Какое уравнение называется уравнением данной линии? Приведите пример. Смотреть что такое "Уравнение" в других словарях

Прямая на плоскости и в пространстве.

Изучение свойств геометрических фигур с помощью алгебры носит название аналитической геометрии , а использовать при этом мы будем так называемый метод координат .

Линия на плоскости обычно задается как множество точек, которые обладают присущими только им свойствами. Тот факт, что координаты (числа) х и у точки, лежащей на этой линии, аналитически записываются в виде некоторого уравнения.

Опр.1Уравнением линии (уравнением кривой) на плоскости Оху называется уравнение (*), которому удовлетворяют координаты х и у каждой точки данной линии и не удовлетворяют координаты любой другой точки, не лежащей на этой линии.

Из определения 1 следует, что всякой линии на плоскости соответствует некоторое уравнение между текущими координатами (х,у ) точки этой линии и наоборот, всякому уравнению соответствует, вообще говоря, некоторая линия.

Отсюда возникают две основные задачи аналитической геометрии на плоскости.

1.Дана линия в виде множества точек. Нужно составить уравнение этой линии.

2. Дано уравнение линии. Необходимо изучить ее геометрические свойства (форму и расположение).

Пример . Лежат ли точки А (-2;1) и В (1;1) на линии 2х +у +3=0?

Задача о нахождении точек пересечения двух линий, заданных уравнениями и, сводится к отысканию координат, которые удовлетворяют уравнению обеих линий, т.е. к решению системы из двух уравнений с двумя неизвестными.

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогично вводится понятие линии в ПСК.

Линию на плоскости можно задать двумя уравнениями

где х и у – произвольные координаты точки М(х;у), лежащей на данной линии, а t - переменная, называемая параметром , параметр определяет положение точки на плоскости.

Например, если , то значению параметра t=2 соответствует на плоскости точка (3;4).

Если параметр изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способом задания линии называется параметрическим, а уравнение (5.1) –параметрическим уравнением линии.

Чтобы перейти от параметрических уравнений к общему уравнению (*), надо каким – либо способом из двух уравнений исключают параметр. Однако, заметим, такой переход не всегда целесообразен и не всегда возможен.

Линию на плоскости можно задать векторным уравнением , где t- скалярный переменный параметр. Каждому значению параметра соответствует определенный вектор плоскости. При изменении параметра конец вектора опишет некоторую линию.

Векторному уравнению в ДСК соответствуетдва скалярных уравнения

(5.1), т.е. уравнения проекций на оси координат векторного уравнения линии есть ее



параметрическое уравнения.

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , а линия – траектория точки, параметр t при этом есть время.

Вывод: всякой линии на плоскости соответствует уравнение вида .

ВСЯКОМУ УРАВНЕНИЮ ВИДАсоответствует в общем случае некоторая линия, свойства которой определяются данным уравнением (исключение – уравнению на плоскости не соответствует никакой геометрический образ).

Пусть выбрана система координат на плоскости.

Опр. 5.1. Уравнением линии называется такое уравнение вида F(x;y) =0, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты ни одной точки, не лежащей на ней.

Уравнение вида F(x;y )=0 – называют общим уравнением линии или уравнением в неявной форме.

Таким образом, линия Г есть геометрическое место точек, удовлетворяющее данному уравнению Г={(x, y): F(x;y)=0}.

Линию называют также кривой.

Уравнением линии на плоскости XOY называется уравнение, которому удовлетворяют координаты x и y каждой точки этой линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. В общем случае уравнение линии может быть записано в виде 0), (yx. F или)(xfy

Пусть задана прямая, пересекающая ось у в точке В (0, в) и образующая с осью х угол α Выберем на прямой произвольную точку М(х, у).

x y M N

Координаты точки N (x , в). Из треугольника BMN: k – угловой коэффициент прямой. k x by NB MN tg bkxy

Рассмотрим частные случаи: — уравнение прямой, проходящей через начало координат. 10 bkxy 2 bytg 00 — уравнение прямой, параллельной оси х.

т. е. у вертикальной прямой нет углового коэффициента. 3 22 tg — не существует Уравнение прямой, параллельной оси у, в этом случае имеет вид ax где а – отрезок, отсекаемый прямой на оси х.

