Какие реакции называются реакциями горения. Химические реакции горения

Горение - быстропротекающая химическая реакция соединения горючих компонентов с кислородом, сопровождающаяся интенсивным выделением теплоты и резким повышением температуры продуктов сгорания. Реакции горения описываются т.н. стехиометрическими уравнениями, характеризующими качественно и количественно вступающие в реакцию и образующиеся в результате ее вещества(Стехиометрический состав горючей смеси (от греч. stoicheion - основа, элемент и греч. metreo - измеряю) - состав смеси, в которой окислителя ровно столько, сколько необходимо для полного окисления топлива ). Общее уравнение реакции горения любого углеводорода

C m H n + (m + n/4) O 2 = mCO 2 + (n/2) Н 2 O + Q (8.1)

Где m, n - число атомов углерода и водорода в молекуле; Q - тепловой эффект реакции, или теплота сгорания.
Реакции горения некоторых газов приведены в табл. 8.1. Эти уравнения являются балансовыми, и по ним нельзя судить ни о скорости реакций, ни о механизме химических превращений.

Тепловой эффект (теплота сгорания) Q - количество теплоты, выделяющееся при полном сгорании 1 кмоля, 1 кг или 1 м 3 газа при нормальных физических условиях. Различают высшую Q в и низшую Q н теплоту сгорания: высшая теплота сгорания включает в себя теплоту конденсации водяных паров в процессе горения (в реальности при сжигании газа водяные пары не конденсируются, а удаляются вместе с другими продуктами сгорания). Обычно технические расчеты обычно ведут по низшей теплоте сгорания, без учета теплоты конденсации водяных паров (около 2400 кДж/кг).

КПД, рассчитанный по низшей теплоте сгорания, формально выше, но теплота конденсации водяных паров достаточно велика, и ее использование более чем целесообразно. Подтверждение этому - активное применение в отопительной технике контактных теплообменников, весьма разнообразных по конструкции.

Для смеси горючих газов высшая (и низшая) теплота сгорания газов определяется по соотношению

Q = r 1 Q 1 + r 2 Q 2 + ... + r n Q n (8.2)

Где r 1 , r 2 , …, r n - объемные (молярные, массовые) доли компонентов, входящих в смесь; Q 1 , Q 2 , …, Q n - теплота сгорания компонентов.

Воспользовавшись табл. 8.1, высшую и низшую теплоту сгорания, кДж/м 3 , сложного газа можно определять по следующим формулам:

Q в = 127,5 Н 2 + 126,4 СО + 398 СН 4 + 703 С 2 Н 6 + 1012 С 8 Н 8 + 1338 C 4 H 10 +1329 C 4 H 10 + 1693 С 5 Н 12 + 630 С 2 Н 4 + 919 С 3 Н 6 +1214 C 4 H 8 (8.3)

Q н = 107,9 H 2 + 126,4 CO + 358,8 CH 4 + 643 C 2 H 6 + 931,8 C 8 H 8 + 1235 C 4 H 10 + + 1227 C 4 H 10 + 1566 C 5 H 12 + 595 C 2 H 4 + 884 C 8 H 6 + 1138 C 4 H 8 (8.4)

Где H 2 ,CO,CH 4 и т.д. - содержание отдельных составляющих в газовом топливе, об. %.

Процесс горения протекает гораздо сложнее, чем по формуле (8.1), так как наряду с разветвлением цепей происходит их обрыв за счет образования промежуточных стабильных соединений, которые при высокой температуре претерпевают дальнейшие преобразования. При достаточной концентрации кислорода образуются конечные продукты: водяной пар Н 2 О и двуокись углерода СО 2 . При недостатке окислителя, а также при охлаждении зоны реакции, промежуточные соединения могут стабилизироваться и попадать в окружающую среду.

Интенсивность тепловыделения и рост температуры приводят к увеличению в реагирующей системе активных частиц. Такая взаимосвязь цепного реагирования и температуры, свойственная практически всем процессам горения, привела к введению понятия цепочечно-теплового взрыва - сами химические реакции горения имеют цепной характер, а их ускорение происходит за счет выделения теплоты и роста температуры в реагирующей системе.

