Какое вещество проявляет окислительно восстановительную двойственность. Сопряженные пары окислитель-восстановитель

Если степень окисления некоторого атома в химическом соединении промежуточная, то этот атом может как принимать электроны (т.е. быть окислителем), так и отдавать их (т.е. быть восстановителем). Такое поведение, в частности, характерно для пероксида водорода, поскольку в состав молекулы Н 2 O 2 входят атомы кислорода в промежуточной степени окисления минус 1:

(окислитель) ® Н 2 O –2 (2O –1 + 2e – ® 2O –2)

(восстановитель) ® O 2 0 (2O –1 – 2e – ® O 2 0).

При прогнозировании поведения пероксида водорода и других веществ, характеризующихся окислительно-восстановительной двойственностью, необходимо учитывать следующее. Если, например, для пероксида водорода партнёром по реакции является вещество, способное быть только окислителем (KMnO 4 , K 2 Cr 2 O 7), то H 2 O 2 будет вести себя как восстановитель и окисляться до O 2 . Если же пероксид водорода взаимодействует с веществом, способным проявлять только восстановительные свойства (KI), то молекулы H 2 O 2 будут выполнять функцию окислителя, восстанавливаясь до молекул H 2 O.

Окислительно-восстановительная двойственность характерна также для азотистой кислоты и нитритов:

(окислитель) ® , или , или ;

(восстановитель) ® .

Активные неметаллы, например, галогены в щелочных растворах подвергаются реакциям самоокисления-самовосстановления (диспропорционирования); в этих реакциях одна часть атомов простого вещества является окислителем, а другая – восстановителем:

Cl 2 0 ® 2Cl –1 Cl 2 0 ® 2Cl –1

Cl 2 0 ® 2 Cl 2 0 ® 2

Несмотря на то, что вещества, в состав которых входит атом в промежуточной степени окисления, теоретически могут быть как окислителями, так и восстановителями, на практике часто преимущественно проявляются либо окислительные, либо восстановительные свойства. Например, атомы Mn +4 , Cu +2 , Fe +2 , S +4 в соединениях MnO 2 , CuSO 4 , Fe(OH) 2 , Na 2 SO 3 , в принципе, могут проявлять как окислительные, так и восстановительные свойства, однако оксид марганца (IV) в кислых растворах – сильный окислитель , восстанавливающийся в соответствии со схемой:

MnO 2 ® Mn 2+ ;

соединения двухвалентной меди проявляют окислительные свойства , восстанавливаясь до соединений одновалентной меди:

Cu 2+ ® Cu +1 ;

соединения железа (II) легко окисляются до соединений железа (III) :

Fe 2+ ® Fe 3+ ; Fe(OH) 2 ® Fe(OH) 3 ;

растворимые соли железа (III) проявляют окислительные свойства , восстанавливаясь до соединений железа (II):

Fe 3+ ® Fe 2+ ;

сульфиты – сильные восстановители и легко окисляются до сульфатов:

SO 3 2– ® SO 4 2– .

Некоторые неметаллы (C, S, P, As) окисляются концентрированной азотной кислотой до высшей степени окисления:


С ® CO 2 ; S ® SO 4 2– P ® H 3 PO 4 As ® H 3 AsO 4

Йод окисляется азотной кислотой до степени окисления +5: I 2 ® HIO 3 .

Сама HNO 3 в этих реакциях может восстанавливаться как до NO 2 , так и до NO.

Неметаллы могут также окисляться концентрированной серной кислотой:

С ® CO 2 ; S ® SO 2 H 2 ® H 2 O P ® H 3 PO 4

При этом H 2 SO 4 восстанавливается до SO 2 .

Пример 4.1 Спрогнозируйте продукты следующей окислительно-восста-новительной реакции и составьте уравнение реакции ионно-электронным методом (т.е. методом полуреакций): K 2 Cr 2 O 7 + N 2 H 4 + H 2 SO 4 ® … .

При выполнении данного задания следует учитывать, что запись H 2 SO 4 в условии подразумевает разбавленную серную кислоту; если в реакции участвует концентрированная серная кислота – будет применяться запись H 2 SO 4 (конц.).

