства таких углеводородов не похожи на другие УВ.

Ароматические углеводороды (или арены) имеют огромное практическое значение. Широко применяются многие из них: бензол, толуол, ксилол. Они используются как растворители и сырье для производства лекарств, красителей, каучука, резины и других продуктов органического синтеза.

Кислородосодержащие соединения

В составе большой группы органических веществ присутствуют атомы кислорода. Они входят в наиболее активную часть молекулы, ее функциональную группу. Спирты содержат одну или несколько гидроксильных частиц —ОН. Примеры спиртов: метанол, этанол, глицерин. В карбоновых кислотах присутствует другая функциональная частица — карбоксил (—СОООН).

Другие кислородосодержащие органические соединения — альдегиды и кетоны. Карбоновые кислоты, спирты и альдегиды в больших количествах присутсвуют в составе разных органов растений. Они могут быть источниками для получения натуральных продуктов (уксусной кислоты, этилового спирта, ментола).

Жиры являются соединениями карбоновых кислот и трехатомного спирта глицерина. Кроме спиртов и кислот линейного строения, есть органические соединения с бензольным кольцом и функциональной группой. Примеры ароматических спиртов: фенол, толуол.

Углеводы

Важнейшие органические вещества организма, входящие в состав клеток, — белки, ферменты, нуклеиновые кислоты, углеводы и жиры (липиды). Простые углеводы — моносахариды — встречаются в клетках в виде рибозы, дезоксирибозы, фруктозы и глюкозы. Последний в этом коротком списке углевод — основное вещество обмена веществ в клетках. Рибоза и дезоксирибоза — составные части рибонуклеиновой и дезоксирибонуклеиновой кислот (РНК и ДНК).

При расщеплении молекул глюкозы выделяется энергия, необходимая для жизнедеятельности. Сначала она запасается при образовании своеобразного переонсчика энергии — аденозинтрифосфорной кислоты (АТФ). Это вещество переносится кровью, доставляется в ткани и клетки. При последовательном отщеплении от аденозина трех остатков фосфорной кислоты энергия освобождатеся.

Жиры

Липиды — вещества живых организмов, обладающие специфическими свойствами. Они не растворяются в воде, являются гидрофобными частицами. Особенно богаты веществами этого класса семена и плоды некоторых растений, нервная ткань, печень, почки, кровь животных и человека.

Кожа человека и животных содержит множество мелких сальных желез. Выделяемый ими секрет выводится на поверхность тела, смазывает ее, защищает от потери влаги и проникновения микробов. Слой подкожной жировой клетчатки оберегает от повреждений внутренние органы, служит запасным веществом.

Белки

Протеины составляют более половины всех органических веществ клетки, в некоторых тканях их содержание доходит до 80%. Для всех видов белков характерные высокие молекулярные массы, наличие первичной, вторичной, третичной и четвертичной структур. При нагревании они разрушаются — происходит денатурация. Первичная структура — это огромная для микромира цепочка аминокислот. Под действием особых ферментов в пищеварительной системе животных и человека протеиновая макромолекула распадется на составные части. Они попадают в клетки, где происходит синтез органических веществ — других белков, специфичных для каждого живого существа.

Ферменты и их роль

Реакции в клетке протекают со скоростью, которая в производственных условиях трудно достижима, благодаря катализаторам — ферментам. Различают ферменты, действующие только на белки, — липазы. Гидролиз крахмала происходит с участием амилазы. Для разложения на составные части жиров необходимы липазы. Процессы с участием ферментов идут вов всех живых организмах. Если у человека нет в клетках какого-либо фермента, то это сказывается на обмене веществ, в целом на здоровье.

Нуклеиновые кислоты

Вещества, впервые обнаруженные и выделенные из ядер клеток, выполняют функцию передачи наследственных признаков. Основное количество ДНК содержится в хромосомах, а молекулы РНК расположены в цитоплазме. При редупликации (удвоении) ДНК появляется возможность передать наследственную информацию половым клеткам — гаметам. При их слиянии новый организм получает генетический материал от родителей.