Скорость химической реакции в однородной смеси пропорциональна произведению концентраций реагирующих веществ:

W = kС 1 С 2 (8.5)

Где С 1 и С 2 - концентрации реагирующих компонентов, кмоль/м 3 ; k - константа скорости реакции, зависящая от природы реагирующих веществ и температуры.

При сжигании газа концентрации реагирующих веществ можно условно считать неизменными, так как в зоне горения происходит непрерывный приток свежих компонентов однозначного состава.

Константа скорости реакции (по уравнению Аррениуса):

К = К 0 е -Е/RT (8.6)

Где К 0 - предэкспоненциальный множитель, принимаемый для биометрических гомогенных смесей, ≈1,0; Е - энергия активации, кДж/кмоль; R - универсальная газовая постоянная, Дж/(кг К); Т - абсолютная температура, К (°С); е - основание натуральных логарифмов.

Предэкспоненциальный множитель К0 можно истолковать как константу, отражающую полноту столкновения молекул, а Е - как минимальную энергию разрыва связей молекул и образования активных частиц, обеспечивающих эффективность столкновений. Для распространенных горючих смесей она укладывается в пределах (80÷150) 103 кДж/кмоль.

Уравнение (8.6) показывает, что скорость химических реакций резко возрастает с увеличением температуры: например, повышение температуры с 500 до 1000 К влечет повышение скорости реакции горения в 2·104÷5 108 раз (в зависимости от энергии активации).

На скорость реакций горения влияет их цепной характер. Первоначалаьно генерируемый реакцией атомы и радикалы вступают в соединения с исходными веществами и между собой, образуя конечные продукты и новые частицы, повторяющие ту же цепь реакций. Нарастающее генерирование таких частиц приводит к «разгону» химических реакций - фактически взрыву всей смеси.

Высокотемпературное горение углеводородов имеет весьма сложный характер и связано с образованием активных частиц в виде атомов и радикалов, а также промежуточных молекулярных соединений. В качестве примера приводятся реакции горения простейшего углеводорода - метана:
1. Н + О 2 -› ОН + О
СН 4 + ОН -› СН 3 + Н 2 О
СН 4 + О -› СН 2 + Н 2 О

2. СН 3 + О 2 -› НСНО + ОН
СН 2 + О 2 -› НСНО + О

3. НСНО + ОН -› НСО + Н 2 О
НСНО + О -› СО + Н 2 О
НСО + О 2 -› СО + О + ОН

4. СО + О -› СО 2
СО + ОН -› СО 2 + Н

Итог единичного цикла:
2СН 4 + 4О 2 -› 2СО 2 + 4Н 2 О

Таблица 8.1. Реакции горения и теплота сгорания сухих газов (при 0°С и 101,3 кПа)

Газ Реакция горения Теплота сгорания
Молярная, кДж/кмоль Массовая, кДж/кг Объемная, кДж/м 3
высшая низшая высшая низшая высшая низшая
Водород H 2 + 0,5O 2 = H 2 O 286,06 242,90 141 900 120 080 12 750 10 790
Оксид углерода CO + 0,5O 2 = CO 2 283,17 283,17 10 090 10 090 12 640 12 640
Метан CH 4 + 2O 2 = CO 2 + 2H 2 O 880,90 800,90 55 546 49 933 39 820 35 880
Этан C 2 H 6 + 0,5O 2 = 2CO 2 + 3H 2 O 1560,90 1425,70 52 019 47 415 70 310 64 360
Пропан C 3 H 8 + 5H 2 O = 3CO 2 +4H 2 O 2221,40 2041,40 50 385 46 302 101 210 93 180
н -Бутан 2880,40 2655,00 51 344 47 327 133 800 123 570
Изобутан C 4 H 10 + 6,5O 2 = 4CO 2 + 5H 2 O 2873,50 2648,30 51 222 47 208 132 960 122 780
н -Пентан C 5 H 12 + 8O 2 = 5CO 2 + 6H 2 O 3539,10 3274,40 49 052 45 383 169 270 156 630
Этилен C 2 H 4 + 3O 2 = 2CO 2 + 2H 2 O 1412,00 1333,50 50 341 47 540 63 039 59 532
Пропилен C 3 H 6 + 4,5O 2 = 3CO 2 + 3H 2 O 2059,50 1937,40 48 944 46 042 91 945 88 493
Бутилен C 4 H 8 + 6O 2 = 4CO 2 + 4H 2 O 2720,00 2549,70 48 487 45 450 121 434 113 830

