Какое притяжение на марсе относительно земли. Влияние силы притяжения на живые организмы

До изобретения телескопа было известно лишь семь планет: Меркурий, Венера, Марс, Юпитер, Сатурн, Земля и Луна. Их количество многих устраивало. Поэтому, когда в 1610 г. вышла книга Галилея «Звездный вестник», в которой он сообщил, что с помощью своей «зрительной трубы» ему удалось обнаружить еще четыре небесных тела, «никем еще не виданные от начала мира до наших дней» (спутники Юпитера), то это вызвало сенсацию. Сторонники Галилея радовались новым открытиям, противники же объявили ученому непримиримую войну.

Уже через год в Венеции вышла книга «Размышления об астрономии, оптике и физике», в которой автор утверждал, что Галилей заблуждается и число планет должно быть обязательно семь, так как, во-первых, в Ветхом Завете упоминается семисвечник (а это означает семь планет), во-вторых, в голове имеется лишь семь отверстий, в-третьих, существует только семь металлов и, в-четвертых, «спутники не видны для простого глаза, а поэтому и не могут оказывать влияние на Землю, следовательно, они не нужны, а поэтому они не существуют».

Однако подобными аргументами нельзя было остановить развитие науки, и теперь мы точно знаем, что спутники Юпитера существуют и число планет вовсе не равно семи. Вокруг Солнца обращаются девять больших планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон, из которых лишь первые две не обладают спутниками) и свыше трех тысяч малых планет, называемых астероидами.

Спутники обращаются вокруг своих планет под действием их гравитационного поля. Сила тяжести на поверхности каждой из планет может быть найдена по формуле F T = mg, где g = GM/R 2 - ускорение свободного падения на планете. Подставляя в последнюю формулу массу M и радиус R разных планет, можно рассчитать, чему равно ускорение свободного падения g на каждой из них. Результаты этих расчетов (в виде отношения ускорения свободного падения на данной планете к ускорению свободного падения на поверхности Земли) приведены в таблице 7.

Из этой таблицы видно, что наибольшее ускорение свободного падения и, следовательно, наибольшая сила тяжести на Юпитере. Это самая большая планета Солнечной системы; ее радиус в 11 раз, а масса в 318 раз больше, чем у Земли. Слабее всего притяжение на далеком Плутоне. Эта планета меньше Луны: ее радиус всего лишь 1150 км, а масса в 500 раз меньше, чем у Земли!

Еще меньшей массой обладают малые планеты Солнечной системы. 98% этих небесных тел обращаются вокруг Солнца между орбитами Марса и Юпитера, образуя так называемый пояс астероидов. Первый и самый большой астероид - Церера был открыт в 1801 г. Его радиус около 500 км, а масса примерно 1,2*10 21 кг (т. е. в 5000 раз меньше, чем у Земли). Нетрудно подсчитать, что ускорение свободного падения на Церере примерно в 32 раза меньше, чем на Земле! Во столько же раз меньше там оказывается и вес любого тела. Поэтому космонавт, оказавшийся на Церере, смог бы поднять груз массой 1,5 т (рис. 110).

На Церере, однако, пока еще никто не был. А вот на Луне люди уже побывали. Впервые это произошло летом 1969 г., когда космический корабль «Аполлон-11» доставил на наш естественный спутник трех американских астронавтов: Н. Армстронга, Э. Олдрина и М. Коллинза. «Конечно, - рассказал потом Армстронг,- в условиях лунного притяжения хочется прыгать вверх... Наибольшая высота прыжка составляла два метра - Олдрин прыгнул до третьей ступеньки лестницы лунной кабины. Падения не имели неприятных последствий. Скорость настолько мала, что нет оснований опасаться каких-либо травм».

Ускорение свободного падения на Луне в 6 раз меньше, чем на Земле. Поэтому, прыгая вверх, человек поднимается там на высоту, в 6 раз большую, чем на Земле. Чтобы подпрыгнуть на Луне на 2 м, как это сделал Олдрин, требуется приложить такое же усилие, что и на Земле при прыжке на высоту 33 см.

Первые астронавты находились на Луне 21 ч 36 мин. 21 июля они стартовали с Луны, а 24 июля «Аполлон-11» уже приводнился в Тихом океане. Люди покинули Луну, но на ней осталось пять медалей с изображениями пяти погибших космонавтов. Это Ю. А. Гагарин, В. М. Комаров, В. Гриссом, Э. Уайт и R Чаффи.

1. Перечислите все большие планеты, входящие в состав Солнечной системы. 2. Как называется самая большая из них и самая маленькая? 3. Во сколько раз вес человека на Юпитере превышает вес того же человека на Земле? 4. Во сколько раз сила тяжести на Марсе меньше, чем на Земле? 5. Что вы знаете о Церере? 6. Почему походка астронавтов на Луне напоминала скорее прыжки, чем обычную ходьбу?

