Какой пар является насыщенным. Насыщенный и ненасыщенный пар

Свойства насыщенного пара

Насыщенный пар и его свойства.

Кипение. критическая температура

Если в комнате оставить открытый стакан с водой, то через некоторое время вся вода из него испарится. Если же стакан накрыть крышкой, то вода в нем будет находиться неограниченно долго.

Читатель : Верно ли, что во втором случае вода в стакане не испаряется?

Когда стакан открыт, процесс испарения идет интенсивнее, чем процесс конденсации, так как перешедшие в газообразное состояние молекулы воды разлетаются по всей комнате. Когда стакан закрыт, то молекулы не могут вылететь из небольшого пространства между поверхностью воды и крышкой. Поэтому вскоре число молекул, покинувших воду, сравнивается с количеством молекул, вернувшихся в нее. Иначе: скорость процесса испарения становится равной скорости процесса конденсации.

Если жидкость и пар находятся в закрытом сосуде и в течение длительного времени не изменяется ни количество жидкости, ни количество пара, то говорят, чтожидкость и пар находятся в динамическом равновесии.

Пар, находящийся в состоянии динамического равновесия с жидкостью, называется насыщенным.

Свойства насыщенного пара

Давление насыщенного пара при данной температуре является величиной постоянной. У разных жидкостей давление насыщенного пара разное. Рассмотрим эксперимент, подтверждающий это утверждение.

В колбу, из которой предварительно откачали воздух, через воронку наливается жидкий эфир (рис. 13.1). Пары эфира создают давление, которое измеряется с помощью столбика ртути.

В начальный момент высота столбика ртути h = 760 мм, потом по мере испарения эфира она уменьшается, так как давление на ртуть со стороны паров эфира растет. Как только эфир, налитый в колбу, перестает испаряться, наступает насыщение , и давление больше не растет, сколько бы эфира ни налить в колбу.

Заметим, что чем выше температура колбы, тем больше давление насыщенных паров.

Параметры насыщенных паров удовлетворяют уравнению Менделеева–Клайперона

pV = .

Так как при данной температуре Т величины m и R постоянны для данного газа, то плотность насыщенного пара для данного вещества есть величина постоянная. Для примера в табл. 13.1 приведены сравнительные давления насыщенных паров воды и ртути при разных температурах.

Молекулярно-кинетическая теория позволяет не только понять, почему вещество может находиться в газообразном, жидком и твердом состояниях, но и объяснить процесс перехода вещества из одного состояния в другое.

Испарение и конденсация. Количество воды или любой другой жидкости в открытом сосуде постепенно уменьшается. Происходит испарение жидкости, механизм которого был описан в курсе физики VII класса. При хаотическом движении некоторые молекулы приобретают столь большую кинетическую энергию, что покидают жидкость, преодолевая силы притяжения со стороны остальных молекул.

Одновременно с испарением происходит обратный процесс - переход части хаотически движущихся молекул пара в жидкость. Этот процесс называют конденсацией. Если сосуд открытый, то покинувшие жидкость молекулы могут и не возвратиться в

жидкость. В этих случаях испарение не компенсируется конденсацией и количество жидкости уменьшается. Когда поток воздуха над сосудом уносит образовавшиеся пары, жидкость испаряется быстрее, так как у молекулы пара уменьшается возможность вновь вернуться в жидкость.

Насыщенный пар. Если сосуд с жидкостью плотно закрыть, то убыль ее вскоре прекратится. При неизменной температуре система «жидкость - пар» придет в состояние теплового равновесия и будет находиться в нем сколь угодно долго.

В первый момент, после того как жидкость нальют в сосуд и закроют его, она будет испаряться и плотность пара над жидкостью - увеличиваться. Однако одновременно с этим будет расти число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем большее число молекул пара возвращается в жидкость. В результате в закрытом сосуде при постоянной температуре в конце концов установится динамическое (подвижное) равновесие между жидкостью и паром. Число молекул, покидающих поверхность жидкости, будет равно числу молекул пара, возвращающихся за то же время в жидкость. Одновременно с процессом испарения происходит конденсация, и оба процесса в среднем компенсируют друг друга.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным паром. Это название подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.

Если воздух из сосуда с жидкостью предварительно откачан, то над поверхностью жидкости будет находиться только насыщенный пар.

Давление насыщенного пара. Что будет происходить с насыщенным паром, если уменьшать занимаемый им объем, например сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной?

При сжатии пара равновесие начнет нарушаться. Плотность пара в первый момент немного увеличивается, и из газа в жидкость начинает переходить большее число молекул, чем из жидкости в газ. Это продолжается до тех пор, пока вновь не установится равновесие и плотность, а значит, и концентрация молекул не примет прежнее значение. Концентрация молекул насыщенного пара, следовательно, не зависит от объема при постоянной температуре.