Пусть задана прямая, проходящая через заданную точку2 и образующая с осью х угол α), (111 yx. M

Т. к. точка М 1 лежит на прямой, ее координаты должны удовлетворять уравнению (1): Вычитаем это уравнение из уравнения (1): bkxy 11)(11 xxkyy

Если в этом уравнении угловой коэффициент не определен, то оно задает пучок прямых, проходящих через данную точку, кроме прямой, параллельной оси у, не имеющей углового коэффициента. xy

Пусть задана прямая, проходящая через две точки: Запишем уравнение пучка прямых, проходящих через точку М 1:), (111 yx. M), (222 yx. M)(11 xxkyy

Т. к. точка М 2 лежит на данной прямой, подставим ее координаты в уравнение пучка прямых:)(1212 xxkyy 12 12 xx yy k Подставляем k в уравнение пучка прямых. Тем самым мы выделяем из этого пучка прямую, проходящую через две данные точки:

1 12 12 1 xx xx yy yy или 12 1 xx xx yy yy

РЕШЕНИЕ. Подставляем координаты точек в уравнение прямой, проходящей через две точки. 53 5 42 4 xy)5(8 6 4 xy 4 1 4 3 xy

Пусть задана прямая, отсекающая на осях координат отрезки, равные а и в. Это значит, что она проходит через точки)0, (a. A), 0(b. B Найдем уравнение этой прямой.

xy 0 ab

Подставим координаты точек А и В в уравнение прямой, проходящей через две точки (3): a ax b y 00 0 a ax b y 1 ax b y 1 b y a x

ПРИМЕР. Составить уравнение прямой, проходящей через точку А(2, -1) если она отсекает от положительной полуоси у отрезок, вдвое больший, чем на положительной полуоси х.

РЕШЕНИЕ. По условию задачи, ab 2 Подставляем в уравнение (4): 1 2 a y a x Точка А(2, -1) лежит на этой прямой, следовательно ее координаты удовлетворяют этому уравнению: 1 2 12 aa 1 2 41 a 23 a 1 35. 1 yx

Рассмотрим уравнение: Рассмотрим частные случаи этого уравнения и покажем, что при любых значениях коэффициентов А, В (не равных нулю одновременно) и С, это уравнение есть уравнение прямой на плоскости. 0 CBy. Ax

Тогда уравнение (5) можно представить в виде: Тогда получаем уравнение (1): Обозначим: 10 B B C x B A y k B A b B C bkxy

Тогда уравнение имеет вид: Получаем уравнение: — уравнение прямой, проходящей через начало координат. 2000 CAB x B A y 3 000 CAB BC y — уравнение прямой, параллельной оси х.

Тогда уравнение имеет вид: Получаем уравнение: — уравнение оси х. 40 y 5 000 CAB — уравнение прямой, параллельной оси у. 000 CAB A C x

Тогда уравнение имеет вид: — уравнение оси у. 60 x 000 CAB Таким образом, при любых значениях коэффициентов А, В (не равных нулю одновременно) и С, уравнение (5) есть уравнение прямой на плоскости. Это

Линия на плоскости есть совокупность точек этой плоскости, обладающих определенными свойствами, при этом точки, не лежащие на данной линии, этими свойствами не обладают. Уравнение линии определяет аналитически выраженное соотношение между координатами точек, лежащих на этой линии. Пусть это соотношение задано уравнением

F(x,y )=0. (2.1)

Пара чисел, удовлетворяющая (2.1), – не произвольная: если х задано, то у не может быть каким угодно, значение у связано с х . При изменении х изменяется у , и точка с координатами (х,у ) описывает данную линию. Если координаты точки М 0 (х 0 ,у 0) удовлетворяют уравнению (2.1), т.е. F(х 0 ,у 0)=0 – верное равенство, то точка М 0 лежит на данной линии. Верно и обратное утверждение.

Определение. Уравнением линии на плоскости называется уравнение, которому удовлетворяют координаты любой точки, лежащей на этой линии, и не удовлетворяют координаты точек, не лежащих на этой линии .

Если известно уравнение некоторой линии, то исследование геометрических свойств этой линии можно свести к исследованию ее уравнения – в этом заключается одна из основных идей аналитической геометрии. Для исследования уравнений существуют хорошо разработанные методы математического анализа, которые упрощают изучение свойств линий.

При рассмотрении линий используется термин текущая точка линии – переменная точка М(х,у ), перемещающаяся вдоль этой линии. Координаты х и у текущей точки называются текущими координатами точки линии.