Органическое вещество - это химическое соединение, в составе которого присутствует углерод. Исключения составляют только угольная кислота, карбиды, карбонаты, цианиды и оксиды углерода.

История

Сам термин «органические вещества» появился в обиходе ученых на этапе раннего развития химии. В то время господствовали виталистические мировоззрения. Это было продолжение традиций Аристотеля и Плиния. В этот период ученые мужи были заняты разделением мира на живое и неживое. При этом все без исключения вещества четко подразделялись на минеральные и органические. Считалось, что для синтеза соединений «живых» веществ необходима особая «сила». Она присуща всем живым существам, и без нее образовываться органические элементы не могут.

Это смешное для современной науки утверждение господствовало очень долго, пока в 1828 году Фридрих Велер опытным путем его не опроверг. Он смог из неорганического цианата аммония получить органическую мочевину. Это подтолкнуло химию вперед. Однако деление веществ на органические и неорганические сохранилось и в настоящем времени. Оно лежит в основе классификации. Известно почти 27 миллионов органических соединений.

Почему так много органических соединений?

Органическое вещество - это, за некоторым исключением, углеродное соединение. В действительности это очень любопытный элемент. Углерод способен образовывать из своих атомов цепочки. При этом очень важно, что связь между ними стабильна.

Кроме того, углерод в органических веществах проявляет валентность - IV. Из этого следует, что этот элемент способен образовывать с другими веществами связи не только одинарные, но и двойные и тройные. По мере возрастания их кратности, цепочка, состоящая из атомов, станет короче. При этом стабильность связи только увеличивается.

Также углерод имеет способность образовывать плоские, линейные и объемные структуры. Именно поэтому в природе так много разнообразных органических веществ.

Состав

Как было сказано выше, органическое вещество - это соединения углерода. И это очень важно. возникают при его связи практически с любым элементом периодической таблицы. В природе чаще всего в их состав (помимо углерода) входят кислород, водород, сера, азот и фосфор. Остальные элементы встречаются намного реже.

Свойства

Итак, органическим веществом является углеродное соединение. При этом существуют несколько важных критериев, которым оно должно соответствовать. Все вещества органического происхождения обладают общими свойствами:

1. Существующая между атомами различная типология связей непременно приводит к появлению изомеров. Прежде всего они образуются при соединении молекул углерода. Изомеры - это различные вещества, имеющие одну молекулярную массу и состав, но разные химико-физические свойства. Это явление называется изомерией.

2. Еще один критерий - явление гомологии. Это ряды органических соединений, в них формула соседних веществ отличается от предыдущих на одну группу СН 2 . Это важное свойство применяется в материаловедении.

Какие существуют классы органических веществ?

К органическим соединениям относят несколько классов. Они известны всем. липиды и углеводы. Эти группы можно назвать биологическими полимерами. Они участвуют в метаболизме на клеточном уровне в любом организме. Также в эту группу включают нуклеиновые кислоты. Так что можно сказать, что органическое вещество - это то, что мы ежедневно потребляем в пищу, то, из чего состоим.

Белки

Белки состоят из структурных компонентов - аминокислот. Это их мономеры. Белки также называют протеинами. Известно около 200 видов аминокислот. Все они встречаются в живых организмах. Но лишь двадцать из них являются составляющими белков. Их называют основными. Но в литературе также можно встретить и менее популярные термины - протеиногенные и белокобразующие аминокислоты. Формула органического вещества этого класса содержит аминные (-NH 2) и карбоксильные (-СООН) составляющие. Между собой они связанны все теми же углеродными связями.

Функции белков

Белки в организме растений и животных выполняют множество важных функций. Но главная из них - структурная. Белки являются основными компонентами клеточной мембраны и матрикса органелл в клетках. В нашем организме все стенки артерий, вен и капилляров, сухожилий и хрящей, ногтей и волос состоят преимущественно из разных белков.