Так как давление пропорционально концентрации в соответствии с формулой то из независимости концентрации (или плотности) насыщенных паров от объема следует независимость давления насыщенного пара от занимаемого им объема.

Независимое от объема давление пара при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

При сжатии насыщенного пара все большая часть его переходит в жидкое состояние. Жидкость данной массы занимает меньший объем, чем пар той же массы. В результате обьем пара при неизменной его плотности уменьшается.

Мы много раз употребляли слова «газ» и «пар». Никакой принципиальной разницы между газом и паром нет, и эти слова в общем-то равноправны. Но мы привыкли к определенному, относительно небольшому интервалу температуры окружающей среды. Слово «газ» обычно применяют к тем веществам, давление насыщенного пара которых при обычных температурах выше атмосферного (например, углекислый газ). Напротив, о паре говорят тогда, когда при комнатной температуре давление насыщенного пара меньше атмосферного и вещество более устойчиво в жидком состоянии (например, водяной пар).

Независимость давления насыщенного пара от объема установлена на многочисленных экспериментах по изотермическому сжатию пара, находящегося в равновесии со своей жидкостью. Пусть вещество при больших объемах находится в газообразном состоянии. По мере изотермического сжатия плотность и давление его увеличиваются (участок изотермы АВ на рисунке 51). При достижении давления начинается конденсация пара. В дальнейшем при сжатии насыщенного пара давление не меняется до тех пор, пока весь пар не обратится в жидкость (прямая ВС на рисунке 51). После этого давление при сжатии начинает резко возрастать (отрезок кривой так как жидкости мало сжимаемы.

Изображенная на рисунке 51 кривая носит название изотермы реального газа.

Над свободной поверхностью жидкости всегда имеются пары этой жидкости. Если сосуд с жидкостью не закрыт, то всегда найдутся молекулы пара, которые удаляются от поверхности жидкости и не могут вернуться назад в жидкость. В закрытом сосуде одновременно с испарением жидкости происходит конденсация пара. Сначала число молекул, вылетающих из жидкости за 1 с, больше числа молекул, возвращающихся обратно, и плотность, а значит, и давление пара растет. Число молекул пара возрастает до тех пор, пока число молекул, покинувших жидкость (испарившихся), не станет равно числу молекул, возвратившихся у жидкость (сконденсировавшихся) за один и тот же промежуток времени. Такое состояние называют динамическим равновесием .

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром . Для описания насыщенного пара применяют следующие величины: давление насыщенного пара p н и плотность насыщенного пара ρ н. При данной температуры насыщенный пар обладает максимально возможным значением давления и плотности пара.

Пар, давление которого меньше давления насыщенного пара при данной температуре, называется ненассыщенным . Аналогично можно было дать определение и через плотность пара.

Опыт показывает, что ненасыщенные пары подчиняются всем газовым законам, и тем точнее, чем дальше они от насыщения.

Свойства насыщенных паров

Для насыщенных паров характерны следующие свойства:

Следовательно, насыщенный пар не подчиняется газовым законам идеального газа . Значения давления и плотности насыщенного пара при заданной температуре определяются из таблиц (см. таблицу).

Таблица. Давление (р ) и плотность (ρ) насыщенных паров воды при различных температурах (t ).

Влажность воздуха

В результате испарения воды с многочисленных водоемов (морей, озер, рек и др.), а также с растительных покровов в атмосферном воздухе всегда содержится водяной пар. От количества водяного пара, содержащегося в воздухе, зависит погода, самочувствие человека, функционирование многих его органов, жизнь растений, а также сохранность технических объектов, архитектурных сооружений, произведений искусств. Поэтому очень важно следить за влажностью воздуха, уметь измерять ее.

Водяной пар в воздухе обычно является ненасыщенным. Перемещение воздушных масс, обусловленное в конечном счете излучением Солнца, приводит к тому, что в одних местах нашей планеты в данный момент испарение воды преобладает над конденсацией, а в других, наоборот, преобладает конденсация.

Абсолютной влажностью ρ воздуха называют величину, численно равную массе водяного пара, содержащегося в 1 м 3 воздуха (т.е. плотность водяного пара в воздухе при данных условиях).

В СИ единицей абсолютной влажности является килограмм на кубический метр (кг/м 3). Иногда используются внесистемные единицы грамм на кубический метр (г/м 3).