Разбавленная серная кислота в подавляющем большинстве окислительно-восстановительных реакций (исключение – реакции с активными металлами) не проявляет себя ни как окислитель, ни как восстановитель и применяется для создания кислой среды. Следовательно, окислитель и восстановитель нужно искать среди двух оставшихся веществ. Атом хрома в K 2 Cr 2 O 7 находится в высшей степени окисления +6. Поэтому в любой окислительно-восстановительной реакции K 2 Cr 2 O 7 ведёт себя как окислитель. В кислой среде дихромат-ионы восстанавливаются до ионов Cr 3+ : Cr 2 O 7 2– ® 2Cr 3+ .

В молекуле N 2 H 4 атом азота находится в промежуточной степени окисления минус 2. Теоретически атом в промежуточной степени окисления может быть как окислителем, так и восстановителем. Но в данной реакции функцию окислителя выполняет K 2 Cr 2 O 7 . Поэтому гидразин (N 2 H 4) – восстановитель. Как уже было ранее сказано, атомы-восстановители в отрицательной степени окисления обычно окисляются до нулевой степени окисления. Поэтому, даже не зная химии гидразина, можно предположить, что продуктом его окисления в данной реакции будет азот: N 2 H 4 ® N 2 ­.

Исходные схемы превращений: Cr 2 O 7 2– ® 2Cr 3+

N 2 H 4 ® N 2 ­

Процедура составления ионно-электронных уравнений подробно рассмотрена в методических указаниях по общей химии . Напомним кратко важнейшие правила уравнивания атомов кислорода и водорода при составлении полуреакций.

В ту часть составляемого ионно-электронного уравнения реакции, протекающей в кислой среде, где имеется недостаток атомов кислорода, следует записать на каждый недостающий атом О одну молекулу Н 2 О, а в другую часть уравнения – два иона Н + .

В ту часть составляемого ионно-электронного уравнения реакции, протекающей в кислой среде, где не хватает атомов водорода следует записать нужное количество ионов Н + .

Cr 2 O 7 2– + 14H + + 6e – ® 2Cr 3+ + 7H 2 O 2

N 2 H 4 ® N 2 ­ + 4H + + 4e – 3

Некоторые элементы могут проявлять переменные степени окисления - низшие, высшие и промежуточные. Например, азот в аммиаке имеет низшую степень окисления (-3), а в азотной кислоте - высшую степень окисления (+5). Существует также ряд соединений, где азот имеет промежуточные значения степени окисления между этими крайними значениями.

Соединение азота N 2 H 4 NH 2 OH N 2 N 2 O NO N 2 O 3 NO 2

Степень окисления -2 -1 0 +1 +2 +3 +4

Соединения, которые содержат атомы в крайних степенях окисления, ведут себя однозначно: либо являются окислителями, либо - восстановителями. Так, атомы азота в аммиаке, ионе аммония, нитридах металлов не способны более к присоединению электронов, поэтому данные вещества проявляют только восстановительные свойства за счет азота в степени окисления (-3). В азотной кислоте, нитратах, оксиде азота (+5) атомы азота уже не способны терять электроны, поэтому эти вещества проявляют только окислительные свойства за счет азота в степени окисления (+5).

Если вещество содержит атомы элемента в промежуточной степени окисления, то оно может вести себя двояко: может, как приобретать электроны, так и терять их. В первом случае вещество ведет себя как окислитель, во втором случае - как восстановитель. Все определяется химической природой партнера.

Например, простое вещество сера проявляет восстановительные свойства по отношению к хлору и кислороду; с другой стороны, она может быть окислителем по отношению к металлам и водороду. В подавляющем большинстве случаев, водород ведет себя как восстановитель, но по отношению к активным металлам проявляет окислительные свойства. Йод является очень слабым окислителем, зато легко проявляет восстановительные свойства по отношению азотной кислоте или хлорной воде.

3 I 2 + 2Аl = 2 Аl I 3 ;

I 2 + 5Cl 2 + 6H 2 O = 2HIО 3 + 10 HCl.

