Какому из графиков ускорения прямолинейного движения. Как найти среднюю скорость по графику

Графическое представление равноускоренного прямолинейного движения.

Перемещение при равноускоренном движении.

I уровень.

Многие физические величины, описывающие движения тел, с течением времени изменяются. Поэтому для большей наглядности описания движение часто изображают графически.

Покажем, как графически изображаются зависимости от времени кинематических величин, описывающих прямолинейное равноускоренное движения.

Равноускоренное прямолинейное движение - это движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, т. е. это движение с постоянным по модулю и направлению ускорением.

a=const - уравнение ускорения. Т. е а имеет численное значение, которое не изменяется со временем.

По определению ускорения

Отсюда мы уже нашли уравнения для зависимости скорости от времени: v = v0 + at.

Посмотрим, как это уравнение можно использовать для графического представления равноускоренного движения.

Изобразим графически зависимости кинематических величин от времени для трех тел

.

1 тело движется вдоль оси 0Х, при этом увеличивает свою скорость (вектор ускорения а сонаправленн с вектором скорости v). vx >0, ах > 0

2 тело движется вдоль оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx >0, ах < 0

2 тело движется против оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx < 0, ах > 0

График ускорения


Ускорение по определению величина постоянная. Тогда для представленной ситуации график зависимости ускорения от времени a(t) будет иметь вид:

Из графика ускорения можно определить как изменялась скорость – увеличивалась или уменьшалась и на какое численное значение изменилась скорость и у какого тела скорость больше изменилась.

График скорости

Если сравнить зависимость координаты от времени при равномерном движении и зависимость проекции скорости от времени при равноускоренном движении, можно увидеть, что эти зависимости одинаковы:

х= х0 + vx t vx = v 0 x + a х t

Это значит, что и графики зависимостей имеют одинаковый вид.

Для построения этого графика на оси абсцисс откладывают время движения, а на оси ординат - скорость (проекцию скорости) тела. В равноускоренном движении скорость тела с течением времени изменяется.

Перемещение при равноускоренном движении.

При равноускоренном прямолинейном движении скорость тела определяется формулой

vx = v 0 x + a х t

В этой формуле υ0 – скорость тела при t = 0 (начальная скорость ), a = const – ускорение. На графике скорости υ (t ) эта зависимость имеет вид прямой линии (рис.).

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. для графика I. Ускорение численно равно отношению сторон треугольника ABC : MsoNormalTable">

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

Для графика I: υ0 = –2 м/с, a = 1/2 м/с2.

Для графика II: υ0 = 3 м/с, a = –1/3 м/с2.

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t . Выделим на оси времени некоторый малый промежуток времени Δt . Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt . Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt . Это перемещение равно площади заштрихованной полоски (рис.). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt , получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF . Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

Так как υ – υ0 = at s t запишется в виде:

Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y 0 прибавить перемещение за время t : DIV_ADBLOCK283">


Так как υ – υ0 = at , окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде: https://pandia.ru/text/78/516/images/image009_57.gif" width="146 height=55" height="55">

При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a . Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t . Результат записывается в виде

Если начальная скорость υ0 равна нулю, эти формулы принимают вид MsoNormalTable">

Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ0, υ, s , a , y 0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.

Пример решения задачи:

Петя съезжает со склона горы из состояния покоя с ускорением 0,5 м/с2 за 20 с и дальше движется по горизонтальному участку. Проехав 40 м, он врезается в зазевавщегося Васю и падает в сугроб, снизив свою скорость до 0м/с. С каким ускорением двигался Петя по горизонтальной поверхности до сугроба? Какова длина склона горы, с которой так неудачно съехал Петя?

Дано :

a 1 = 0,5 м/с2

t 1 = 20 с

s 2 = 40 м

Движение Пети состоит из двух этапов: на первом этапе, спускаясь со склона горы, он движется с возрастающей по модулю скоростью; на втором этапе при движении по горизонтальной поверхности его скорость уменьшается до нуля (столкнулся с Васей). Величины, относящиеся к первому этапу движения, запишем с индексом 1, а ко второму этапу с индексом 2.

1 этап.

Уравнение для скорости Пети в конце спуска с горы:

v 1 = v 01 + a 1t 1.

В проекциях на ось X получим:

v 1x = a 1x t .