Горение (́реакция)

(a. combustion, burning; н. Brennen, Verbrennung; ф. combustion; и. combustion ) - быстро протекающая реакция окисления, сопровождаемая выделением значит. кол-ва тепла; обычно сопровождается ярким свечением (пламенем). В большинстве случаев в качестве окислителя при Г. выступает , но возможны процессы Г. и при реакциях др. типов (Г. металлов в азоте, в галогенах). В физ. химии к Г. относят все экзотермич. хим. процессы, в к-рых существ. роль играет самоускорение реакции, вызванное повышением темп-ры (тепловой механизм) или накоплением активных частиц (диффузионный механизм).
Характерная особенность Г. - наличие пространственно ограниченной области высокой темп-ры (пламени), в к-рой происходит осн. часть хим. превращения исходных веществ в продукты сгорания и выделяется б.ч. тепла. Появление пламени вызывается поджиганием, на к-рое требуется затрата определённой энергии, но распространение пламени по системе, способной к Г., происходит самопроизвольно, со скоростью, зависящей от хим. свойств системы, физ. и газодинамич. процессов. Технически важные характеристики Г.: теплотворная способность горючей смеси и теоретич. (адиабатическая) темп-pa, к-рая была бы достигнута при полном сгорании горючего без теплопотерь.
Из всего многообразия процессов Г. обычно по агрегатному состоянию горючего и окислителя выделяют гомогенное Г. предварительно смешанных газов и парообразных горючих в газообразных окислителях, гетерогенное Г. (твёрдых и жидких горючих в газообразых окислителях) и Г. взрывчатых веществ и порохов (идущее без массообмена с окружающей средой).
Наиболее простым является гомогенное Г. смешанных газов. Скорость распространения ламинарного пламени по такой системе является физ.-хим. контстантой смеси, зависящей от состава смеси, давления, темп-ры и мол. теплопроводности.
Гетерогенное Г. - наиболее распространённый в природе и технике процесс. Его скорость определяется физ. свойствами системы и конкретными условиями сжигания. Для Г. жидких горючих большое значение имеет скорость их испарения, а для твёрдых - скорость газификации. Так, при Г. углей можно различить две стадии. На первой (при условии медленного нагрева) происходит выделение летучих компонентов угля, а на второй - догорание коксового остатка.
Распространение пламени по газу приводит к появлению движения газа на значит. расстоянии от фронта пламени. Если ширина зоны реакции мала, то пламя можно представить как газодинамич. разрыв, движущийся по газу с дозвуковой скоростью. Это возможно не только в случае гомогенной смеси, но и для достаточно мелкодисперсных жидких и твёрдых горючих, взвешенных в окислителе. Т. к. компонента скорости пламени, нормальная к его фронту, не зависит от скорости самого газа, то при стационарном Г. в потоке движущегося газа устанавливается вполне определённая форма пламени. Г. в таких условиях обеспечивается соответствующей конструкцией топочных устройств.
Движение газа, вызываемое появлением пламени, может быть как ламинарным, так и турбулентным. Турбулизация потока, как правило, приводит к резкому ускорению сгорания и появлению акустич. возмущений в потоке, приводящих в конечном итоге к появлению ударной , инициирующей детонацию газовой смеси. Возможность перехода Г. в детонацию определяется помимо свойств самого газа размерами и геометрией системы.
Процессы Г. топлива используются в технике, осн. задача сжигания топлива сводится к достижению макс. тепловыделения (полноты сгорания) за заданный период времени. В горн. деле на использовании процесса Г. основаны методы разработки п. и. (см. Внутрипластовое горение). В определённых горн.-геол. условиях самопроизвольно возникающее Г. (см. Самовозгорание угля, Самовозгорание торфа) может привести к возникновению Пожаров эндогенных. Л. Г. Болховитинов.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Смотреть что такое "Горение (реакция)" в других словарях:

    горение - 3.3 горение: Экзотермическая реакция окисления вещества, сопровождающаяся по крайней мере одним из трех факторов: пламенем, свечением, выделением дыма. Источник: ГОСТ Р 50588 2012: Пенообразователи для тушения пожаров. Общие технические… … Словарь-справочник терминов нормативно-технической документации

    Спички … Википедия

    Сложная хим. реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе теплоты или катализирующих продуктов реакции. При Г. могут достигаться высокие (до неск. тыс. К) темп ры, причём часто возникает… … Физическая энциклопедия

    Ядерные процессы Радиоактивный распад Альфа распад Бета распад Кластерный распад Двойной бета распад Электронный захват Двойной электронный захват Гамма излучение Внутренняя конверсия Изомерный переход Нейтронный распад Позитронный распад… … Википедия

    Физико химический процесс, при котором превращение вещества сопровождается интенсивным выделением энергии и тепло массообменом с окружающей средой. может начаться самопроизвольно в результате самовоспламенения либо может быть инициировано… … Словарь черезвычайных ситуаций

    горение - Экзотермическая реакция окисления вещества, сопровождающаяся по крайней мере одним из трех факторов: пламенем, свечением, выделением дыма. [СТ СЭВ 383 87] горение Экзотермическая реакция, протекающая в условиях ее прогрессивного самоускорения.… … Справочник технического переводчика

    Физико химический процесс, при котором превращение вещества сопровождается интенсивным выделением энергии и тепло и массообменом с окружающей средой. Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным… … Большой Энциклопедический словарь

    - (фр. и англ. combustion, нем. Verbrennung; хим.). Принятоназывать Г. такие случаи взаимодействия с кислородом воздуха каких бы тони было тел, которые сопровождаются значительным выделением тепла, аиногда и света. В более общем смысле можно… … Энциклопедия Брокгауза и Ефрона

    Горение - экзотермическая реакция окисления горючего вещества, сопровождающаяся, как правило, видимым электромагнитным излучением и выделением дыма. В основе Г. лежит взаимодействие горючего вещества с окислителем, чаще всего кислородом воздуха. Различают… … Российская энциклопедия по охране труда

    ГОРЕНИЕ - сложное, быстро протекающее хим. превращение, сопровождающееся выделением теплоты и света. В узком смысле Г. реакция соединения вещества с кислородом, но Г. может происходить и без кислорода, напр. водород, сурьма и др. металлы горят в хлоре, а… … Большая политехническая энциклопедия

Баланс – (от фр. balance – буквально “весы”) – количественное выражение сторон какого-либо процесса, которые должны уравновешивать друг друга. Другими словами, баланс – это равновесие, уравновешивание. Процессы горения на пожаре подчиняются фундаментальным законам природы, в частности, законам сохранения массы и энергии.

Для решения многих практических задач, а также для выполнения пожарно-технических расчетов необходимо знать количество воздуха, необходимого для горения, а также объем и состав продуктов горения. Эти данные необходимы для расчета температуры горения веществ, давления при взрыве, избыточного давления взрыва, флегматизирующей концентрации флегматизатора, площади легкосбрасываемых конструкций.

Методика расчета материального баланса процессов горения определяется составом и агрегатным состоянием вещества. Свои особенности имеет расчет для индивидуальных химических соединений, для смеси газов и для веществ сложного элементного состава.

Индивидуальные химические соединения – это вещества, состав которых можно выразить химической формулой. Расчет процесса горения в этом случае производится по уравнению реакции горения.

Составляя уравнение реакции горения, следует помнить, что в пожарно-технических расчетах принято все величины относить к 1 молю горючего вещества. Это, в частности, означает, что в уравнении реакции горения перед горючим веществом коэффициент всегда равен 1 .

Состав продуктов горения зависит от состава исходного вещества.

Элементы, входящие в состав горючего вещества

Продукты горения

Углерод С

Углекислый газ СО 2

Водород Н

Вода Н 2 О

Сера S

Оксид серы (IV) SO 2

Азот N

Молекулярный азот N 2

Фосфор Р

Оксид фосфора (V) Р 2 О 5

Галогены F, Cl, Br, I

Галогеноводороды HCl , HF , HBr , HI

Горение пропана в кислороде

    Записываем реакцию горения:

С 3 Н 8 + О 2 = СО 2 + Н 2 О

2. В молекуле пропана 3 атома углерода, из них образуется 3 молекулы углекислого газа.