Абсолютная влажность ρ и давление p водяного пара связаны между собой уравнением состояния

\(~p \cdot V = \dfrac {m \cdot M}{R \cdot T} \Rightarrow p = \dfrac{\rho}{M} \cdot R \cdot T\)

Если известна только абсолютная влажность, еще нельзя судить, насколько сух или влажен воздух. Для определения степени влажности воздуха необходимо знать, близок или далек водяной пар от насыщения.

Относительной влажностью воздуха φ называют выраженное в процентах отношение абсолютной влажности к плотности ρ 0 насыщенного пара при данной температуре (или отношение давления p водяного пара к давлению p 0 насыщенного пара при данной температуре):

\(~\varphi = \dfrac{\rho}{\rho_0} \cdot 100\;\%, \;\; ~\varphi = \dfrac{p}{p_0} \cdot 100\;\%.\)

Чем меньше относительная влажность, тем дальше пар от насыщения, тем интенсивнее происходит испарение. Давление насыщенного пара p 0 при заданной температуре - величина табличная. Давление p водяного пара (а значит, и абсолютную влажность) определяют по точке росы.

Пусть при температуре t 1 давление водяного пара p 1 . Состояние пара на диаграмме р , t изобразится точкой А (рис. 5).

При изобарном охлаждении до температуры t p пар становится насыщенным и его состояние изобразится точкой В . Температуру t p , при которой водяной пар становится насыщенным, называют точкой росы . При охлаждении ниже точки росы начинается конденсация паров: появляется туман, выпадает роса, запотевают окна. Точка росы позволяет определить давление водяного пара p 1 , находящегося в воздухе при температуре t 1 .

Действительно, из рисунка 5 видим, что давление p 1 равно давлению насыщенного пара при точке росы p 1 = p 0tp . Следовательно, \(~\varphi = \dfrac{p_{0tp}}{p_0} \cdot 100 \;\%\)

Психрометр. Гигрометр

При понижении температуры, относительная влажность воздуха увеличивается. При некоторой температуре (точке росы ) водяной пар становится насыщенным. Дальнейшее понижение температуры приводит к тому, что образующийся излишек водяных паров начинает конденсироваться в виде капелек росы или тумана.

Для определения относительной влажности воздуха, можно искусственно понизить температуру воздуха в какой-то ограниченной области до точки росы. Абсолютная влажность и, соответственно, давление водяных паров при этом останутся неизменными. Сравнивая давление водяного пара при точке росы с давлением насыщенного пара, которое могло бы быть при интересующей нас температуре, мы тем самым, найдем относительную влажность воздуха. Быстрого охлаждения можно добиться при интенсивном испарении какой-нибудь летучей жидкости. Такой метод применяют для измерении влажности при помощи конденсационного гигрометра.

Конденсационный гигрометр состоит из металлической коробочки с двумя отверстиями (рис. 6).

В коробочку заливается эфир. С помощью резиновой груши через коробочку прокачивается воздух. Эфир очень быстро испаряется, температура коробочки и воздуха, находящегося вблизи нее, понижается, а относительная влажность растет. При некоторой температуре, которая измеряется термометром, вставленным в отверстие прибора, поверхность коробочки покрывается мельчайшими капельками росы. Чтобы точнее зафиксировать момент появления на поверхности коробочки росы, эта поверхность полируется до зеркального блеска, а рядом с коробочкой для контроля располагается отполированное металлическое кольцо.

В современных конденсационных гигрометрах для охлаждения зеркальца пользуются полупроводниковым элементом, принцип действия которого основан на Пельтье эффекте, а температура зеркальца измеряется вмонтированным в него проволочным сопротивлением или полупроводниковым микротермометром.

Действие волосного гигрометра основано на свойстве обезжиренного человеческого волоса изменять свою длину при изменении влажности воздуха, что позволяет измерять относительную влажность от 30 до 100%. Волос 1 (рис. 7) натянут на металлическую рамку 2. Изменение длины волоса передаётся стрелке 3, перемещающейся вдоль шкалы.

Рис. 7

Действие керамического гигрометра основано на зависимости электрического сопротивления твердой и пористой керамической массы (смесь глины, кремния, каолина и некоторых окислов металла) от влажности воздуха.

Испарение – это парообразование, которое происходит только со свободной поверхности жидкости, граничащей с газообразной средой или вакуумом.

Неравномерное распределение кинетической энергии теплового движения молекул приводит к тому, что при любой температуре кине­тическая энергия некоторых молекул жидкости или твердо­го тела может превышать по­тенциальную энергию их связи с остальными молекулами.

Ис­парение - это процесс, при ко­тором с поверхности жидкости или твердого тела вылетают молекулы, кинетическая энергия которых превышает потенциаль­ную энергию взаимодействия мо­лекул. Испарение сопровождает­ся охлаждением жидкости.