Запишем уравнение, связывающее проекции скорости, ускорения и перемещения Пети на первом этапе движения:

или т. к. Петя ехал с самого верха горки с начальной скоростью V01=0

(на месте Пети, я бы поостереглась ездить с таких высоких горок)

Учитывая, что начальная скорость Пети на этом 2 этапе движения равна его конечной скорости на первом этапе:

v 02 x = v 1 x , v 2x = 0, где v1 – скорость с которой Петя достиг подножия горки и начал двигаться к Васе. V2x - скорость Пети в сугробе.

Используем уравнение и найдем скорость v1

На горизонтальним участе дороги путь Пети рамен:

НО!!! целесообразнее воспользоваться другим уравнением, т. к. нам не известно время жвижения Пети до Васи t2

Ускорение получиться отрицательным – это значит, что Петя очень старался затормозить не об Васю, а несколько раньше.

Ответ: a 2 = -1,25 м/с2; s 1 = 100 м.

II уровень. Письменно решить задачи.

1. По графикам, изображенным на рисунке, записать уравнения зависимости скорости от времени. Как двигались тела на каждом этапе своего движения(сделать по образцу см. пример).

2. По данному графику ускорения расскажите как меняется скорость тела. Запишите уравнения зависимости скорости от времени, если на момент начала движения (t=0) скорость тела v0х =0. Обратите внимание, что каждый последующий участок движения, тело начинает проходить с уже какой-либо скоростью (которая была достигнута за предыдущее время!).

3. Поезд метро, отходя от станции, может развить скорость 72 км/ч за 20 с. Определить с каким ускорением удаляется от вас сумка, забытая в вагоне метро. Какой путь при этом она проедет?

4. Велосипедист, движущийся со скоростью 3 м/с, начинает спускаться с горы с ускорением 0,8 м/с2. Найдите длину го­ры, если спуск занял 6 с.

5. Начав торможение с ускорением 0,5 м/с2, поезд прошел до остановки 225 м. Какова была его скорость перед началом торможения?

6. Начав двигаться, футбольный мяч достиг скорости 50 м/с, пройдя путь 50 м и врезался в окно. Определите время, за которое мяч прошел этот путь, и ускорение, с которым он двигался.

7. Время реакции соседа дяди Олега = 1,5 мин, за это время он сообразит, что случилось с его окном и успеет выбежать во двор. Определите какую скорость должны развить юные футболисты, что бы радостные владельцы окна их не догнали, если до своего подъезда им нужно бежать 350 м.

8. Два велосипедиста еду навстречу друг другу. Первый, имея скорость 36 км/ч, начал подниматься в гору с ускоре­нием 0,2 м/с2, а второй, имея скорость 9 км/ч, стал спус­каться с горы с ускорением 0,2 м/с2. Через сколько времени и в каком месте они столкнуться из-за своей рассеянности, если длина горы 100 м?

1) Аналитический способ.

Считаем шоссе прямолинейным. Запишем уравнение движения велосипедиста. Так как велосипедист двигался равномерно, то его уравнение движения:

(начало координат помещаем в точку старта, поэтому начальная координата велосипедиста равна нулю).

Мотоциклист двигался равноускоренно. Он также начал движение с места старта, поэтому его начальная координата равна нулю, начальная скорость мотоциклиста также равна нулю (мотоциклист начал двигаться из состояния покоя).

Учитывая, что мотоциклист начал движение на позже, уравнение движения мотоциклиста:

При этом скорость мотоциклиста изменялась по закону:

В момент, когда мотоциклист догнал велосипедиста их координаты равны, т.е. или:

Решая это уравнение относительно , находим время встречи:

Это квадратное уравнение. Определяем дискриминант:

Определяем корни:

Подставим в формулы числовые значения и вычислим:

Второй корень отбрасываем как несоответствующий физическим условиям задачи: мотоциклист не мог догнать велосипедиста через 0,37 с после начала движения велосипедиста, так как сам покинул точку старта только через 2 с после того, как стартовал велосипедист.

Таким образом, время, когда мотоциклист догнал велосипедиста:

Подставим это значение времени в формулу закона изменения скорости мотоциклиста и найдем значение его скорости в этот момент:

2) Графический способ.