Зачастую очень сложно объяснить словами самые простые вещи или устройство того или иного механизма. Но обычно, понимание приходит достаточно легко, если увидеть их глазами, а еще лучше и покрутить в руках. Но некоторые вещи невидимы для нашего зрения и даже будучи простыми очень сложны для понимания.
Например, что такое электрический ток - есть множество определений, но ни одно из них не описывает его механизм в точности, без двусмысленности и неопределенности.
С другой стороны, электротехника достаточно сильно развитая наука, в которой с помощью математических формул подробно описываются любые электрические процессы.
Так вот почему бы не показать подобные процессы с помощью этих самых формул и компьютерной графики.
Но сегодня рассмотрим действие более простого процесса, чем электричество - силу тяготения. Казалось бы, что там сложного, ведь закон всемирного тяготения изучают в школе, но тем не менее… Математика описывает процесс так, как он проходит в идеальных условиях, в некоем виртуальном пространстве, где нет никаких ограничений.
В жизни обычно все не так и на рассматриваемый процесс непрерывно накладывается множество различных обстоятельств, незаметных или несущественных на первый взгляд.
Знать формулу и понимать её действие - это немножко разные вещи.
Итак, сделаем небольшой шаг к пониманию закона тяготения. Сам закон прост - сила тяготения прямо пропорциональна массам и обратно пропорциональна квадрату расстояния между ними, но сложность заключается в невообразимом количестве взаимодействующих объектов.
Да, будем рассматривать только силу тяготения, так сказать, в полном одиночестве, что конечно неверно, но в данном случае допустимо, так как это просто способ показать невидимое.
И еще, в статье есть код JavaScript, т.е. все рисунки на самом деле нарисованы с помощью Canvas, поэтому целиком статью можно взять .

Отображение возможностей гравитации в Солнечной системе

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения F между двумя материальными точками массы m 1 и m 2 , разделёнными расстоянием r , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния - то есть:

где G - гравитационная постоянная, равная примерно 6,67384×10 -11 Н×м 2 ×кг -2 .
Но мне бы хотелось бы видеть картинку изменения силы тяготения по всей солнечной системе, а не между двумя телами. Поэтому массу второго тела m 2 возьмем равной 1, а массу первого тела обозначим просто m . (То есть, представляем объекты в виде материальной точки - размером в один пиксел, а силу притяжения измеряем относительно другого, виртуального объекта, назовем его «пробным телом», с массой 1 килограмм.) При этом формула будет иметь вид:

Теперь, вместо m подставляем массу интересующего тела, а вместо r перебираем все расстояния от 0 до значения орбиты последней планеты и получим изменение силы тяготения в зависимости от расстояния.
При наложении сил от разных объектов выбираем большую по величине.
Далее, выражаем эту силу не в цифрах, а в соответствующим им оттенках цвета. При этом получится наглядная картинка распределения гравитации в солнечной системе. То есть в физическом смысле, оттенок цвета будет соответствовать весу тела массой 1 килограмм в соответствующей точке солнечной системы.
Следует заметить, что:
  • сила тяготения всегда положительна, не имеет отрицательных значений, т.е. масса не может быть отрицательной
  • сила тяготения не может быть равна нулю, т.е. объект либо существует с какой-то массой, либо не существует вообще
  • силу тяготения нельзя ни заэкранировать, ни отразить (как луч света зеркалом).
(собственно, вот и все ограничения, налагаемые физикой на математику в данном вопросе).
Давайте теперь рассмотрим как отобразить величины силы тяготения цветом.

Чтобы показать числа цветом нужно создать массив в котором индекс был бы равен числу, а значением являлось значение цвета в системе RGB.
Вот градиент цвета от белого к красному, затем желтому, зеленому, синему, фиолетовому и черному. Всего получилось 1786 оттенков цвета.

Количество цветов не так уж и велико, их просто не хватит для отображения всего спектра сил тяготения. Ограничимся силами тяготения от максимальной - на поверхности Солнца и минимальной - на орбите Сатурна. То есть, если силу притяжения на поверхности Солнца (270,0 Н) обозначить цветом, находящимся в таблице под индексом 1, то сила притяжения к Солнцу на орбите Сатурна (0,00006 Н) будет обозначена цветом, с индексом далеко за 1700. Так что все равно цветов не хватит для равномерного выражения величин силы тяготения.
Для того чтобы было хорошо видно самые интересные места в отображаемых силах притяжения нужно чтобы величинам силы притяжения меньше 1Н соответствовали большие изменения цвета, а от 1Н и выше, соответствия не так интересны - видно что сила притяжения, скажем Земли, отличается от притяжения Марса или Юпитера, да и ладно. То есть, цвет не будет пропорционален величине силы притяжения, иначе мы «потеряем» самое интересное.
Для приведения значения силы притяжения к индексу таблицы цвета воспользуемся следующей формулой:


Да, это та самая гипербола, известная ещё со средней школы, только предварительно из аргумента извлечен квадратный корень. (Взято чисто «от фонаря», только для того, чтобы уменьшить соотношение между самым большим и самым маленьким значениями силы притяжения.)
Посмотрите как распределятся цвета в зависимости от притяжения Солнца и планет.