Рассмотрим процесс испарения с точки зрения молекулярно-кинетической теории. Чтобы покинуть жидкость, молекулы должны выполнить работу за счет уменьшения своей кинетической энергии. Среди хаотически движущихся молекул жидкости в ее поверхностном слое всегда найдутся такие молекулы, которые стремятся вылететь из жидкости. Когда такая молекула выходит за поверхностный слой, то возникает сила, втягивающая молекулу обратно в жидкость. Поэтому вылетают из жидкости только те молекулы, у которых кинетическая энергия больше работы, необходимой для преодоления противодействия молекулярных сил.

Скорость испарения зависит:

а) от рода жидкости;

б) от площади ее свободной поверхности. Чем больше эта площадь, тем быстрее испаряется жидкость.

в) чем меньше плотность пара жидкости над ее поверхностью, тем больше скорость испарения. Поэтому откачка паров (ветер) с поверхности ускорит ее испарение.

г) с повышением температуры скорость испарения жидкости возрастает.

Парообразование - этопереход вещества из жидкого состояния в газообразное состояние.

Конденсация - это переход вещества из газообразного состояния в жидкое состояние.

При парообразовании внутренняя энергия вещества увеличивается, а при конденсации - уменьшается.

Теплота парообразования этоколичество теплоты Q, необходимое для превращения жидкости в пар при неизменной температуре.

Удельная теплота парообразования L измеряется количеством теплоты, необходимым для превращения в пар единицы массы жидкости при неизменной температуре

Насыщенный и ненасыщен­ный пар. Испарение жидкости в закрытом сосуде при неизмен­ной температуре приводит к постепенному увеличению кон­центрации молекул испаряюще­гося вещества в газообразном состоянии. Через некоторое время после начала процесса испаре­ния концентрация вещества в газообразном состоянии дости­гает такого значения, при ко­тором число молекул, возвращаю­щихся в жидкость в единицу времени, становится равным чис­лу молекул, покидающих по­верхность жидкости за то же время. Устанавливается динами­ческое равновесие между процес­сами испарения и конденсации вещества.

Динамическое равновесие - это когда процесс испарения жидкости полностью компенсируется с кон­денсацией пара, т.е. сколько молекул вылетает из жидкости, столько же в нее возвращается.

Насыщенный пар – это пар, который находится в состоянии динамического равновесия со своей жидкостью. Давление и плотность на­сыщенного пара однозначно определяются его температурой.

Ненасыщенный пар – это пар, который находится над поверхностью жидкости, когда испарение преобладает над конденсацией, и пар при отсутствии жидкости. Его давле­ние ниже давления насыщен­ного пара.

При сжатии насыщенного па­ра концентрация молекул пара увеличивается, равновесие между процессами испарения и конден­сации нарушается и часть пара превращается в жидкость. При расширении насыщенного пара концентрация его молекул уменьшается и часть жидкости превращается в пар. Таким об­разом, концентрация насыщенно­го пара остается постоянной не­зависимо от объема. Так как давление газа пропорционально концентрации и температуре давление насыщенного пара при постоянной температу­ре не зависит от объема.

Интенсивность процесса испа­рения увеличивается с возраста­нием температуры жидкости. По­этому динамическое равновесие между испарением и конденса­цией при повышении темпера­туры устанавливается при боль­ших концентрациях молекул газа.

Прежде, чем отвечать на вопрос, поставленный в названии статьи, разберемся, что такое пар. Образы, возникающие у большинства людей при этом слове: кипящий чайник или кастрюля, парилка, горячий напиток и еще множество подобных картинок. Так или иначе, в наших представлениях присутствует жидкость и газообразная субстанция, поднимающаяся над ее поверхностью. Если вас попросят привести пример пара, вы сразу вспомните водяной пар, пары спирта, эфира, бензина, ацетона.

Существует еще одно слово для обозначения газообразных состояний – газ . Здесь мы обычно вспоминаем кислород, водород, азот и другие газы, не ассоциируя их с соответствующими жидкостями. При этом хорошо известно, что они существуют и в жидком состоянии. На первый взгляд различия заключаются в том, что пар соответствует естественным жидкостям, а газы надо сжижать специально. Однако это не совсем верно. Более того, образы, возникающие при слове пар – паром не являются. Чтобы дать более точный ответ, разберемся, как возникает пар.

Чем отличается пар от газа?