Следующая функция - ферментативная. Белки выступают в качестве ферментов. Они катализируют протекание в организме химических реакций. Именно они отвечают за распад питательных компонентов в пищеварительном тракте. У растений ферменты фиксируют положение углерода во время фотосинтеза.

Некоторые переносят в организме различные вещества, например, кислород. Органическое вещество также способно присоединяться к ним. Так осуществляется транспортная функция. Белки разносят по кровеносным сосудам ионы металлов, жирные кислоты, гормоны и, конечно же, углекислый газ и гемоглобин. Транспорт происходит и на межклеточном уровне.

Белковые соединения - иммуноглобулины - отвечают за выполнение защитной функции. Это антитела крови. Например, тромбин и фибриноген активно участвуют в процессе свертываемости. Таким образом, они предотвращают большую кровопотерю.

Белки отвечают и за выполнение сократительной функции. Благодаря тому, что миозиновые и актиновые протофибриллы постоянно выполняют скользящие движения относительно друг друга, происходит сокращение мышечных волокон. Но и у одноклеточных организмов происходят подобные процессы. Движение жгутиков бактерий также напрямую связано со скольжением микротрубочек, которые имеют белковую природу.

Окисление органических веществ высвобождает большое количество энергии. Но, как правило, белки расходуются на энергетические нужды очень редко. Это происходит, когда исчерпаны все запасы. Лучше всего для этого подходят липиды и углеводы. Поэтому белки могут выполнять энергетическую функцию, но только при определенных условиях.

Липиды

Органическим веществом является и жироподобное соединение. Липиды принадлежат к простейшим биологическим молекулам. Они нерастворимы в воде, но при этом распадаются в неполярных растворах, таких как бензин, эфир и хлороформ. Они входят в состав всех живых клеток. В химическом отношении липиды - это спиртов и карбоновых кислот. Самые известные из них - жиры. В организме животных и растений эти вещества выполняют множество важных функций. Многие липиды используются в медицине и промышленности.

Функции липидов

Эти органические химические вещества вместе с белками в клетках образуют биологические мембраны. Но главная их функция - энергетическая. При окислении молекул жиров высвобождается огромное количество энергии. Она идет на образование в клетках АТФ. В форме липидов в организме может накапливаться значительное количество энергетических запасов. Порою их даже больше, чем нужно для осуществления нормальной жизнедеятельности. При патологических изменениях метаболизма «жирных» клеток становится больше. Хотя справедливости ради нужно заметить, что такие чрезмерные запасы просто необходимы животным, впадающим в спячку, и растениям. Многие полагают, что деревья и кустарники в холодный период питаются за счет почв. В действительности же они расходуют запасы масел и жиров, которые сделали за летний период.

В организме человека и животных жиры могут выполнять и защитную функцию. Они откладываются в подкожной клетчатке и вокруг таких органов, как почки и кишечник. Таким образом, они служат хорошей защитой от механических повреждений, то есть ударов.

Кроме этого, жиры обладают низким уровнем теплопроводности, что помогает сохранить тепло. Это очень важно, особенно в условиях холодного климата. У морских животных подкожный жировой слой еще и способствует хорошей плавучести. А вот у птиц липиды выполняют еще и водоотталкивающую и смазывающую функции. Воск покрывает их перья и делает их более эластичными. Такой же налет имеют на листьях некоторые виды растений.

Углеводы

Формула органического вещества C n (H 2 O) m указывает на принадлежность соединения к классу углеводов. Название этих молекул указывает на тот факт, что в них присутствует кислород и водород в том же количестве, что и вода. Кроме этих химических элементов, в соединениях может присутствовать, например, азот.