На одной координатной плоскости строим графики изменения со временем координат велосипедиста и мотоциклиста (график для координаты велосипедиста — красным цветом, для мотоциклиста — зеленым). Видно, что зависимость координаты от времени для велосипедиста — линейная функция, и график этой функции — прямая (случай равномерного прямолинейного движения). Мотоциклист двигался равноускоренно, поэтому зависимость координаты мотоциклиста от времени — квадратичная функция, графиком которой является парабола.

Рисунок 1. Графики равномерного движения. Автор24 - интернет-биржа студенческих работ

Простейшим видом движения является равномерное движение. Его можно зафиксировать тогда, когда ускорение тела в любой момент времени будет равно нулю. Другими словами, равномерное движение представляют в виде определенного идеального положения тела, когда его скорость будет одной и той же в любой момент времени. При прохождении тела равных промежутков расстояния за одинаковые промежутки времени движение приобретает признаки равномерного прямолинейного передвижения. В реальной жизни подобные характеристики практически не встречаются.

Определение 1

Путь – длина траектории, по которой в течение определенного промежутка времени двигалось конкретное тело.

Определение 2

Перемещение – расстояние между начальной и конечной точкой траектории движения тела.

Путь и перемещение – это разные понятия, так как путь является скалярной величиной, а перемещение – векторной величиной. При этом модуль вектора перемещения равняется отрезку, соединяющего начальную и конечную точку траектории движения тела.

Скорость равномерного движения

Определение 3

Скоростью равномерного движения называют модуль вектора, который вычисляется по определенной формуле. Она гласит, что вектор будет равен отношению пути, который пройден телом, ко времени, затраченному на его прохождение.

При равномерном движении совпадает направление вектора скорости с направлением движения. Это правило необходимо учитывать при построении графика равномерного движения. Перемещение и путь при подобном движении будут иметь одинаковые значения.

К равномерному движению относят также состояние покоя. В этом случае тело проходит равные расстояния за одинаковые временные промежутки. В состоянии покоя все значения будут равны нулю. При равномерном движении пройденный путь складывается из следующих составных показателей:

  • начальной координаты;
  • произведения скорости тела на время движения.

Графики равномерного движения

При построении графика равномерного движения с изменением скорости во времени получится прямая, которая будет проходить параллельно линии оси абсцисс. Площадь получившегося прямоугольника равняется длине пути, который пройден телом за конкретное время. То есть площадь прямоугольника будет равна произведению всех его сторон.

После построения графика зависимости пройденного пути от времени, вычисляют скорость, с которой двигалось тело. В этом случае график имеет прямую линию, которая проведена из начала координат. Необходимым значением модуля вектора скорости станет тангенс угла наклона прямой по отношению к оси абсцисс. При составлении графика равномерного движения ось абсцисс является осью времени. Сильный наклон графика говорит о том, что скорость тела большая.

В физике используются следующие обозначения равномерного движения:

Оно показывает неизменность скорости, которая выражена в виде константы.

Равномерное движение проходит по:

  • криволинейной траектории;
  • прямолинейной траектории.

Равномерное движение описывают по формуле:

В такой формуле $s$ – этот путь, который прошло тело от начальной точки отсчета, $t$ – время тела в пути, а $s_0$ - значение пути в начальный момент времени.

Прямолинейное движение

Замечание 1

Движение называют прямолинейным, если оно происходит по прямой линии.

Траектория прямолинейного движения – прямая линия. При скорости равномерного движения нет зависимости от времени, так как и в любой точке траектории она направлена аналогично перемещению тела. Иными словами, вектор перемещения совпадает по направлению с вектором скорости. Средняя скорость в любой промежуток времени равна мгновенной скорости.

Cкорость равномерного прямолинейного движения показывает значение перемещения материальной точки за единицу времени.

При таком движении полное ускорение выражается по формуле:

В международной системе измерений единицей ускорения является ускорение, при котором скорость тела за каждую секунду изменяется на 1 метр.

Равнопеременное движение

Частным случаем неравномерного движения тела является равномерное прямолинейное движение.

Равнопеременное движение представляет собой такое движение, когда скорость материальной точки изменяется одинаково за любые равные промежутки времени. Ускорение тела при равнопеременном движении остается на неизменном уровне по направлению и по модулю.