Кроме того, в щелочной среде для всех галогенов, кроме фтора, характерны реакции диспропорционирования, когда атомы хлора являются одновременно и окислителями, и восстановителями:

Cl 2 + 2KOH = KOCl + KCl + H 2 O

Азотистая кислота и нитриты - одно из наиболее распространенных веществ с окислительно-восстановительной двойственностью. Действуя, как восстановитель, они окисляются до азотной кислоты или нитратов. Проявляя окислительные свойства, они восстанавливаются до NO или еще более низких степеней окисления, если это позволяет восстановитель.

  • 5HNO 2 + 2KМnO 4 + 3H 2 SO 4 = 5HNO 3 + 2MnSO 4 + K 2 SO 4 + 3H 2 O;
  • 2NaNO 2 + 2NaI + 2H 2 SO 4 = 2NO + I 2 + 2Na 2 SO 4 + 2H 2 O.

Пероксид водорода, пероксиды металлов, дисульфид водорода и дисульфиды металлов. В соединениях такого типа содержатся атомы кислорода и серы со степенью окисления (-1). В присутствии восстановителя эти атомы могут принимать еще по одному электрону и понижать степень окисления до (-2). При взаимодействии с окислителями они способны отдавать электроны, повышая степень окисления до нуля и образуя свободные кислород или серу.

  • 5H 2 O 2 + 2KМnO 4 + 3H 2 SO 4 = 5O 2 + 2MnSO 4 + K 2 SO 4 + 8H 2 O;
  • 2KI + H 2 O 2 + H 2 SO 4 = I 2 + K 2 SO 4 + 2H 2 O.

Сернистая кислота, оксид серы (+4), сульфиты.

В этих соединениях содержатся атомы серы в промежуточной степени окисления (+4). Поэтому, проявляя восстановительные свойства, они могут окисляться до серной кислоты, оксида серы (+6) и сульфатов, где атомы серы имеют степень окисления (+6). При взаимодействии с очень сильными восстановителями, они могут проявлять окислительные свойства, восстанавливаясь до свободной серы, где атомы серы имеют степени окисления (0).

  • 3K 2 SO 3 + 2KМnO 4 + H 2 O = 3K 2 SO 4 +2MnO 2 + 2KOH;
  • 2H 2 S + SO 2 = 3S + 2H 2 O.

Говоря об окислительно-восстановительной двойственности, нужно помнить, что в некоторых случаях она может быть обусловлена различной природой отдельных составных частей молекулы. Например, соляная кислота HCl проявляет восстановительные свойства за счет хлорид-ионов Cl Ї , и окислительные свойства за счет катионов H + .

а) Налейте в пробирку раствор иодида калия, подкислите его серной кислотой и добавьте немного пероксида водорода. Реакция протекает по схеме:

KJ +H 2 O 2 + H 2 SO 4 → J 2 + K 2 SO 4 +

Что наблюдается? Какую функцию выполняет пероксид водорода в этой реакции?

Напишите уравнение реакции, составив схему электронного баланса. Укажите процессы окисления и восстановления, окислитель и восстановитель.

в) Налейте в пробирку раствор перманганата калия, подкислите его серной кислотой и добавьте пероксид водорода. Как меняется цвет раствора?

Реакция протекает по схеме:

KMnO 4 +H 2 O 2 + H 2 SO 4 → MnSO 4 + K 2 SO 4 + O 2 …

Напишите уравнение реакции, составив схему электронного баланса. Укажите процессы окисления и восстановления, окислитель и восстановитель. Какие свойства проявляет пероксид водорода в этой реакции?

Примечание: В ряде вышеприведенных окислительно-восстановительных реакций изменяется цвет раствора. По изменению цвета раствора можно судить о продуктах окисления-восстановления, если знать цвета соответствующих ионов.

Опыт 5. Влияние характера среды на протекание окислительно -восстановительных реакций.

В 3 пробирки налейте раствор перманганата калия. В первую пробирку добавьте 2 капли разбавленной серной кислоты (кислая среда), во вторую пробирку добавьте 2 капли дистиллированной воды (нейтральная среда), в третью добавьте 2 капли разбавленного раствора гидроксида натрия (щелочная среда). В каждую из пробирок добаьте порошкообразный сульфит натрия. Отметьте наблюдаемые явления.