Углеводы в клетке являются основной группой органических соединений. Это первичные продукты Они представляют собой и исходные продукты синтеза в растениях других веществ, например, спиртов, органических кислот и аминокислот. Также углеводы входят в состав клеток животных и грибов. Обнаруживаются они и среди основных компонентов бактерий и простейших. Так, в животной клетке их от 1 до 2 %, а в растительной их количество может достигать 90 %.

На сегодняшний день выделяют всего три группы углеводов:

Простые сахара (моносахариды);

Олигосахариды, состоящие из нескольких молекул последовательно соединенных простых сахаров;

Полисахариды, в их состав входит более 10 молекул моносахаридов и их производных.

Функции углеводов

Все органические вещества в клетке выполняют определенные функции. Так, например, глюкоза - это основной энергетический источник. Она расщепляется в клетках всех происходит во время клеточного дыхания. Гликоген и крахмал составляют основной запас энергии, причем первое вещество у животных, а второе - у растений.

Углеводы выполняют и структурную функцию. Целлюлоза является основным компонентом клеточной стенки растений. А у членистоногих эту же функцию выполняет хитин. Также он обнаруживается в клетках высших грибов. Если брать в пример олигосахариды, то они входят в состав цитоплазматической мембраны - в виде гликолипидов и гликопротеинов. Также в клетках нередко выявляется гликокаликс. В синтезе нуклеиновых кислот участвуют пентозы. При включена в состав ДНК, а рибоза - в РНК. Также эти компоненты обнаруживаются и в коферментах, например, в ФАД, НАДФ и НАД.

Углеводы также способны выполнять в организме и защитную функцию. У животных вещество гепарин активно препятствует быстрому свертыванию крови. Он образуется во время повреждения ткани и блокирует образование тромбов в сосудах. Гепарин в большом количестве обнаруживается в тучных клетках в гранулах.

Нуклеиновые кислоты

Белки, углеводы и липиды - это не все известные классы органических веществ. Химия относит сюда еще и нуклеиновые кислоты. Это фосфорсодержащие биополимеры. Они, находясь в клеточном ядре и цитоплазме всех живых существ, обеспечивают передачу и хранение генетических данных. Эти вещества были открыты благодаря биохимику Ф. Мишеру, который занимался изучением сперматозоидов лосося. Это было «случайное» открытие. Немного позднее РНК и ДНК были обнаружены и во всех растительных и животных организмах. Также были выделены нуклеиновые кислоты в клетках грибов и бактерий, а также вирусов.

Всего в природе обнаружено два вида нуклеокислот - рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). Различие понятно из названия. дезоксирибоза - пятиуглеродный сахар. А в молекуле РНК обнаруживается рибоза.

Изучением нуклеиновых кислот занимается органическая химия. Темы для исследования диктует также медицина. В кодах ДНК скрывается множество генетических болезней, обнаружить которые ученым еще только предстоит.

27 августа 2017

Как известно, все вещества могут быть поделены на две большие категории - минеральные и органические. Можно привести большое количество примеров неорганических, или минеральных, веществ: соль, сода, калий. Но какие типы соединений попадают во вторую категорию? Органические вещества представлены в любом живом организме.

Белки

Важнейшим примером органических веществ являются белки. В их состав входит азот, водород и кислород. Помимо них, иногда в некоторых белках также можно обнаружить атомы серы.

Белки являются одними из важнейших органических соединений, и они наиболее часто встречаются в природе. В отличие от других соединений, белкам свойственны некоторые характерные черты. Главное их свойство - это огромная молекулярная масса. Например, молекулярный вес атома спирта составляет 46, бензола - 78, а гемоглобина - 152 000. По сравнению с молекулами других веществ, белки являются настоящими великанами, содержащими в себе тысячи атомов. Иногда биологи называют их макромолекулами.

Белки являются самыми сложными из всех органических строений. Они относятся к классу полимеров. Если рассмотреть молекулу полимера под микроскопом, то можно увидеть, что она представляет собой цепь, состоящую из более простых структур. Они носят название мономеров и повторяются в полимерах множество раз.