С 3 Н 8 + О 2 = 3СО 2 + Н 2 О

3. Атомов водорода в молекуле пропана 8, из них образуется 4 молекулы воды:

С 3 Н 8 + О 2 = 3СО 2 + 4Н 2 О

4. Подсчитаем число атомов кислорода в правой части уравнения

5. В левой части уравнения так же должно быть 10 атомов кислорода. Молекула кислорода состоит из двух атомов, следовательно, перед кислородом нужно поставить коэффициент 5.

С 3 Н 8 + 5О 2 = 3СО 2 + 4Н 2 О

Коэффициенты, стоящие в уравнении реакции, называются стехиометрическими коэффициентами и показывают, сколько молей (кмолей) веществ участвовало в реакции или образовалось в результате реакции.

Стехиометрический коэффициент, показывающий число молей кислорода, необходимое для полного сгорания вещества, обозначается буквой .

В первой реакции = 5.

Горение глицерина в кислороде

1. Записываем уравнение реакции горения.

С 3 Н 8 О 3 + О 2 = СО 2 + Н 2 О

2. Уравниваем углерод и водород:

С 3 Н 8 О 3 + О 2 = 3СО 2 + 4Н 2 О.

3. В правой части уравнения 10 атомов кислорода.

В составе горючего вещества есть 3 атома кислорода, следовательно, из кислорода в продукты горения перешли 10 – 3 = 7 атомов кислорода.

Таким образом, перед кислородом необходимо поставить коэффициент 7: 2 = 3,5

С 3 Н 8 О 3 +3,5О 2 = 3СО 2 + 4Н 2 О.

В этой реакции = 3,5.

Горение аммиака в кислороде

Аммиак состоит из водорода и азота, следовательно, в продуктах горения будут вода и молекулярный азот.

NH 3 + 0,75 O 2 = 1,5 H 2 O + 0,5 N 2 = 0,75.

Обратите внимание, что перед горючим веществом коэффициент 1, а все остальные коэффициенты в уравнении могут быть дробными числами.

Горение сероуглерода в кислороде

Продуктами горения сероуглерода CS 2 будут углекислый газ и оксид серы (IV).

CS 2 + 3 O 2 = CO 2 + 2 SO 2 = 3.

Чаще всего в условиях пожара горение протекает не в среде чистого кислорода, а в воздухе. Воздух состоит из азота (78 %), кислорода (21 %), окислов азота, углекислого газа, инертных и других газов (1 %). Для проведения расчетов принимают, что в воздухе содержится 79 % азота и 21 % кислорода. Таким образом, на один объем кислорода приходится 3,76 объемов азота (79:21 = 3,76).

В соответствии с законом Авогадро и соотношение молей этих газов будет 1: 3,76. Таким образом, можно записать, что молекулярный состав воздуха (О 2 + 3,76 N 2 ).

Составление реакций горения веществ в воздухе аналогично составлению реакций горения в кислороде. Особенность состоит только в том, что азот воздуха при температуре горения ниже 2000 0 С в реакцию горения не вступает и выделяется из зоны горения вместе с продуктами горения.

Горение водорода в воздухе

Н 2 + 0,5(О 2 + 3,76 N 2 ) = Н 2 О + 0,5 3,76 N 2 = 0,5.

Обратите внимание, что стехиометрический коэффициент перед кислородом 0,5 необходимо поставить и в правой части уравнения перед азотом.

Горение пропанола в воздухе

С 3 Н 7 ОН + 4,5(О 2 + 3,76 N 2 ) =3СО 2 + 4Н 2 О +4,5 3,76 N 2

В составе горючего есть кислород, поэтому расчет коэффициента проводят следующим образом: 10 – 1 = 9; 9: 2 = 4,5.

Горение анилина в воздухе

С 6 Н 5 N Н 2 + 7,75(О 2 + 3,76 N 2 ) =6СО 2 + 3,5Н 2 О + 0,5 N 2 +7,75 3,76 N 2

В этом уравнении азот в правой части уравнения встречается дважды: азот воздуха и азот из горючего вещества.