Обратите внимание, что перманганат ион (MnO 4 -1) - фиолетового цвета, манганат ион (MnO 4 -2) - зеленого, оксид марганца (IV) (MnO 2) - бурого цвета, а ион Mn +2 - бесцветный.

Напишите уравнения наблюдаемых реакций. Для всех уравнений составьте уравнения электронного баланса и подберите коэффициенты. К какому типу относятся данные окислительно-восстановительные реакции?

Опыт 6. Реакции внутримолекулярного окисления-восстановления. Термическое разложение бихромата аммония. (Опыт проводятся лаборантом)

Поместите небольшое количество кристаллического бихромата аммония в виде горки в фарфоровую чашку. Нагрейте в пламени газовой горелки стеклянную палочку и внести ее в середину подготовленной горки. Палочку подержите несколько секунд до начала реакции. Отметьте наблюдаемые явления. Учитывая, что при термическом разложении бихромата аммония образуется оксид хрома (III), азот и вода, с помощью метода электронного баланса составьте уравнение реакции. Укажите окислитель и восстановитель.



Опыт 7.Реакции диспропорционирования (самоокисления – самовосстановления)

Внесите в пробирку 5-7 капель бромной воды и добавьте к ней по каплям разбавленного раствора гидроксида натрия до обесцвечивания раствора. Запишите уравнение реакции, принимая во внимание, что продуктами являются бромид натрия, гипобромид натрия (NaBrO) и вода. Составьте уравнения электронного баланса,

укажите окислитель и восстановитель?

1. Какие из приведенных ниже реакций являются окислительно-восстановительными?

2. Окисление или восстановление происходит при переходах:

3. Заполните приведенную ниже таблицу, используя следующие вещества:

4. Подберите коэффициенты и вычислите эквивалентную массу перманганата калия и нитрита натрия в следующих реакциях:

5. Подберите коэффициенты в уравнениях следующих межмолекулярных окислительно-восстановительных реакций:

6. Подберите коэффициенты в следующих уравнениях реакций диспропорционирования:

Лабораторная работа 14.

Тема: ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Гальванический элемент – это химический источник электроэнергии, в котором энергия химической реакции преобразуется в электрическую энергию.

Гальванический элемент состоит из двух электродов – катода и анода, погруженных в растворы электролитов. Электролитами обычно являются соли тех металлов, из которых изготовлены электроды. Электрический контакт между растворами электролитов осуществляется с помощью пористой перегородки или электролитического «мостика», который изготовляется из U-образной стеклянной трубки, заполненной раствором электролита. Такой «мостик» проводит ток благодаря наличию ионов, но препятствует смешиванию электролитов.



Работа гальванического элемента основана на протекающей в нём окислительно-восстановительной реакции, причем процессы окисления и восстановления разделены, они протекают на разных электродах: окисление на аноде, а восстановление на катоде. Электроны движутся во внешней цепи от анода к катоду (от восстановителя к окислителю).

Главной характеристикой гальванического элемента является его электродвижущая сила (ЭДС). ЭДС – это разность потенциалов электродов в состоянии, когда сила тока равна нулю, т.е. когда между электродами и растворами солей устанавливается химическое равновесие:

Обычно для создания гальванического элемента берут два разных металла, расположенных далеко друг от друга в электрохимическом ряду активности металлов (ряду напряжений), чтобы получить наибольшую ЭДС.

Для примера рассмотрим магниево-серебряный гальванический элемент.

Найдем в ряду напряжений эти металлы и их стандартные электродные потенциалы:

Магний – более активный металл, он при работе гальванического элемента является анодом, то есть окисляется, а на серебряном электроде происходит восстановление катионов серебра из раствора, то есть серебряный электрод является катодом:

Электрохимическая схема гальванического элемента и его токообразующая реакция в ионном виде записываются так:

Уравнение токообразующей реакции в молекулярном виде показы-вает, что данный гальванический элемент производит электроэнергию за счёт окислительно-восстановительной реакции вытеснения менее ак-тивного металла более активным из раствора его соли:

Mg + 2AgNO 3 = Mg(NO 3) 2 + 2Ag↓

Электродвижущая сила магниево-серебряного гальванического элемента при стандартных условиях рассчитывается по формуле:

При работе гальванического элемента в нестандартных условиях вначале необходимо вычислить электродные потенциалы катода и анода по уравнению Нернста:

где j 0 Me / Me n+ – стандартный электродный потенциал; Т – температура; n – число электронов, переходящих от восстановителя к окислителю; – молярная концентрация катионов металла в растворе электролита; R – молярная газовая постоянная; F – постоянная (число) Фарадея.