Если из уравнения (2.1) можно явным образом выразить у
через х , т. е. записать уравнение (2.1) в виде , то кривую, определяемую таким уравнением, называют графиком функции f(х) .

1. Дано уравнение: , или . Если х принимает произвольные значения, то у принимает значения, равные х . Следовательно, линия, определяемая этим уравнением, состоит из точек, равноотстоящих от координатных осей Ох и Оу – это биссектриса I–III координатных углов (прямая на рис. 2.1).

Уравнение , или , определяет биссектрису II–IV координатных углов (прямая на рис. 2.1).

0 х 0 х С 0 х

рис. 2.1 рис. 2.2 рис. 2.3

2. Дано уравнение: , где С – некоторая постоянная. Это уравнение можно записать иначе: . Этому уравнению удовлетворяют те и только те точки, ординаты у которых равны С при любом значении абсциссы х . Эти точки лежат на прямой, параллельной оси Ох (рис. 2.2). Аналогично, уравнение определяет прямую, параллельную оси Оу (рис. 2.3).

Не всякое уравнение вида F(x,y )=0 определяет линию на плоскости: уравнению удовлетворяет единственная точка – О(0,0), а уравнению не удовлетворяет ни одна точка на плоскости.

В приведенных примерах мы по заданному уравнению строили определяемую этим уравнением линию. Рассмотрим обратную задачу: составить по заданной линии ее уравнение.


3. Составить уравнение окружности с центром в точке Р(a,b ) и
радиусом R.

○ Окружность с центром в точке Р и радиусом R есть совокупность точек, отстоящих от точки Р на расстоянии R. Это значит, что для любой точки М, лежащей на окружности, МР= R, если же точка М не лежит на окружности, то МР ≠ R.. ●

Рассмотрим соотношение вида F(x, y)=0 , связывающее переменные величины x и у . Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у . Примеры уравнений: 2х + 3у = 0, х 2 + у 2 – 25 = 0,

sin x + sin y – 1 = 0.

Если (1) справедливо для всех пар чисел х и у, то оно называется тождеством . Примеры тождеств: (х + у) 2 - х 2 - 2ху - у 2 = 0, (х + у)(х - у) - х 2 + у 2 = 0.

Уравнение (1) будем называть уравнением множества точек (х; у), если этому уравнению удовлетворяют координаты х и у любой точки множества и не удовлетворяют координаты никакой точки, не принадлежащие этому множеству.

Важным понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия α.


Определение. Уравнение (1) называется уравнением линии α (в созданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии α , и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Если (1) является уравнением линии α, то будем говорить, что уравнение (1) определяет (задает) линию α.

Линия α может определятся не только уравнением вида (1), но и уравнением вида

F (P, φ) = 0 , содержащим полярные координаты.

  • уравнение прямой с угловым коэффициентом;

Пусть дана некоторая прямая, не перпендикулярная, оси ОХ . Назовем углом наклона данной прямой к оси ОХ угол α , на который нужно повернуть ось ОХ , чтобы положительное направление совпало с одним из направлений прямой. Тангенс угла наклона прямой к оси ОХ называют угловым коэффициентом этой прямой и обозначают буквой К .

К=tg α
(1)

Выведем уравнение данной прямой, если известны ее К и величина в отрезке ОВ , которой она отсекает на оси ОУ .

(2)
y=kx+b
Обозначим через М " точку плоскости (х; у). Если провести прямые BN и NM , параллельные осям, то образуются r BNM – прямоугольный. Т. MC C BM <=>, когда величины NM и BN удовлетворяют условию: . Но NM=CM-CN=CM-OB=y-b, BN=x => учитывая (1), получаем, что точка М (х; у) С на данной прямой <=>, когда ее координаты удовлетворяют уравнению: =>

Уравнение (2) называют уравнением прямой с угловым коэффициентом. Если K=0 , то прямая параллельна оси ОХ и ее уравнение имеет вид y = b.

  • уравнение прямой, проходящей через две точки;
(4)
Пусть даны две точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Приняв в (3) точку М (х; у) за М 2 (х 2 ; у 2), получим у 2 -у 1 =k(х 2 - х 1). Определяя k из последнего равенства и подставляя его в уравнение (3), получаем искомое уравнение прямой: . Это уравнение, если у 1 ≠ у 2 , можно записать в виде:

Если у 1 = у 2 , то уравнение искомой прямой имеет вид у = у 1 . В этом случае прямая параллельна оси ОХ . Если х 1 = х 2 , то прямая, проходящая через точки М 1 и М 2 , параллельна оси ОУ , ее уравнение имеет вид х = х 1 .