Помимо белков существует большое количество полимеров - каучук, целлюлоза, а также обычный крахмал. Также немало полимеров создано и руками человека - капрон, лавсан, полиэтилен.

Образование белка

Как же образуются белки? Они представляют собой пример органических веществ, состав которых в живых организмах определяется генетическим кодом. При их синтезе в подавляющем большинстве случаев используются различные комбинации 20 аминокислот.

Также новые аминокислоты могут образовываться уже когда белок начинает функционировать в клетке. При этом в нем встречаются только альфа-аминокислоты. Первичная структура описываемого вещества определяется последовательностью остатков аминокислотных соединений. И в большинстве случаев полипептидная цепь при образовании белка закручивается в спираль, витки которой располагаются тесно друг к другу. В результате образования водородных соединений она имеет достаточно прочную структуру.

Видео по теме

Жиры

Другим примером органических веществ могут послужить жиры. Человеку известно немало видов жиров: сливочное масло, говяжий и рыбий жир, растительные масла. В больших количествах жиры образуются в семенах растений. Если очищенную семечку подсолнечника положить на лист бумаги и придавить, то на листе останется маслянистое пятно.

Углеводы

Не менее важными в живой природе являются углеводы. Они содержатся во всех органах растений. К классу углеводов относится сахар, крахмал, а также клетчатка. Богаты ими клубни картофеля, плоды банана. Очень легко обнаружить крахмал в картофеле. При реакции с йодом этот углевод окрашивается в синий цвет. В этом можно убедиться, если капнуть на срез картофелины немного йода.

Также несложно обнаружить и сахара - они все имеют сладкий вкус. Много углеводов этого класса содержится в плодах винограда, арбузов, дыни, яблони. Они представляют собой примеры органических веществ, которые также производятся в искусственных условиях. Например, из сахарного тростника добывается сахар.

А как образуются углеводы в природе? Самым простым примером является процесс фотосинтеза. Углеводы представляют собой органические вещества, в которых содержится цепь из нескольких углеродных атомов. Также в их состав входит несколько гидроксильных групп. В процессе фотосинтеза сахар неорганических веществ образуется из оксида углерода и серы.

Клетчатка

Еще одним примером органических веществ является клетчатка. Больше всего ее содержится в семенах хлопка, а также стеблях растений и их листьях. Клетчатка состоит их линейных полимеров, ее молекулярная масса составляет от 500 тысяч до 2 млн.

В чистом виде она представляет собой вещество, у которого отсутствует запах, вкус и цвет. Применяется оно при изготовлении фотопленки, целлофана, взрывчатки. В организме человека клетчатка не усваивается, однако является необходимой частью рациона, поскольку стимулирует работу желудка и кишечника.

Вещества органические и неорганические

Можно привести немало примеров образования органических и неорганических веществ. Вторые всегда происходят из минералов - неживых природных тел, которые образуются в глубинах земли. Они входят и в состав различных горных пород.

В естественных условиях неорганические вещества образуются в процессе разрушения минералов либо органических веществ. С другой стороны, из минералов постоянно образуются вещества органические. Например, растения поглощают воду с растворенными в ней соединениями, которые в дальнейшем переходят из одной категории в другую. Живые организмы используют для питания главным образом органические вещества.

Причины разнообразия

Нередко школьникам или студентам нужно ответить на вопрос о том, в чем заключаются причины многообразия органических веществ. Главный фактор состоит в том, что атомы углерода соединяются между собой при помощи двух типов связей - простых и кратных. Также они могут образовывать цепи. Еще одной причиной является разнообразие различных химических элементов, которые входят в органические вещества. Кроме того, многообразие обусловлено и аллотропией - явлением существования одного и того же элемента в различных соединениях.