При стандартной температуре (298 К), но нестандартном значении концентрации катионов пользуются упрощенным вариантом этого уравнения:

Экспериментальная часть

Целью работы является изучение электрохимической активности наиболее известных металлов, сборке гальванического элемента и определение его ЭДС.

Опыт 1. Исследование электрохимической активности металлов

В шесть пробирок налить по 10 капель растворов солей магния, цинка, железа (II), олова (II), свинца (II), меди (II). Опустить в пробирки по кусочку магния, исключая первую пробирку. Отметить изменения, наблюдаемые в пробирках, написать уравнения реакций. Повторить опыт ещё пять раз, опуская цинк, железо, олово, свинец и медь во все пробирки, кроме тех, в которых содержится раствор соли того же самого металла. Написать уравнения наблюдаемых реакций. Опытные данные занести в таблицу, поставив знак "+" под ионами металлов в тех случаях, когда эти металлы вытеснялись из их солей, и знак "0", когда вытеснения не происходило.

Способность металлов восстанавливать друг друга из растворов их солей

Металл Ионы металла в растворе
Mg 2+ Zn 2+ Fe 2+ Sn 2+ Pb 2+ Cu 2+
Mg ––
Zn ––
Fe ––
Sn ––
Pb ––
Cu ––

В выводе охарактеризовать восстановительную способность изученных металлов и расположить их в ряд по уменьшению этого свойства. Соответствует ли расположение металлов в этом ряду их расположению в ряду электрохимической активности металлов?

Опыт 2. Cборка гальванического элемента и измерение его ЭДС

Собрать гальванический элемент, электродами которого служат цинк и медь. Для этого взять два химических стакана и заполнить их растворами солей с известной концентрацией: один – сульфатом цинка, а другой – сульфатом меди (II), и соединить их электролитическим мостиком. Электролитический мостик – это U-образная стеклянная трубка, заполненная раствором электролита, например хлорида или сульфата натрия, а в простейшем случае это лента фильтровальной бумаги, смоченная раствором любого электролита.

В первый стакан опустить цинковый электрод, во второй – медный. Подключить к клеммам вольтметр и замерить напряжение на электродах. В отчете отразить следующее: 1) записать собранный гальванический элемент его в виде электрохимической схемы; 3) написать схемы анодного и катодного процессов и уравнение токообразующей реакции; 4) вычислить теоретическое значение ЭДС, сравнить его с измеренным и рассчитать погрешность опыта; 5) в выводе объяснить, почему изме-ренное значение ЭДС отличается от теоретического.

Дополнительные задания к лабораторной работе

1. Расположите металлы железо, медь, марганец, магний, серебро в ряд по увеличению окислительных свойств их катионов.

2. Среди металлов свинец, золото, кадмий, кальций, медь укажите: а) взаимодействующие с соляной и разбавленной серной кислотами; б) вытесняющие никель из растворов его солей.

3. Вычислите значение электродного потенциала цинка, если цинк находится в растворе своей соли с концентрацией катионов 0,01 М, а температура раствора равна 15 °С.

4. Вычислите значение электродного потенциала меди, если элек-трод находится в растворе соли меди (II) с концентрацией катионов 0,1 М, температура раствора равна 10 °С.

5. Напишите электрохимическую схему гальванического элемента, составленного из медного и марганцевого электродов с растворами со-лей меди (II) и марганца (II). Вычислите ЭДС элемента при стандартных условиях и при концентрации катионов в растворах 0,1М (температура стандартная).

6. Напишите схему двух гальванических элементов, в одном из ко-торых цинк является катодом, а в другом анодом; вычислите их ЭДС.

7. Приведена электрохимическая схема гальванического элемента:

Напишите схему катодного и анодного процессов, уравнение токообразующей реакции в молекулярном и ионном виде. Определите ЭДС элемента при стандартных условиях.