Как видите на поверхности Солнца наше пробное тело будет весить около 274Н или 27,4 кГс, так как 1 Н = 0,10197162 кгс = 0,1 кгс. А на Юпитере почти 26Н или 2,6 кгс, на Земле наше пробное тело весит около 9,8Н или 0,98кгс.
В принципе, все эти цифры очень-очень приблизительные. Для нашего случая это не очень важно, нам нужно превратить все эти значения силы притяжения в соответствующие им значения цвета.
Итак, из таблицы видно, что максимальная величина силы притяжения равна 274Н, а минимальная 0,00006Н. То есть разнятся более чем в 4,5 миллиона раз.

Также видно что все планеты получились почти одного цвета. Но это неважно, важно что будет хорошо видно границы притяжения планет, так как силы притяжения малых значений достаточно хорошо изменяются по цвету.
Конечно, точность невелика, но нам и нужно просто получить общее представление о силах гравитации в Солнечной системе.
Теперь «расставим» планеты в места, соответствующие их удалению от Солнца. Для этого к полученному градиенту цвета нужно приделать какое-то подобие шкалы расстояний. Кривизну орбит, я думаю, можно не учитывать.
Но как всегда космические масштабы, в прямом смысле этих слов, не дают увидеть картинку целиком. Смотрим, Сатурн находится приблизительно в 1430 миллионах километров от Солнца, индекс соответствующий цвету его орбиты равен 1738. Т.е. получается в одном пикселе (если брать в этом масштабе один оттенок цвета равен одному пикселу) приблизительно 822,8 тысяч километров. А радиус Земли приблизительно 6371 километр, т.е. диаметр 12742 километра, где-то в 65 раз меньше одного пиксела. Вот и как тут соблюдать пропорции.
Мы пойдем другим путем. Так как нам интересна гравитация околопланетного пространства, то будем брать планеты по отдельности и раскрашивать их и пространство вокруг них цветом, соответствующим гравитационным силам от них самих и Солнца. Например, возьмем Меркурий - радиус планеты 2,4 тыс. км. и приравняем его к кругу диаметром 48 пикселов, т.е. в одном пикселе будет 100 км. Тогда Венера и Земля будут соответственно 121 и 127 пикселов. Вполне удобные размеры.
Итак, делаем картинку размером 600 на 600 пикселов, определяем значение силы притяжения к Солнцу на орбите Меркурия плюс/минус 30000 км (чтобы планета получилась в центре картинки) и закрашиваем фон градиентом оттенков цвета соответствующим этим силам.
При этом, для упрощения задачи, закрашиваем не дугами, соответствующего радиуса, а прямыми, вертикальными линиями. (Грубо говоря, наше «Солнце» будет «квадратным» и всегда будет находиться на левой стороне.)
Для того, чтобы цвет фона не просвечивался сквозь изображение планеты и зоны притяжения к планете, определяем радиус окружности, соответствующей зоне, где притяжение к планете больше притяжения к Солнцу и закрашиваем её в белый цвет.
Затем в центр картинки помещаем круг, соответствующий диаметру Меркурия в масштабе (48 пикселов) и заливаем его цветом, соответствующим силе притяжения к планете на её поверхности.
Далее от планеты закрашиваем градиентом в соответствии с изменением силы притяжения к ней и при этом постоянно сравниваем цвет каждой точки в слое притяжения к Меркурию с точкой с такими же координатами, но в слое притяжения к Солнцу. Когда эти значения становятся равными, делаем этот пиксел черным и дальнейшее закрашивание прекращаем.
Таким образом получим некую форму видимого изменения силы притяжения планеты и Солнца с четкой границей между ними черного цвета.
(Хотелось сделать именно так, но… не получилось, не смог сделать попиксельное сравнение двух слоев изображения.)

По расстоянию 600 пикселов равны 60 тыс. километров (т.е. один пиксел - 100 км).
Сила притяжения к Солнцу на орбите Меркурия и возле него изменяется лишь в небольшом диапазоне, который в нашем случае обозначается одним оттенком цвета.