Горение угарного газа в воздухе

СО + 0,5(О 2 + 3,76 N 2 ) =СО 2 + 0,5 3,76 N 2

Горение хлорметана в воздухе

СН 3 С l + 1,5(О 2 + 3,76 N 2 ) =СО 2 + НС l + Н 2 О +1,5 3,76 N 2

Горение диэтилтиоэфира в воздухе

2 Н 5 ) 2 S + 7,5(О 2 + 3,76 N 2 ) =4СО 2 + 5Н 2 О + SO 2 + 7,5 3,76 N 2

Горение диметилфосфата в воздухе

(СН 3 ) 2 НР О 4 + 3(О 2 + 3,76 N 2 ) =2СО 2 + 3,5Н 2 О + 0,5Р 2 О 5 + 3 3,76 N 2

В процессах горения исходными веществами являются горючее вещество и окислитель, а конечными - продукты горения.

1. Запишем уравнение реакции горения бензойной кислоты.

С 6 Н 5 СООН + 7,5(О 2 + 3,76 N 2 ) =7СО 2 + 3Н 2 О +7,5 3,76 N 2

2. Исходные вещества: 1 моль бензойной кислоты;

7,5 молей кислорода;

7,53,76 молей азота.

Газов воздуха всего 7,54,76 молей.

Всего (1 + 7,54,76) молей исходных веществ.

3. Продукты горения: 7 молей углекислого газа;

3 моля воды;

7,53,76 моля азота.

Всего (7 + 3 + 7,53,76) молей продуктов горения.

Аналогичные соотношения и в том случае, когда сгорает 1 киломоль бензойной кислоты.

Смеси сложных химических соединений или вещества сложного элементного состава нельзя выразить химической формулой, их состав выражается чаще всего в процентном содержании каждого элемента. К таким веществам можно отнести, например, нефть и нефтепродукты, древесину и многие другие органические вещества.

Дата публикации 10.02.2013 20:58

Горением называется реакция окисления, протекающая с высокой скоростью, которая сопровождается выделением тепла в большом количестве и, как правило, ярким свечением, которое мы называем пламенем. Процесс горения изучает физическая химия, в которой к горению принято относить все экзотермические процессы, имеющие самоускоряющуюся реакцию. Такое самоускорение может происходить из-за повышения температуры (т. е. иметь тепловой механизм) или накопления активных частиц (иметь диффузионную природу).

Реакция горения имеет наглядную особенность - наличие высокотемпературной области (пламени), ограниченной пространственно, где и происходит большая часть преобразования исходных веществ (топлива) в продукты сгорания. Данный процесс сопровождается выбросом большого количества тепловой энергии. Для начала реакции (появления пламени) требуется затратить некоторое количество энергии на поджигание, затем процесс идет самопроизвольно. Его скорость зависит от химических свойств веществ, участвующих в реакции, а также от газодинамических процессов при сгорании. Реакция горения имеет определенные характеристики, важнейшие из которых - теплотворная способность смеси и та температура (называемая адиабатической), которая теоретически могла бы достигаться при полном сгорании без учета теплопотерь.

По агрегатному состоянию окислителя и горючего процесс сгорания может быть отнесен к одному из трех типов. Реакция горения может быть:

Гомогенной, если горючее и окислитель (предварительно смешанные) находятся в газообразном состоянии,

Гетерогенной, при которой твердое или жидкое горючее вступает во взаимодействие с газообразным окислителем,

Реакцией горения порохов и взрывчатых веществ.

Гомогенное горение является наиболее простым, имеет постоянную скорость, зависящую от состава и молекулярной теплопроводности смеси, температуры и давления.

Гетерогенное горение наиболее распространено как в природе, так и в искусственных условиях. Скорость его зависит от конкретных условий процесса сжигания и от физических характеристик ингредиентов. У жидких горючих на скорость сгорания большое влияние оказывает скорость испарения, у твердых - скорость газификации. Например, при сгорании угля процесс образует две стадии. На первой из них (в случае сравнительно медленного нагрева) выделяются летучие компоненты вещества (угля), на второй догорает коксовый остаток.