Лабораторная работа 15.

Тема: ЭЛЕКТРОЛИЗ

Электролизом называется совокупность окислительно-восстановительных процессов, происходящих при пропускании постоянного электрического тока через раствор или расплав электролита.

Пропускание тока через электролиты осуществляется с помощью электродов: катода, на котором происходит процесс восстановления, и анода, на котором осуществляется процесс окисления.

При электролизе растворов солей закономерности восстановления на катоде следующие.

1. Катионы металлов, расположенных в ряду напряжений правее железа (от кадмия до золота), восстанавливаются согласно уравнению:

Ме n+ + nе = Me

2. Катионы активных металлов, расположенных в левой части ряда напряжений (от лития до алюминия), не восстанавливаются. В этом случае на катоде происходит восстановление воды:

2Н 2 О + 2е = Н 2 + 2ОН -

3. Катионы металлов, расположенных в средней части ряда напряжений (марганец, цинк, хром, железо и др.), восстанавливаются на катоде вместе с восстановлением воды, т.е. параллельно идут два процесса, уравнения которых приведены выше.

Закономерности окисления на аноде следующие.

1. Простые анионы (Сl - , Br - , I - , S 2-), кроме F - -ионов, окисляются с образованием соответствующих простых веществ, например:

2Cl - – 2е = Сl 2

2. Сложные анионы (NO 3 - , SO 4 2- , PO 4 3- и др.) и F - -ионы не окисляются. В этом случае на аноде происходит окисление воды:

2Н 2 О – 4е = О 2 + 4Н +

Эти закономерности относятся к электролизу с инертным (нерастворимым) электродом: платина, графит, электродная сталь.

Но если анод изготовлен из металла, соль которого является электролитом, то в этом случае сам анод окисляется, переходя в раствор в виде катионов

Ме – nе = Me n+ ,

а на катоде происходит восстановление этого же металла

Ме n+ + nе = Me

Такой электролиз называется электролизом с активным (растворимым) анодом.

Экспериментальная часть

Целью работы является экспериментальное ознакомление с различными типами электролиза солей.

Опыт 1. Электролиз хлорида никеля (II) с инертными электродами

Собрать электролизер, используя графитовые стержни в качестве электродов. Залить в электролизер раствор хлорида никеля (II), включить электроды в сеть постоянного электрического тока и вести электролиз 5–6 мин. Наблюдать выделение металла на одном электроде (как этот электрод называется?) и газа (какого?) – на другом электроде (как он называется?).

В отчете нарисовать схему электролизера, описать опыт и наблюдения. Записать уравнения катодного и анодного процессов и общее уравнение электролиза хлорида никеля (II).

Опыт 2. Электролиз хлорида натрия с инертными электродами

Очистить электроды после первого опыта наждачной бумагой и вновь собрать электролизер. Залить в него раствор хлорида натрия и вести электролиз 5–6 мин. Наблюдать выделение газов (каких?) на обоих электродах. После проведения электролиза установить с помощью индикатора среду раствора.

В отчете описать наблюдения и результаты электролиза. Записать уравнения катодного и анодного процессов, образования щелочи в растворе и общее уравнение электролиза раствора хлорида натрия.

Опыт 3. Электролиз сульфата натрия с инертными электродами

Собрать электролизер так, как это было сделано в первом опыте, и наполнить его раствором сульфата натрия. Вести электролиз 5–6 мин, наблюдать выделение газов (каких?) на обоих электродах. В конце опыта отобрать пипеткой пробы раствора из катодной и анодной части электролизера и установить среду растворов.

В отчёте описать опыт и наблюдения, написать схемы процессов на электродах, «вторичных» процессов и общее уравнение реакции элек-тролиза.

Опыт 4. Электролиз сульфата меди (II) с инертными электродами

Собрать электролизер так, как это было сделано в первом опыте, наполнить его раствором CuSO 4 и вести электролиз 5–6 мин. Наблюдать выделение металла (какого?) на катоде и газа (какого?) на аноде.

В отчёте описать опыт и наблюдения, привести схемы электродных процессов и уравнения реакций.