Равнопеременное движение бывает двух видов: равноускоренным и равнозамедленным.

Движение тела или материальной точки с положительным ускорением считается равноускоренным. При таком способе движения оно может совершать разгон с ускорением на неизменном уровне.

Движение тела с отрицательным ускорением называют равнозамедленным. При подобном виде движения тело замедляется на равномерном уровне.

Среднюю скорость переменного движения возможно определить делением перемещения тела на время, в течение которого это перемещение совершалось. Единицей измерения средней скорости является м/с.

Мгновенная скорость и ускорение

Скорость тела или материальной точки называют мгновенной, если она есть в конкретный момент времени или в заданной точке траектории движения. Это значение называют предельным, поскольку к нему стремится средняя скорость тела при бесконечном уменьшении промежутка времени. Его обозначают $Δt$.

Мгновенная скорость выражается по следующей формуле:

Величина, которая определяет изменения в наборе скорости тела, называется ускорением. Это предельные значения величины и к ней стремится изменения скорости при бесконечном уменьшении промежутка времени $Δt$.

Перемещение при равномерном прямолинейном движении рассчитывается по формуле:

Величина $υx$ – проекция скорости на ось Х.

Отсюда следует, что закон равномерного прямолинейного движения имеет следующий вид:

В начальный момент времени $xo = 0$, поэтому остальные значения приобретают вид.

3. Рассмотрите рисунок 4.6.
а) В каких точках графика угол наклона касательной наибольший?

Мгновенная и средняя скорость

наименьший?

2. Средняя скорость

vср = l/t. (1)


5. Найдите:

в) среднюю скорость Саши.


6. Найдите:

б) среднюю скорость Саши.










Разбор тренировочного теста интернет-олимпиады по физике 2008/2009 года

11 класс. Кинематика

Вопрос № 1

По графику, представленному на рисунке, определите скорость движения велосипедиста через три секунды после начала движения.

Решение.

На рисунке представлен график зависимости пути от времени. График представляет собой прямую линию, значит, велосипедист двигался равномерно. Определим по графику величину пути, пройденного велосипедистом за фиксированный отрезок времени. Например, за 3 с велосипедист прошел 9 м. Скорость велосипедиста V = L / t = 9/3 = 3 м/с.

Вопрос № 2

Пешеход и велосипедист одновременно начали движение навстречу. Их скорости равны V1 = и V2 = , соответственно. Определите время движения до встречи, если начальное расстояние между ними L = .

Решение.

Определим скорость велосипедиста в системе отсчета пешехода V12 = V1 + V2 = 6 + 30 = 36 км/ч = 10 м/с. Итак, пешеход и велосипедист сближаются со скоростью 10 м/с, тогда их время движения до встречи t = L / V12 = 700/10 = 70 с.

Вопрос № 3

Автомобиль двигался со скоростью 15 м/св течение 5 с. Какой путь он проехал за это время?

Решение.

Автомобиль двигался равномерно, поэтому пройденный путь L = Vt = 155 = 75 м.

Вопрос № 4

Брошенный вертикально вверх мяч возвращается в исходное положение. На рисунке представлен график его скорости от времени. В какой момент времени мяч достиг максимальной высоты?

Решение.

В момент, когда мяч достиг максимальной высоты, его скорость равна нулю. По графику, представленному на рисунке определяем, что скорость мяча равна нулю в момент времени t = 2 с.

Вопрос № 5

Какие из перечисленных выше величин векторные?

(Отметьте все векторные величины)

Решение.

Из перечисленных величин векторными являются скорость, ускорение и перемещение. Путь - величина скалярная.

Вопрос № 6

Спортсмен пробежал дистанцию 400 м по дорожке стадиона и возвратился к месту старта. Определите путь L, пройденный спортсменом, и модуль его перемещения S.

Решение.

Пройденный спортсменом путь L = 400 м. Модуль перемещения S = 0, так как спортсмен вернулся в точку, из которой он начал движение.

Вопрос № 7

Скорость тела, движущегося прямолинейно и равноускоренно, изменилась при перемещении из точки 1 в точку 2 так, как показано на рисунке. Какое направление имеет вектор ускорения на этом участке пути?

Решение.

Из рисунка видно, что модуль скорости тела при перемещении уменьшается, значит, вектор ускорения направлен навстречу движению, то есть налево.