Горение газов (например, горение этана) имеет свои особенности. В газовой среде пламя может распространяться на обширное расстояние. Оно может двигаться по газу с дозвуковой скоростью, причем данное свойство присуще не только газовой среде, но и мелкодисперсной смеси жидких и твердых горючих частиц, смешанной с окислителем. Для обеспечения устойчивого горения в таких случаях требуется специальная конструкция устройства топки.

Последствия, которые вызывает реакция горения в газовой среде, бывают двух видов. Первый - это турбулизация газового потока, приводящая к резкому увеличению скорости процесса. Возникающие при этом акустические возмущения потока могут привести к следующей стадии - зарождению ударной волны, ведущей к детонации смеси. Переход горения в стадию детонации зависит не только от собственных свойств газа, но и от размеров системы и параметров распространения.

Сгорание топлива используется в технике и промышленности. Основной задачей при этом является достижение максимальной полноты сгорания (т.е. оптимизация тепловыделения) за заданный промежуток. Используется горение, например, в горном деле - методы разработки различных полезных ископаемых основаны на использовании горючего процесса. Но в определенных природных и геологических условиях явление горения может стать фактором, несущим серьезную опасность. Реальную опасность, например, представляет процесс самовозгорания торфа, приводящий к возникновению эндогенных пожаров.


Горение - это сложный физико-химический процесс взаимодействия горючих компонентов топлива с окислителем, в частности, горение топлива - это реакция быстрого окисления его компонентов, сопровождающаяся интенсивным тепловыделением и резким повышением температуры.

Рассмотрим реакцию горения метана как основного компонента из числа составляющих природного газа:

СН 4 + 2О 2 = СО 2 + 2Н 2 О.

Из уравнения этой реакции следует, что для окисления одной молекулы метана необходимы две молекулы кислорода, т.е. для полного сгорания 1 м 3 метана требуется 2 м 3 кислорода.

В качестве окислителя используется атмосферный воздух, который представляет собой сложную смесь веществ, в числе которых 21 об. % О 2 , 78 об. % N 2 и 1 об. % СО 2 , инертных газов и др. Для технических расчетов обычно принимают условный состав воздуха из двух компонентов: кислорода (21 об. %) и азота (79 об. %). С учетом такого состава воздуха для проведения любой реакции горения на воздухе для полного сжигания топлива потребуется воздуха по объему в 100/21 = 4,76 раза больше, чем кислорода.

Продуктами полного сгорания природного газа являются: диоксид углерода СО 2 , водяные пары Н 2 О, некоторое количество избыточного кислорода О 2 и азот N 2 . Избыточный кислород содержится в продуктах горения только в тех случаях, когда горение происходит с избытком воздуха, а азот в продуктах сгорания содержится всегда, так как является составной частью воздуха и не принимает участия в горении. Продуктами неполного сгорания газа являются: оксид углерода СО, несгоревшие водород Н 2 и метан СН 4 , тяжелые углеводороды С m Н n и сажа. Таким образом, чем больше в продуктах сгорания диоксида углерода СО 2 , тем меньше будет в них оксида углерода СО, т. е. тем полнее будет сгорание. Введено понятие максимально содержание СО 2 в продуктах сгорания – это количество СО 2 , которое можно было бы получить в сухих продуктах сгорания при полном сгорании газа без избытка воздуха.

Наиболее совершенный способ контроля поступления воздуха в топку и полноты его сгорания – анализ продуктов сгорания с помощью автоматических газоанализаторов. Газоанализаторы периодически отбирают пробу отходящих газов и определяют содержание в них диоксида углерода,а также сумму оксида углерода и несгоревшего водорода (СО + Н 2) в объемных процентах. Если показания по стрелке по шкале (СО + Н 2) равны 0, значит горение полное, и в продуктах сгорания нет (СО + Н 2). Если стрелка отклонилась от нуля вправо, то в продуктах сгорания есть (СО + Н 2), т.е. происходит неполное сгорание. На другой шкале стрелка газоанализаторы должна показывать максимальное содержание СО 2 max в продуктах сгорания. Полное сгорание происходит при максимальном проценте диоксида углерода и нулевом содержании (СО + Н 2).