  • уравнение прямой, проходящей через заданную точку с данным угловым коэффициентом;
(3)
Аx + Вy + С = 0
Теорема. В прямоугольной системе координат Оху любая прямая задается уравнением первой степени:

и, обратно, уравнение (5) при произвольных коэффициентах А, В, С (А и В ≠ 0 одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.

Доказательство.

Сначала докажем первое утверждение. Если прямая не перпендикулярна Ох, то она определяется уравнением первой степени: у = kx + b , т.е. уравнением вида (5), где

A = k, B = -1 и C = b. Если прямая перпендикулярна Ох, то все ее точки имеют одинаковые абсциссы, равные величине α отрезка, отсекаемого прямой на оси Ох.

Уравнение этой прямой имеет вид х = α, т.е. также является уравнение первой степени вида (5), где А = 1, В = 0, С = - α. Тем самым доказано первое утверждение.

Докажем обратное утверждение. Пусть дано уравнение (5), причем хотя бы один из коэффициентов А и В ≠ 0 .

Если В ≠ 0 , то (5) можно записать в виде . Пологая , получаем уравнение у = kx + b , т.е. уравнение вида (2) которое определяет прямую.

Если В = 0 , то А ≠ 0 и (5) принимает вид . Обозначая через α, получаем

х = α , т.е. уравнение прямой перпендикулярное Ох.

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка.

Уравнение вида Ах + Ву + С = 0 является неполным, т.е. какой – то из коэффициентов равен нулю.

1) С = 0; Ах + Ву = 0 и определяет прямую, проходящую через начало координат.

2) В = 0 (А ≠ 0) ; уравнение Ах + С = 0 Оу.

3) А = 0 (В ≠ 0) ; Ву + С = 0 и определяет прямую параллельную Ох.

Уравнение (6) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения удобна для геометрического построения прямой.

  • нормальное уравнение прямой;

Аx + Вy + С = 0 – общее уравнение некоторой прямой, а (5) x cos α + y sin α – p = 0 (7)

ее нормальное уравнение.

Так как уравнение (5) и (7) определяют одну и ту же прямую, то (А 1х + В 1у + С 1 = 0 и

А 2х + В 2у + С 2 = 0 => ) коэффициенты этих уравнений пропорциональны. Это означает, что помножив все члены уравнения (5) на некоторый множитель М, мы получим уравнение МА х + МВ у + МС = 0 , совпадающее с уравнением (7) т.е.

МА = cos α, MB = sin α, MC = - P (8)

Чтобы найти множитель М, возведем первые два из этих равенств в квадрат и сложим:

М 2 (А 2 + В 2) = cos 2 α + sin 2 α = 1

(9)


Линию на плоскости можно задать при помощи двух уравнений

где х и у - координаты произвольной точки М (х ; у ), лежащей на данной линии, а t - переменная, называемая параметром .

Параметр t определяет положение точки (х ; у ) на плоскости.

Так, если

то значению параметра t = 2 соответствует на плоскости точка (4; 1), т.к. х = 2 + 2 = 4, y = 2 · 2 – 3 = 1.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания кривой называется параметрическим , а уравнения (1) - параметрическими уравнениями линии .

Рассмотрим примерыизвестных кривых, заданных в параметрическом виде.

1) Астроида:

где а > 0 – постоянная величина.

При а = 2 имеет вид:

Рис.4. Астроида

2) Циклоида: где а > 0 – постоянная.

При а = 2 имеет вид:

Рис.5. Циклоида

Векторное уравнение линии

Линию на плоскости можно задать векторным уравнением

где t – скалярный переменный параметр.

Каждому значению параметра t 0 соответствует определённый вектор плоскости. При изменении параметра t конец вектора опишет некоторую линию (рис. 6).

Векторному уравнению линии в системе координат Оху

соответствуют два скалярных уравнения (4), т.е. уравнения проекций

на оси координат векторного уравнения линии есть её параметрические уравнения.



Рис.6. Векторное уравнение линии

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , линия – траекторией точки, параметр t - время .