Вопрос № 8

По графику зависимости модуля скорости от времени определите ускорение прямолинейно движущегося тела в момент времени t = 2 с.

Решение.

По графику определим изменение скорости тела за фиксированный момент времени. Например, за первые две секунды скорость тела изменилась на 6 м/с (с V0 = 3 м/с до Vt= 9 м/с). Ускорение a = (Vt – V0) / t = 6/2 = 3 м/с2.

Вопрос № 9

При равноускоренном движении автомобиля в течение пяти секунд его скорость увеличилась от 10 до 15 м/с. Чему равен модуль ускорения автомобиля?

Решение.

Ускорение автомобиля a = (Vt – V0) / t= (15 – 10)/5 = 5/5 = 1 м/с2.

Вопрос № 10

Автомобиль стартует с места с постоянным ускорением а = 1 м/с2. Какой путь проходит автомобиль за первые десять секунд движения?

Решение.

Автомобиль движется равноускоренно без начальной скорости - пройденный путь L = at2/2 = 1102/2 = 50 м.

Вопрос № 11

Плот равномерно плывет по реке со скоростью 3 км/ч. Сплавщик движется поперек плота со скоростью 4 км/ч. Какова скорость сплавщика в системе отсчета, связанной с берегом?

Решение.

Скорость сплавщика в в системе отсчета, связанной с берегом

Вопрос № 12

Вертолет поднимается вертикально вверх c постоянной скоростью. Какова траектория движения точки на конце лопасти винта вертолета в системе отсчета, связанной с корпусом вертолета?

Решение.

Представьте себе, что вы находитесь в кабине вертолета, то есть вы неподвижны относительно корпуса вертолета. В этом случае вы можете видеть, что любая точка винта вертолета описывает окружность.

Вопрос № 13

Тело движется вдоль оси Х по закону, представленному на рисунке, где х — координата в метрах, t — время в секундах. Определите модуль ускорения тела.

Решение.

Уравнение зависимости координаты от времени при прямолинейном равноускоренном движении в общем виде имеет вид Х(t) = X0 + V0хt + aхt2/2, где X0 - начальная координата, а V0х и aх- проекции начальной скорости и ускорения на ось Х.

Приравнивая члены, в которые входит t2, получим aхt2/2 = –4,5t2. Откуда проекция ускорения aх = –9 м/с2, а модуль ускорения a= 9 м/с2.

Вопрос № 14

На рисунке представлены графики зависимости модуля скорости от времени для четырех тел. Какое из этих тел (или какие тела) прошли наибольший путь?

Решение.

На рисунке показаны графики зависимости скорости движущихся тел от времени. Как известно, пройденный телом путь представляет собой площадь, лежащую под графиком скорости. Из рисунка видно, что фигура максимальной площади лежит под графиком, для тела 4. Значит, за промежуток времени от 0 до t0 тело 4 прошло наибольший путь.

Вопрос № 15

Тело движется прямолинейно. На рисунке представлен график скорости тела от времени. На каком промежутке (каких промежутках) времени проекция ускорения отрицательна?

Решение.

Проанализируем график:

1. на промежутке времени от 0 до 1с скорость тела постоянна, поэтому ах = 0;

2. на промежутке времени от 1с до 2с скорость тела уменьшается, поэтому проекция ускорения ах < 0;

3. на промежутке времени от 2с до 3с тело покоится, поэтому ах = 0;

4. на промежутке времени от 3с до 4с скорость тела увеличивается, поэтому проекция ускорения ах > 0.

Итак, проекция ускорения отрицательна на промежутке времени от 1с до 2с.

Вопрос № 16

Двигавшийся с начальной скоростью 20 м/с автомобиль разгоняется с постоянным ускорением а = 2 м/с2 в течение 5 с. Какой путь он проехал за это время?

Решение.

Для расчета пути можно воспользоваться формулой L = V0t + at2/2 = 205 + 252/2 = .

Как найти среднюю скорость по графику

1. Мгновенная скорость

В этом параграфе мы будем рассматривать неравномерное движение. Однако при этом нам пригодится то, что мы знаем о прямолинейном равномерном движении.