А как образуются неорганические вещества? Природные и синтетические органические вещества и их примеры изучаются как в старших классах школы, так и в профилированных высших учебных заведениях. Образование неорганических веществ - это не такой сложный процесс, как образование белков или углеводов. Например, соду с незапамятных времен люди добывали из содовых озер. В 1791 году ученый-химик Николя Леблан предложил синтезировать ее в лабораторных условиях с использованием мела, соли, а также серной кислоты. Когда-то всем привычная сегодня сода была достаточно недешевым продуктом. Для проведения опыта было необходимо прокалить поваренную соль вместе с кислотой, а затем образовавшийся сульфат прокалить вместе с известняком и древесным углем.

Другим примером неорганических веществ является марганцовка, или перманганат калия. Это вещество получают в промышленных условиях. Процесс образования заключается в электролизе раствора гидроксида калия и марганцевого анода. При этом анод постепенно растворяется с образованием раствора фиолетового цвета - это и есть всем известная марганцовка.

В прошлом ученые разделяли все вещества в природе на условно неживые и живые, включая в число последних царство животных и растений. Вещества первой группы получили название минеральных. А те, что вошли во вторую, стали называть органическими веществами.

Что под этим подразумевается? Класс органических веществ наиболее обширный среди всех химических соединений, известных современным ученым. На вопрос, какие вещества органические, можно ответить так – это химические соединения, в состав которых входит углерод.

Обратите внимание, что не все углеродсодержащие соединения относятся к органическим. Например, корбиды и карбонаты, угольная кислота и цианиды, оксиды углерода не входят в их число.

Почему органических веществ так много?

Ответ на этот вопрос кроется в свойствах углерода. Этот элемент любопытен тем, что способен образовывать цепочки из своих атомов. И при этом углеродная связь очень стабильная.

Кроме того, в органических соединениях он проявляет высокую валентность (IV), т.е. способность образовывать химические связи с другими веществами. И не только одинарные, но также двойные и даже тройные (иначе – кратные). По мере возрастания кратности связи цепочка атомов становится короче, а стабильность связи повышается.

А еще углерод наделен способностью образовывать линейные, плоские и объемные структуры.

Именно поэтому органические вещества в природе так разнообразны. Вы легко проверите это сами: встаньте перед зеркалом и внимательно посмотрите на свое отражение. Каждый из нас – ходячее пособие по органической химии. Вдумайтесь: не меньше 30% массы каждой вашей клетки – это органические соединения. Белки, которые построили ваше тело. Углеводы, которые служат «топливом» и источником энергии. Жиры, которые хранят запасы энергии. Гормоны, которые управляют работой органов и даже вашим поведением. Ферменты, запускающие химические реакции внутри вас. И даже «исходный код», цепочки ДНК – все это органические соединения на основе углерода.

Состав органических веществ

Как мы уже говорили в самом начале, основной строительный материал для органических веществ – это углерод. И практические любые элементы, соединяясь с углеродом, могут образовывать органические соединения.

В природе чаще всего в составе органических веществ присутствуют водород, кислород, азот, сера и фосфор.

Строение органических веществ

Многообразие органических веществ на планете и разнообразие их строения можно объяснить характерными особенностями атомов углерода.

Вы помните, что атомы углерода способны образовывать очень прочные связи друг с другом, соединяясь в цепочки. В результате получаются устойчивые молекулы. То, как именно атомы углерода соединяются в цепь (располагаются зигзагом), является одной из ключевых особенностей ее строения. Углерод может объединяться как в открытые цепи, так и в замкнутые (циклические) цепочки.

Важно и то, что строение химических веществ прямо влияет на их химические свойства. Значительную роль играет и то, как атомы и группы атомов в молекуле влияют друг на друга.

Благодаря особенностям строения, счет однотипным соединениям углерода идет на десятки и сотни. Для примера можно рассмотреть водородные соединения углерода: метан, этан, пропан, бутан и т.п.