Итак, Меркурий и сила тяготения в окрестностях планеты.
Сразу следует отметить, что восемь малозаметных лучей это дефекты от рисования окружностей в Canvas. Они не имеют никакого отношения к обсуждаемому вопросу и их следует просто не замечать.
Размеры квадрата 600 на 600 пикселей, т.е. это пространство в 60 тыс. километров. Радиус Меркурия 24 пиксела - 2,4 тыс. км. Радиус зоны притяжения 23,7 тыс. км.
Круг в центре, который почти белого цвета, это сама планета и её цвет соответствует весу нашего килограммового пробного тела на поверхности планеты - около 373 грамм. Тонкая окружность синего цвета показывает границу между поверхностью планеты и зоной, в которой сила тяготения к планете превышает силу тяготения к Солнцу.
Далее цвет постепенно изменяется, становится все более красным (т.е. вес пробного тела уменьшается) и наконец, становится равным цвету, соответствующему силе притяжения к Солнцу в данном месте, т.е. на орбите Меркурия. Граница между зоной где сила притяжения к планете превышает силу притяжения к Солнцу также отмечена синей окружностью.
Как видите, ничего сверхъестественного нет.
Но в жизни несколько другая картина. Например, на этом и всех остальных изображениях, Солнце находится слева, значит на самом деле, область притяжения планеты должна быть немного «сплющена» слева и вытянута справа. А на изображении - окружность.
Конечно, лучшим вариантом было бы попиксельное сравнение области притяжения к Солнцу и области притяжения к планете и выбор (отображение) большей из них. Но на такие подвиги ни я, как автор этой статьи, ни JavaScript не способны. Работа с многомерными массивами не является приоритетной для данного языка, зато его работу можно показать практически в любом браузере, что и решило вопрос применения.
Да и в случае Меркурия, и всех остальных планет земной группы, изменение силы притяжения к Солнцу не так велико, чтобы отобразить его имеющимся набором оттенков цвета. А вот при рассмотрении Юпитера и Сатурна изменение силы притяжения к Солнцу очень даже заметно.

Венера
Собственно, все тоже самое что и у предыдущей планеты, только размер Венеры и её масса значительно больше, а сила притяжения к Солнцу на орбите планеты меньше (цвет более темный, вернее, более красный), а планета большей массы, поэтому цвет диска планеты более светлый.
Для того чтобы на рисунке 600 на 600 пикселов поместилась планета с зоной притяжения пробного тела массой 1 кг уменьшим масштаб в 10 раз. Теперь в одном пикселе 1 тысяча километров.

Земля+Луна
Чтобы показать Землю и Луну изменить масштаб в 10 раз (как в случае с Венерой) недостаточно, нужно увеличить и размер картинки (радиус орбиты Луны 384,467 тыс. км). Картинка получится размером 800 на 800 пикселей. Масштаб - в одном пикселе 1 тысяча километров (хорошо понимаем что ошибочность картинки ещё больше увеличится).


На картинке четко видно что зоны притяжения Луны и Земли разделены зоной притяжения к Солнцу. То есть, Земля и Луна это система из двух равнозначных планет с разной массой.
Марс с Фобосом и Деймосом
Масштаб - в одном пикселе 1 тысяча километров. Т.е. как Венера, и Земля с Луной. Помним, что расстояния пропорциональны, а отображение силы тяжести нелинейно.


Вот, сразу видно коренное отличие Марса со спутниками от Земли с Луной. Если Земля и Луна являются системой двух планет и, несмотря на разные размеры и массы, выступают как равные партнеры, то спутники Марса находятся в зоне силы притяжения Марса.
Сама планета и спутники практически «потерялись». Белая окружность это орбита дальнего спутника - Деймоса. Увеличим в 10 раз масштаб для лучшего просмотра. В одном пикселе 100 километров.


Эти «жуткие» лучи от Canvas достаточно сильно портят картинку.
Размеры Фобоса и Деймоса непропорционально увеличены в 50 раз, иначе их совсем не видно. Цвет поверхностей этих спутников также не логичен. На самом деле сила притяжения на поверхностях этих планетах меньше силы притяжения к Марсу на их орбитах.
То есть, с поверхностей Фобоса и Деймоса притяжением Марса «сдувает» все. Поэтому цвет их поверхностей должен быть равен цвету на их орбитах, но только для того чтобы было лучше видно, диски спутников окрашены в цвет силы притяжения при отсутствии силы притяжения к Марсу.
Эти спутники должны быть просто монолитны. Кроме того, раз уж на поверхности нет силы притяжения, значит они не могли сформироваться в таком виде, то есть и Фобос и Деймос раньше были частями какого-то другого, большего объекта. Ну или, как минимум, находились в другом месте, с меньшей силой притяжения, чем в зоне притяжения Марса.
Например, вот Фобос . Масштаб - в одном пикселе 100 метров.
Поверхность спутника обозначена синей окружностью, а сила притяжения всей массы спутника белой окружностью.
(На самом деле форма небольших небесных тел Фобоса, Деймоса и т.д. далеко не шарообразна)
Цвет кружка в центре соответствует силе притяжения массы спутника. Чем ближе к поверхности планеты, тем меньше сила притяжения.
(Здесь опять допущена неточность. На самом деле белая окружность - это граница, где сила притяжения к планете становится равной силе притяжения к Марсу на орбите Фобоса.
То есть, цвет снаружи от этой белой окружности должен быть таким же как и снаружи от синей окружности, обозначающей поверхность спутника. А вот показанный переход цвета должен быть внутри белой окружности. Но тогда вообще ничего не будет видно.)