Опыт 5. Электролиз сульфата меди (II) с активным анодом

Ничего не меняя в электролизере после четвёртого опыта, повернуть вилку электропитания на 180° и включить ее в сеть постоянного тока. В этом случае электрод, бывший катодом в четвертом опыте (покрытый слоем меди), становится анодом. Провести электролиз 5–6 мин, описать наблюдения, записать уравнения анодного и катодного процессов.

В отчете сделать общий вывод о закономерностях электролиза различных типов солей при использовании инертных электродов и активного анода.

Дополнительные задания к лабораторной работе

1. Приведите примеры металлов, которые можно получить элек-тролизом растворов их солей.

2. Установите последовательность восстановления металлов из расплава смеси: AlCl 3 , CuCl 2 , FeCl 2 , CdCl 2 .

3. Рассчитайте минимальное напряжение разложения, которое необходимо приложить к электродам для начала электролиза расплава хлорида алюминия.

4. Газообразными продуктами электролиза каких солей являются только хлор и водород?

5. Электролиз раствора какой соли приводит к увеличению её кон-центрации в растворе: FeCl 3 , NaNO 3 , Cu(NO 3) 2 , NaCl?

6. На рисунке изображен электролизер с угольными электродами. Какая соль находится в растворе: Na 2 CO 3 , CuSO 4 , Na 2 S, AgNO 3 ? Объясните свой выбор. Напишите уравнения происходящих процессов.

7. Вычислите объем газа, выделившегося на аноде при электролизе раствора нитрата натрия за 1 час, если сила тока равна 5А, а выход по току 90 %.

Лабораторная работа 16.

Тема: КОРРОЗИЯ МЕТАЛЛОВ

Коррозией называется разрушение металлов вследствие химического воздействия окружающей среды.

При коррозии металлы окисляются и теряют присущие им свойства. Коррозия приводит к большим материальным потерям, происходящим в результате нарушения целостности трубопроводов, цистерн, металлических частей машин, корпусов судов, морских сооружений и т.д. Безвозвратные потери металлов от коррозии составляют 8–10 % от ежегодного их выпуска.

По механизму протекания коррозия подразделяется на два типа:

1) химическую, которая наблюдается при взаимодействии металлов с сухими газами и жидкостями, не проводящими ток (неэлектролитами);

2) электрохимическую, которая наблюдается при взаимодействии металлов с растворами электролитов.

К электролитам относится вода обычная и морская, растворы солей, кислот и щелочей, влажные газы. Во влажных газах и в воздухе содержатся пары воды, которые адсорбируются на поверхности металлов, образуя тонкую невидимую для глаз пленку жидкой воды, в которой растворяются кислород, углекислый газ, сернистые газы, оксиды азота и другие газы, присутствующие в атмосфере; при этом образуются кислоты. Таким образом, во влажном воздухе на металлы действуют растворы электролитов.

Обратимые и необратимые химические реакции и состояние химического равновесия. Качественная характеристика состояния химического равновесия и его отличие от кинетически заторможенного состояния системы.

Необратимые химические реакции протекают до конца-до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца, т.е ни одно из реагирующих веществ не расходуется полностью. Это различие связано с тем, что необратимая реакция протекает в одном направлении. Обратимая же реакция может протекать как в прямом, так и в обратном направлениях.

Необратимая реакция:

Обратимая реакция:

Когда скорости прямой и обратной реакций становится одинаковыми, наступает химическое равновесие. Качественной характеристикой химического равновесия служит величина, называемая константой химического равновесия.

В момент равновесия V1=V2. В момент равновесия реакции продолжают идти, но концентрации реагентов не меняются. Кинетически заторможенное состояние, когда V1,2=0(резкое понижение t примерно 200С)

9 . Закон действующих масс. Константа химического равновесия и ее связь со стандартным изменением энергии Гиббса и энергии Гельмгольца процесса.

Закон действующих масс (открыт Гульдбергом и Вааге)-при постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, причем каждая концентрация входит в произведение в степени, равной коэффициенту, стоящему перед формулой данного вещества в уравнении реакции.