Например, метан – СН 4 . Такое соединение водорода с углеродом в нормальных условиях пребывает в газообразном агрегатном состоянии. Когда же в составе появляется кислород, образуется жидкость – метиловый спирт СН 3 ОН.

Не только вещества с разным качественным составом (как в примере выше) проявляют разные свойства, но и вещества одинакового качественного состава тоже на такое способны. Примером могут служить различная способность метана СН 4 и этилена С 2 Н 4 реагировать с бромом и хлором. Метан способен на такие реакции только при нагревании или под ультрафиолетом. А этилен реагирует даже без освещения и нагревания.

Рассмотрим и такой вариант: качественный состав химических соединений одинаков, количественный – отличается. Тогда и химические свойства соединений различны. Как в случае с ацетиленом С 2 Н 2 и бензолом С 6 Н 6 .

Не последнюю роль в этом многообразии играют такие свойства органических веществ, «завязанные» на их строении, как изомерия и гомология.

Представьте, что у вас есть два на первый взгляд идентичных вещества – одинаковый состав и одна и та же молекулярная формула, чтобы описать их. Но строение этих веществ принципиально различно, откуда вытекает и различие химических и физических свойств. К примеру, молекулярной формулой С 4 Н 10 можно записать два различных вещества: бутан и изобутан.

Речь идет об изомерах – соединениях, которые имеют одинаковый состав и молекулярную массу. Но атомы в их молекулах расположены в различном порядке (разветвленное и неразветвленное строение).

Что касается гомологии – это характеристика такой углеродной цепи, в которой каждый следующий член может быть получен прибавлением к предыдущему одной группы СН 2 . Каждый гомологический ряд можно выразить одной общей формулой. А зная формулу, несложно определить состав любого из членов ряда. Например, гомологи метана описываются формулой C n H 2n+2 .

По мере прибавления «гомологической разницы» СН 2 , усиливается связь между атомами вещества. Возьмем гомологический ряд метана: четыре первых его члена – газы (метан, этан, пропан, бутан), следующие шесть – жидкости (пентан, гексан, гептан, октан, нонан, декан), а дальше следуют вещества в твердом агрегатном состоянии (пентадекан, эйкозан и т.д.). И чем прочнее связь между атомами углерода, тем выше молекулярный вес, температуры кипения и плавления веществ.

Какие классы органических веществ существуют?

К органическим веществам биологического происхождения относятся:

  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • липиды.

Три первых пункта можно еще назвать биологическими полимерами.

Более подробная классификация органических химических веществ охватывает вещества не только биологического происхождения.

К углеводородам относятся:

  • ациклические соединения:
    • предельные углеводороды (алканы);
    • непредельные углеводороды:
      • алкены;
      • алкины;
      • алкадиены.
  • циклические соединения:
    • соединения карбоциклические:
      • алициклические;
      • ароматические.
    • соединения гетероциклические.

Есть также иные классы органических соединений, в составе которых углерод соединяется с другими веществами, кроме водорода:

    • спирты и фенолы;
    • альдегиды и кетоны;
    • карбоновые кислоты;
    • сложные эфиры;
    • липиды;
    • углеводы:
      • моносахариды;
      • олигосахариды;
      • полисахариды.
      • мукополисахариды.
    • амины;
    • аминокислоты;
    • белки;
    • нуклеиновые кислоты.

Формулы органических веществ по классам

Примеры органических веществ

Как вы помните, в человеческом организме различного рода органические вещества – основа основ. Это наши ткани и жидкости, гормоны и пигменты, ферменты и АТФ, а также многое другое.

В телах людей и животных приоритет за белками и жирами (половина сухой массы клетки животных это белки). У растений (примерно 80% сухой массы клетки) – за углеводами, в первую очередь сложными – полисахаридами. В том числе за целлюлозой (без которой не было бы бумаги), крахмалом.

Давайте поговорим про некоторые из них подробнее.