Получается как бы рисунок планеты в разрезе.
Целостность планеты определяется только прочностью материала, из которого состоит Фобос. При меньшей прочности у Марса были бы кольца как у Сатурна, от разрушения спутников.


Да и похоже, что распад космических объектов не такое уж исключительное событие. Вот даже космический телескоп «Хаббл» «засёк» подобный случай.

Распад астероида P/2013 R3, который находится на расстоянии более 480 миллионов километров от Солнца (в поясе астероидов, дальше Цереры). Диаметр четырех крупнейших фрагментов астероида достигает 200 метров, их общая масса составляет около 200 тысяч тонн.
А это Деймос . Все тоже, что и у Фобоса. Масштаб - в одном пикселе 100 метров. Только планета поменьше и соответственно полегче, а также находится дальше от Марса и сила притяжения к Марсу здесь поменьше (фон картинки потемнее, т.е. более красный).

Церера

Ну Церера ничего особенного не представляет, за исключением раскраски. Сила притяжения к Солнцу здесь меньше, поэтому цвет соответствующий. Масштаб - в одном пикселе 100 километров (такой же как на картинке с Меркурием).
Маленькая синяя окружность это поверхность Цереры, а большая синяя - граница, где сила притяжения к планете становится равной силе притяжения к Солнцу.

Юпитер
Юпитер очень велик. Вот картинка размером 800 на 800 пикселей. Масштаб - в одном пикселе 100 тысяч километров. Это чтобы показать область притяжения планеты целиком. Сама планета - маленькая точка в центре. Спутники не показаны.
Показана только орбита (внешняя окружность белого цвета) самого дальнего спутника - S/2003 J 2.


У Юпитера 67 спутников. Самые крупные Ио, Европа, Ганимед и Каллисто.
Самый дальний спутник - S/2003 J 2 совершает полный оборот вокруг Юпитера на расстоянии в среднем 29 541 000 км. Его диаметр около 2 км, масса - около 1,5×10 13 кг. Как видите, она выходит далеко за пределы сферы тяготения планеты. Это можно объяснить ошибками в вычислениях (все-таки сделано довольно много усреднений, округлений и отбрасывания некоторых деталей).
Хотя имеется способ вычисления границы гравитационного влияния Юпитера, определямый сферой Хилла , радиус которой определяется формулой


где a jupiter и m jupiter большая полуось эллипса и масса Юпитера, а M sun масса Солнца. Таким образом получается радиус округлённо 52 миллиона км. S/2003 J 2 отдаляется на эксцентрической орбите на расстояние до 36 миллионов км от Юпитера
У Юпитера также имеется система колец из 4 основных компонентов: толстый внутренний тор из частиц, известный как «кольцо-гало»; относительно яркое и тонкое «Главное кольцо»; и два широких и слабых внешних кольца - известных как «паутинные кольца», называющиеся по материалу спутников - которые их и формируют: Амальтеи и Фивы.
Кольцо-гало с внутренним радиусом 92000 и внешним 122500 километров.
Главное кольцо 122500-129000 км.
Паутинное кольцо Амальтеи 129000-182000км.
Паутинное кольцо Фивы 129000-226000 км.
Увеличим картинку в 200 раз, в одном пикселе 500 километров.
Вот кольца Юпитера. Тонкая окружность - поверхность планеты. Далее идут границы колец - внутренняя граница кольца-гало, внешняя граница кольца-гало и она же внутренняя граница главного кольца и т.д.
Маленький кружок в левом верхнем углу - область, где сила притяжения спутника Юпитера Ио становится равной силе притяжения Юпитера на орбите Ио. Сам спутник в этом масштабе просто не виден.


В принципе, большие планеты со спутниками нужно рассматривать отдельно, так как перепад значений сил гравитации очень велик, как велики и размеры области притяжения планеты. Вследствие этого все интересные подробности просто теряются. А рассматривать картинку с радиальным градиентом не имеет особого смысла.
Сатурн
Картинка размером 800 на 800 пикселей. Масштаб - в одном пикселе 100 тысяч километров. Сама планета - маленькая точка в центре. Спутники не показаны.
Четко видно изменение силы притяжения к Солнцу (помним что Солнце слева).


У Сатурна известно 62 спутника. Крупнейшие из них - Мимас, Энцелад, Тефия, Диона, Рея, Титан и Япет.
Самый дальний спутник - Форньот (временное обозначение S/2004 S 8). Также обозначается как Сатурн XLII. Средний радиус спутника около 3 километров, масса 2,6×10 14 кг, большая полуось 25146000 км.
Кольца у планет появляются только на значительном удалении от Солнца. Первая такая планета - Юпитер. Имея массу и размеры большие чем у Сатурна, его кольца не так впечатляют как кольца Сатурна. То есть, размеры и масса планеты для образования колец имеют меньшее значение, чем отдаленность от Солнца.
Зато смотрите дальше, пара колец окружает астероид Харикло (10199 Chariklo) (диаметр астероида около 250 километров), который вращается вокруг Солнца между Сатурном и Ураном.