Агрегатное состояние вещества задается температурой, точнее соотношением между энергией, с которой взаимодействуют его молекулы и энергией их теплового хаотического движения. Приближенно, можно считать, что если энергия взаимодействия значительно больше – твердое состояние, если значительно больше энергия теплового движения — газообразное, если энергии сравнимы – жидкое.

Получается, чтобы молекула могла оторваться от жидкости и участвовать в образовании пара, величина тепловой энергии должна быть больше энергии взаимодействия. Как это может произойти? Средняя скорость теплового движения молекул равна определенному значению, зависящему от температуры. Однако индивидуальные скорости молекул различны: большая их часть обладает скоростями близкими к среднему значению, но некоторая часть имеет скорости больше средней, некоторая — меньше.

Более быстрые молекулы могут иметь тепловую энергию большую, чем энергия взаимодействия, а значит, попав на поверхность жидкости, способны оторваться от нее, образуя пар. Такой способ парообразования называется испарением . Из-за того же распределения скоростей существует и противоположный процесс — конденсация: молекулы из пара переходят в жидкость. Кстати образы, которые обычно возникают при слове пар, это не пар, а результат противоположного процесса — конденсации. Пар увидеть нельзя.

Пар при определенных условиях может стать жидкостью, но для этого его температура не должна превышать определенного значения. Это значение называется критической температурой. Пар и газ — газообразные состояния, отличающиеся температурой, при которой они существуют. Если температура не превышает критической — пар, если превышает – газ. Если поддерживать температуру постоянной и уменьшать объем, пар — сжижается, газ – не сжижается.

Что такое пар насыщенный и ненасыщенный

Само слово «насыщенный» несет определенную информацию, трудно насытить большую область пространства. Значит, чтобы получить насыщенный пар, надо ограничить пространство, в котором находится жидкость . Температура при этом должна быть меньше критической для данного вещества. Теперь испарившиеся молекулы остаются в пространстве, где находится жидкость. Сначала большинство переходов молекул будет происходить из жидкости, при этом плотность пара будет повышаться. Это в свою очередь вызовет большее число обратных переходов молекул в жидкость, что увеличит скорость процесса конденсации.

Наконец, устанавливается состояние, для которого среднее число молекул, переходящих из одной фазы в другую будет равным. Такое состояние называется динамическое равновесие . Для этого состояния характерно одинаковое изменение величины и направления скоростей испарения и конденсации. Это состояние соответствует насыщенному пару. Если состояние динамического равновесия не достигнуто, это соответствует ненасыщенному пару.

Начинают изучение какого-то объекта, всегда с самой простой его модели. В молекулярно-кинетической теории это — идеальный газ. Основные упрощения здесь — пренебрежение собственным объемом молекул и энергией их взаимодействия. Оказывается, подобная модель вполне удовлетворительно описывает ненасыщенный пар. Причем чем менее он насыщен, тем правомернее ее применение. Идеальный газ — это газ, он не может стать ни паром, ни жидкостью. Следовательно, для насыщенного пара подобная модель не является адекватной.

Основные отличия насыщенного пара от ненасыщенного

  1. Насыщенный означает, что данный объект имеет самое большое из возможных значений некоторых параметров. Для пара — это плотность и давление . Эти параметры для ненасыщенного пара имеют меньшие значения. Чем дальше пар от насыщения, тем меньше эти величины. Одно уточнение: температура сравнения должна быть постоянной.
  2. Для ненасыщенного пара выполняется закон Бойля-Мариотта : если температура и масса газа постоянны, увеличение или уменьшение объема, вызывает уменьшение или увеличение давления во столько же раз, давление и объем — связаны обратно пропорциональной зависимостью. Из максимальности плотности и давления при постоянной температуре вытекает их независимость от объема насыщенного пара, получается, что для насыщенного пара давление и объем — не зависят друг от друга.
  3. Для ненасыщенного пара плотность не зависит от температуры , и если объем сохраняется, не меняется и значение плотности. Для насыщенного пара при сохранении объема плотность изменяется, если изменяется температура. Зависимость в данном случае прямая. Если увеличивается температура, увеличивается и плотность, если температура уменьшается, так же изменяется плотность.
  4. Если объем постоянен, ненасыщенный пар ведет себя в соответствии с законом Шарля: при увеличении температуры во столько же раз увеличивается и давление. Такая зависимость называется линейной. У насыщенного пара при увеличении температуры давление возрастает быстрее, чем у ненасыщенного пара. Зависимость имеет экспоненциальный характер.

Подводя итог, можно отметить значительные различия свойств сравниваемых объектов. Основное отличие в том, что пар, в состоянии насыщения, нельзя рассматривать в отрыве от его жидкости. Это двухкомпонентная система, к которой нельзя применять большинство газовых законов.