Например, про углеводы . Если бы можно было взять и измерить массы всех органических веществ на планете, именно углеводы победили бы в этом соревновании.

Они служат в организме источником энергии, являются строительными материалами для клеток, а также осуществляют запас веществ. Растениям для этой цели служит крахмал, животным – гликоген.

Кроме того, углеводы очень разнообразны. Например, простые углеводы. Самые распространенные в природе моносахариды – это пентозы (в том числе входящая в состав ДНК дезоксирибоза) и гексозы (хорошо знакомая вам глюкоза).

Как из кирпичиков, на большой стройке природы выстраиваются из тысяч и тысяч моносахаридов полисахариды. Без них, точнее, без целлюлозы, крахмала, не было бы растений. Да и животным без гликогена, лактозы и хитина пришлось бы трудно.

Посмотрим внимательно и на белки . Природа самый великий мастер мозаик и пазлов: всего из 20 аминокислот в человеческом организме образуется 5 миллионов типов белков. На белках тоже лежит немало жизненно важных функций. Например, строительство, регуляция процессов в организме, свертывание крови (для этого существуют отдельные белки), движение, транспорт некоторых веществ в организме, они также являются источником энергии, в виде ферментов выступают катализатором реакций, обеспечивают защиту. В деле защиты организма от негативных внешних воздействий важную роль играют антитела. И если в тонкой настройке организма происходит разлад, антитела вместо уничтожения внешних врагов могут выступать агрессорами к собственным органам и тканям организма.

Белки также делятся на простые (протеины) и сложные (протеиды). И обладают присущими только им свойствами: денатурацией (разрушением, которое вы не раз замечали, когда варили яйцо вкрутую) и ренатурацией (это свойство нашло широкое применение в изготовлении антибиотиков, пищевых концентратов и др.).

Не обойдем вниманием и липиды (жиры). В нашем организме они служат запасным источником энергии. В качестве растворителей помогают протеканию биохимических реакций. Участвуют в строительстве организма – например, в формировании клеточных мембран.

И еще пару слов о таких любопытных органических соединениях, как гормоны . Они участвуют в биохимических реакциях и обмене веществ. Такие маленькие, гормоны делают мужчин мужчинами (тестостерон) и женщин женщинами (эстроген). Заставляют нас радоваться или печалиться (не последнюю роль в перепадах настроения играют гормоны щитовидной железы, а эндорфин дарит ощущение счастья). И даже определяют, «совы» мы или «жаворонки». Готовы вы учиться допоздна или предпочитаете встать пораньше и сделать домашнюю работу перед школой, решает не только ваш распорядок дня, но и некоторые гормоны надпочечников.

Заключение

Мир органических веществ по-настоящему удивительный. Достаточно углубиться в его изучение лишь немного, чтобы у вас захватило дух от ощущения родства со всем живым на Земле. Две ноги, четыре или корни вместо ног – всех нас объединяет волшебство химической лаборатории матушки-природы. Оно заставляет атомы углерода объединяться в цепочки, вступать в реакции и создавать тысячи таких разнообразных химических соединений.

Теперь у вас есть краткий путеводитель по органической химии. Конечно, здесь представлена далеко не вся возможная информация. Какие-то моменты вам, быть может, придется уточнить самостоятельно. Но вы всегда можете использовать намеченный нами маршрут для своих самостоятельных изысканий.

Вы также можете использовать приведенное в статье определение органического вещества, классификацию и общие формулы органических соединений и общие сведения о них, чтобы подготовиться к урокам химии в школе.

Расскажите нам в комментариях, какой раздел химии (органическая или неорганическая) нравится вам больше и почему. Не забудьте «расшарить» статью в социальных сетях, чтобы ваши одноклассники тоже смогли ею воспользоваться.

Пожалуйста, сообщите, если обнаружите в статье какую-то неточность или ошибку. Все мы люди и все мы иногда ошибаемся.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.