Википедия о астероиде Харикло
Система колец состоит из плотного внутреннего кольца шириной в 7 км и внешнего кольца шириной в 3 км. Расстояние между кольцами около 9 км. Радиусы колец 396 и 405 км соответственно. Харикло является наименьшим объектом, у которого были открыты кольца.
Тем не менее, сила тяготения имеет к кольцам только опосредованное отношение.
На самом деле, кольца появляются от разрушения спутников, которые состоят из материала недостаточной прочности, т.е. не каменные монолиты типа Фобоса или Деймоса, а смерзшиеся в одно целое куски породы, льда, пыль и прочий космический мусор.
Вот его и утаскивает своим тяготением планета. Подобный спутник, не имеющий собственного притяжения (вернее имеющий силу собственного притяжения меньше силы притяжения к планете на своей орбите) летит по орбите оставляя после себя шлейф разрушенного материала. Так и образуется кольцо. Далее, под действием силы притяжения к планете, этот обломочный материал приближается к планете. То есть, кольцо расширяется.
На каком-то уровне, сила притяжения становится достаточно большой, чтобы скорость падения этих обломков увеличилась, и кольцо исчезает.
Послесловие
Цель публикации статьи - возможно кто-то, обладающий знаниями в программировании, заинтересуется данной темой и сделает более качественную модель гравитационных сил в Солнечной системе (да-да, трехмерную, с анимацией.
А может быть даже сделает так, чтобы орбиты были не фиксированы, а также рассчитывались - это ведь тоже возможно, орбита будет местом, где сила притяжения будет компенсирована центробежной силой.
Получится почти как в жизни, как самая настоящая Солнечная система. (Вот где можно будет создать космическую стрелялку, со всеми тонкостями космической навигации в поясе астероидов. С учетом сил, действующих по реальным физическим законам, а не среди рисованной графики.)
И это будет прекрасный учебник физики, которую будет интересно изучать.
P.S. Автор статьи обычный человек:
не физик,
не астроном,
не программист,
не имеет высшего образования.

Теги:

  • визуализация данных
  • джаваскрипт
  • физика
  • гравитация
Добавить метки

Радиация
Самой серьезной проблемой на Марсе является отсутствие магнитного поля, защищающего от солнечной радиации. Магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разреженной атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения.
Радиационный фон на орбите Марса в 2,2 раза превышает радиационный фон на Международной космической станции. Средняя доза составила примерно 220 миллирадов в день. Объем облучения, полученного в результате пребывания в таком фоне на протяжении трех лет, приближается к установленным пределам безопасности для космонавтов.

Невесомость
На Марсе гравитация (притяжение) составляет всего 38% от земной (0,38 g). Степень влияния гравитации на здоровье людей при ее изменении от невесомости до 1 g не изучена, однако ничего хорошего ученые от нее не ждут. На земной орбите предполагается провести эксперимент на мышах с целью исследования влияния марсианской силы притяжения на жизненный цикл млекопитающих, тогда вопрос будет лучше прояснен.

Метеоритная опасность
Из-за своей разреженной атмосферы Марс гораздо в большей степени, чем Земля, подвержен метеоритной угрозе. В связи с этим гости Красной планеты рискуют попасть под метеоритный дождь, по сравнению с которым инцидент в Челябинске покажется детским лепетом. Поэтому и становится особенно актуальной проблема защиты строительной техники в том числе. В том числе придется решить проблему защиты строительных вышек тур http://www.versona.org/ и другого оборудования как на этапе создания поселения, так и позже, когда начнет развиваться сфера услуг, в частности предоставление технки в аренду.


Вредная пыль

На Марсе здоровью космонавтов будут угрожать гораздо более серьезные опасности, чем обычно. Например, простая пыль на Марсе намного опаснее лунной. Ученые подозревают, что эта пыль содержит в себе очень неприятные компоненты - мышьяк и шестивалентный хром, способный при контакте вызывать серьезные ожоги кожи и глаз.

Плохая погода
Скорость ветров, которые дуют над планетой на разных высотах, пока до конца не известна. Пыльные бури скрывают от глаз землян почти всю планету, и длятся они по три месяца.

Психологические моменты
Длительность перелета на и дальнейшее пребывание в замкнутом пространстве могут стать серьезным препятствием для самых сильных и здоровых любителей Марса. Даже при самом оптимальном сценарии один только путь к Марсу будет представлять собой изнурительное пятимесячное странствие.

О путешествиях к звездам люди мечтали издревле, начиная с тех времен, когда первые астрономы рассмотрели в примитивные телескопы иные планеты нашей системы и их спутники. С тех пор прошло много веков, но увы, межпланетные и тем более полеты к другим звездам невозможны и сейчас. А единственным внеземным объектом, где побывали исследователи, является Луна.