Для необратимых реакций:

Vпр.=K(H2)(I2)

K1(H2)(I2)=K2(HI)^2

K1/K2=Kрав.=(HI)^2/(H2)(I2)

В приложениях «свободной энергией» иногда называют не свободную энергию Гельмгольца, а энергию Гиббса. Это связано с тем, что энергия Гиббса также является мерой максимальной работы, но в данном случае рассматривается только работа над внешними телами, исключая среду:

Константа равновесия K связана со свободной энергией Гиббса ΔG следующим образом:

ΔG=−RT⋅lnK.

Приведенное уравнение позволяет по величине ΔG° вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов. Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры (если выразить отсюда константу, то температура будет в показателе степени). Для эндотермических процессов повышение температуры отвечает увеличению константы равновесия, для экзотермических - ее уменьшению. От давления константа равновесия не зависит, кроме случаев очень большого давления.

Зависимость константы равновесия от энтальпийного и энтропийного факторов свидетельствует о влиянии на нее природы реагентов.

10. Зависимость энергии Гиббса процесса и константы равновесия от температуры. Принцип Ле Шателье – Брауна.

Зависимость константы равновесия от температуры. Обычно константа равновесия изменяется с изменением температуры. Если в ходе реакции выделяется тепло, то с повышением температуры реакция замедляется и K уменьшается. Напротив, когда тепло в ходе реакции поглощается, константа равновесия с повышением температуры увеличивается. Температурная зависимость константы равновесия выражается в виде

dLnKр/dT=дельтаH/RT^2

где DН – теплота химического процесса (т.е. теплота химической реакции, теплота растворения и т.д.).

Принцип Ле Шателье : Если на систему, находяющуюся в равновесии, оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится.

Влияние температуры зависит от знака теплового эффекта реакции. При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры - в направлении экзотермической реакции. В общем же случае при изменении температуры химическое равновесие смещается в сторону процесса, знак изменения энтропии в котором совпадает со знаком изменения температуры.

Влияние давления

Давление существенно влияет на положение равновесия в реакциях с участием газообразных веществ, сопровождающихся изменением объёма за счёт изменения количества вещества при переходе от исходных веществ к продуктам:

При повышении давления равновесие сдвигается в направлении, в котором уменьшается суммарное количество молей газов и наоборот.

В реакции синтеза аммиака количество газов уменьшается вдвое: N2 + 3H2 ↔ 2NH3

Значит, при повышении давления равновесие смещается в сторону образования NH3.

Влияние инертных газов

Введение в реакционную смесь или образование в ходе реакции инертных газов действует так же, как и понижение давления, поскольку понижается парциальное давление реагирующих веществ. Следует отметить, что в данном случае в качестве инертного газа рассматривается газ, не участвующий в реакции. В системах с уменьшением количества молей газов инертные газы смещают равновесие в сторону исходных веществ, поэтому в производственных процессах, в которых могут образовываться или накапливаться инертные газы, требуется периодическая продувка газоводов.

Влияние концентрации

Влияние концентрации на состояние равновесия подчиняется следующим правилам:

При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции;

При повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.

Сопряженные пары окислитель-восстановитель. Окислительно-восстановительная двойственность.

В простых веществах число электроном соответствует числу протонов. В сложных веществах электроны смещаются от одного атома к другому, такое неравномерное распределение электронов получила название окисленности. Числу электронов смещенных от одного атома к другому называется степень окисления.

Окислитель содержит в своем составе элемент, понижающий степень своей окисленности, а восстановитель содержит элемент, степень окисленности которого повышается в ходе реакции.

Отдача электронов, сопровождающаяся повышением степени окисленности элемента,-называется окислением.

Cu0 (– 2e)=Cu2+

Присоединение электронов, сопровождающееся понижением степени окисленности элемента, называется восстановлением.

Cu0 и Cu2+ - Сопряженная пара

Если элемент находится в промежуточной степени окисленности,то его атомы могут, в зависимости от условий, как принимать, так и отдавать электроны. Поэтому соединения, содержащие элементы в промежуточной степени окисленности, обладают окислительно-восстановительной двойственностью- способностью вступать как с окислителями, так и с восстановителями.

Так, азот образует соединения, в которых степень его окисленности изменяется от – 3(аммиак) до +5(азотная кислота).


Похожая информация.