Мы знаем, что силой тяжести называется сила, с которой Земля притягивает различные тела.

Сила тяжести всегда направлена к центру планеты. Сила тяжести сообщает телу ускорение, которое называется ускорением свободного падения и численно равно 9,8м/с 2 . Это значит, что любое тело, независимо от его массы при свободном падении (без сопротивления воздуха) изменяет свою скорость за каждую секунду падения на 9,8 м/с.

Используя формулу для нахождения ускорения свободного падения

Масса планет M и их радиус R известны благодаря астрономическим наблюдениям и сложным расчетам.

а G - гравитационная постоянная (6,6742 10 -11 м 3 с -2 кг -1).

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736 1024 кг, радиус R = 6,371 106 м), мы получим g=6,6742 * 10 *5,9736 / 6,371*6,371 = 9,822м/с 2

Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с 2 , а в технических расчётах обычно принимают g = 9,81 м/с 2 .

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Благодаря притяжению к Земле течет вода в реках. Человек, подпрыгнув, опускается на Землю, потому что Земля притягивает его. Земля притягивает к себе все тела: Луну, воду морей и океанов, дома, спутники и т. п. Благодаря силе тяжести облик нашей планеты непрерывно меняется. Сходят с гор лавины, движутся ледники, обрушиваются камнепады, выпадают дожди, текут реки с холмов на равнины.

Все живые существа на земле чувствуют ее притяжение. Растения также «чувствуют» действие и направление силы тяжести, из-за чего главный корень всегда растет вниз, к центру земли, а стебель вверх.

Земля и все остальные планеты, движущиеся вокруг Солнца, притягиваются к нему и друг к другу. Не только Земля притягивает к себе тела, но и эти тела притягивают к себе Землю. Притягивают друг друга и все тела на Земле. Например, притяжение со стороны Луны вызывает на Земле приливы и отливы воды, огромные массы которой поднимаются в океанах и морях дважды в сутки на высоту нескольких метров. Притягивают друг друга и все тела на Земле. Поэтому ВЗАИМНОЕ ПРИТЯЖЕНИЕ ВСЕХ ТЕЛ ВСЕЛЕННОЙ НАЗЫВАЕТСЯ ВСЕМИРНЫМ ТЯГОТЕНИЕМ.

Чтобы определить силу тяжести, действующую на тело любой массы, необходимо ускорение свободного падения умножить на массу этого тела.

F = g * m ,

где m-масса тела, g – ускорение свободного падения.

Из формулы видно, что значение силы тяжести увеличивается с увеличением массы тела. Так же видно, что сила тяжести зависит также от величины ускорения свободного падения. Значит, делаем вывод: для тела неизменной массы значение силы тяжести меняется с изменение ускорения свободного падения.

Используя формулу для нахождения ускорения свободного падения g=GМ/R 2

Мы можем рассчитать значения g на поверхности любой планеты. Масса планет M и их радиус R известны благодаря астрономическим наблю¬дениям и сложным расчетам. где G - гравитационная постоянная (6,6742 10 -11 м 3 с -2 кг -1).

Планеты издавна делились учеными на две группы. Первая – это планеты земного типа: Меркурий, Венера, Земля, Марс, с недавних пор – Плутон. Для них характерны относительно небольшие размеры, малое количество спутников и твердое состояние. Оставшиеся – Юпитер, Сатурн, Уран, Нептун – планеты-гиганты, состоящие из газообразного водорода и гелия. Все они движутся вокруг Солнца по эллиптическим орбитам, отклоняясь от заданной траектории, если рядом проходит планета-сосед.

Наша «первая космическая станция» - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53: 9,31 = 0,38). Она составляет 0,38 g от земной, это примерно в два раза меньше. Это значит, что на красной планете можно скакать и прыгать гораздо выше, чем на Земле, и все тяжести весить будут также значительно меньше. Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь определим, напряжение силы тяжести на Луне. Масса Луны, как мы знаем, в 81 раз меньше массы Земли. Если бы Земля обладала такой маленькой массой, то напряжение силы тяжести на ее поверхности было бы в 81 раз слабее, чем теперь. Но по закону Ньютона шар притягивает так, словно вся его масса сосредоточена в центре. Центр Земли отстоит от ее поверхности на расстоянии земного радиуса, центр Луны – на расстоянии лунного радиуса. Но лунный радиус составляет 27/100 земного, а от уменьшения расстояния в 100/27 раза сила притяжения увеличивается в (100/27) 2 раз. Значит, в конечном итоге напряжение силы тяжести на поверхности Луны составляет

100 2 / 27 2 * 81 = 1 / 6 земного

Любопытно, что если бы на Луне существовала вода, пловец чувствовал бы себя в лунном водоеме так же, как на Земле. Его вес уменьшился бы в шесть раз, но во столько же раз уменьшился бы и вес вытесняемой им воды; соотношение между ними было бы такое же, как на Земле, и пловец погружался бы в воду Луны ровно на столько же, на сколько погружается он у нас.

ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Солнце 273,1

Меркурий 3,68-3,74

Венера 8,88

Земля 9,81

Луна 1,62

Церера 0,27

Марс 3,86

Юпитер 23,95

Сатурн 10,44

Уран 8,86

Нептун 11,09

Плутон 0,61

Как видно из таблицы, почти идентичное значение ускорения свободного падения присутствует на Венере и составляет 0,906 от земной.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):


А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 20000 Н и было бы мгновенно раздавлено собственной тяжестью.

Если нам предстоит космическое путешествие по планетам Солнечной системе, то нужно быть готовым к тому, что наш вес будет меняться. Сила притяжения также оказывает различные воздействия на живых существ. Попросту говоря, когда будут открыты другие обитаемые миры, мы увидим, что их обитатели сильно отличаются друг от друга в зависимости от массы их планет. К примеру, будь Луна обитаема, то ее населяли бы очень высокие и хрупкие существа, и наоборот, на планете массой с Юпитер жители были бы очень низкие, крепкие и массивные. А иначе на слабых конечностях в таких условиях попросту не выживешь при всем желании. Сила притяжения сыграет важную роль и при будущей колонизации того же Марса.

Представим себе, что мы отправляемся в путешествие по Солнечной системе. Какова сила тяжести на других планетах? На каких мы будем легче, чем на Земле, а на каких тяжелее?

Пока мы еще не покинули Землю, проделаем такой опыт: мысленно опустимся на один из земных полюсов, а затем представим себе, что мы перенеслись на экватор. Интересно, изменился ли наш вес?

Известно, что вес любого тела определяется силой притяжения (силой тяжести). Она прямо пропорциональна массе планеты и обратно пропорциональна квадрату ее радиуса (об этом мы впервые узнали из школьного учебника физики). Следовательно, если бы наша Земля была строго шарообразна, то вес каждого предмета при перемещении по ее поверхности оставался бы неизменным.

Но Земля - не шар. Она сплюснута у полюсов и вытянута вдоль экватора. Экваториальный радиус Земли длиннее полярного на 21 км. Выходит, что сила земного притяжения действует на экваторе как бы издалека. Вот почему вес одного и того же тела в разных местах Земли неодинаков. Тяжелее всего предметы должны быть на земных полюсах и легче всего - на экваторе. Здесь они становятся легче на 1/190 по сравнению с их весом на полюсах. Конечно, обнаружить это изменение веса можно только с помощью пружинных весов. Небольшое уменьшение веса предметов на экваторе происходит также за счет центробежной силы, возникающей вследствие вращения Земли. Таким образом, вес взрослого человека, прибывшего с высоких полярных широт на экватор, уменьшится в общей сложности примерно на 0,5 кг.

Теперь уместно спросить: а как будет изменяться вес человека, путешествующего по планетам Солнечной системы?

Наша первая космическая станция - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53: 9,31 = 0,38). Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70 кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):

Плутон 4,5 Меркурий 26,5 Марс 26,5 Сатурн 62,7 Уран 63,4 Венера 63,4 Земля 70,0 Нептун 79,6 Юпитер 161,2
Как видим, Земля по напряжению силы тяжести занимает промежуточное положение между планетами-гигантами. На двух из них - Сатурне и Уране - сила тяжести несколько меньше, чем на Земле, а на двух других - Юпитере и Нептуне - больше. Правда, для Юпитера и Сатурна вес дан с учетом действия центробежной силы (они быстро вращаются). Последняя уменьшает вес тела на экваторе на несколько процентов.

Следует заметить, что для планет-гигантов значения веса даны на уровне верхнего облачного слоя, а не на уровне твердой поверхности, как у земноподобных планет (Меркурия, Венеры, Земли, Марса) и у Плутона.

На поверхности Венеры человек окажется почти на 10% легче, чем на Земле. Зато на Меркурии и на Марсе уменьшение веса произойдет в 2,6 раза. Что же касается Плутона, то на нем человек будет в 2,5 раза легче, чем на Луне, или в 15,5 раза легче, чем в земных условиях.

А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 2 т и было бы мгновенно раздавлено собственной тяжестью. Впрочем, еще не достигнув Солнца, все превратилось бы в раскаленный газ. Другое дело - крошечные небесные тела, такие как спутники Марса и астероиды. На многих из них по легкости можно уподобиться... воробью!

Вполне понятно, что путешествовать по другим планетам человек может только в специальном герметичном скафандре, снабженном приборами системы жизнеобеспечения. Вес скафандра американских астронавтов, в котором они выходили на поверхность Луны, равен примерно весу взрослого человека. Поэтому приведенные нами значения веса космического путешественника на других планетах надо по меньшей мере удвоить. Только тогда мы получим весовые величины, близкие к действительным.