На рисунке 4.1 показаны положения разгоняющегося автомобиля на прямом шоссе с интервалом времени 1 с. Стрелка указывает на зеркальце заднего вида, положение которого мы рассмотрим далее более подробно.

Мы видим, что за равные интервалы времени автомобиль проходит разные пути, то есть движется неравномерно.

Уменьшим теперь последовательные интервалы времени в 20 раз – до 0,05 с – и проследим за изменением положения автомобиля в течение половины секунды (это нетрудно сделать, например, с помощью видеосъемки).

Чтобы не загромождать рисунок 4.2, на нем изображены только два положения автомобиля с промежутком времени 0,5 с. Последовательные положения автомобиля с интервалом 0,05 с отмечены положением его зеркальца заднего вида (показано красным цветом).

Мы видим, что когда последовательные равные промежутки времени достаточно малы, то пути, проходимые автомобилем за эти промежутки времени, практически одинаковы. А это означает, что движение автомобиля в течение столь малых промежутков времени можно с хорошей точностью считать прямолинейным равномерным.

Оказывается, этим замечательным свойством обладает любое движение (даже криволинейное): если рассматривать его за достаточно малый промежуток времени Δt, оно очень похоже на прямолинейное равномерное движение! Причем чем меньше промежуток времени, тем больше это сходство.

Скорость тела за достаточно малый промежуток времени и называют его скоростью в данный момент времени t, если этот момент времени находится в промежутке Δt. А более точное ее название – мгновенная скорость.

Насколько малым должен быть промежуток времени Δt, чтобы в течение этого промежутка движение тела можно было считать прямолинейным равномерным, зависит от характера движения тела.

В случае разгона автомобиля это доли секунды. А, например, движение Земли вокруг Солнца можно с хорошей точностью считать прямолинейным и равномерным даже в течение суток, хотя Земля за это время пролетает в космосе больше двух с половиной миллионов километров!

1. По рисунку 4.2 определите мгновенную скорость автомобиля. Длину автомобиля примите равной 5 м.

Значение мгновенной скорости автомобиля показывает спидометр (рис. 4.3).

Как найти мгновенную скорость по графику зависимости координаты от времени

На рисунке 4.4 изображен график зависимости координаты от времени для автомобиля, который движется по прямолинейному шоссе.

Мы видим, что он движется неравномерно, потому что график зависимости его координаты от времени – это кривая, а не отрезок прямой.

Покажем, как определить по этому графику мгновенную скорость автомобиля в какой-либо момент времени – скажем, при t = 3 с (точка на графике).

Для этого рассмотрим движение автомобиля за столь малый промежуток времени, в течение которого его движение можно считать прямолинейным равномерным.

На рисунке 4.5 показан интересующий нас участок графика при десятикратном увеличении (см., например, шкалу времени).

Мы видим, что этот участок графика практически неотличим от отрезка прямой (красный отрезок). За последовательные равные промежутки времени по 0,1 с автомобиль проходит практически одинаковые расстояния – по 1 м.

2. Чему равна мгновенная скорость автомобиля в момент t = 3 с?

Возвращаясь к прежнему масштабу чертежа, мы увидим, что прямая красного цвета, с которой практически совпадал малый участок графика, – касательная к графику зависимости координаты от времени в данный момент времени (рис. 4.6).

Итак, о мгновенной скорости тела можно судить по угловому коэффициенту касательной к графику зависимости координаты от времени: чем больше угловой коэффициент касательной, тем больше скорость тела. (Описанный способ определения мгновенной скорости с помощью касательной к графику зависимости координаты от времени связан с понятием производной функции. Это понятие вы будете изучать в курсе «Алгебра и начала аиализа».) А в тех точках графика, где угол наклона касательной равен нулю, то есть касательная параллельна оси времени t, мгновенная скорость тела равна нулю.

3. Рассмотрите рисунок 4.6.
б) Найдите наибольшую и наименьшую мгновенную скорость автомобиля в течение первых 6 с его движения.

2. Средняя скорость

Во многих задачах используют среднюю скорость, связанную с пройденным путем:

vср = l/t. (1)

Определенная таким образом средняя скорость является скалярной величиной, так как путь – это скалярная величина. (Иногда во избежание недоразумений ее называют средней путевой скоростью.)

Например, если автомобиль в течение трех часов проехал по городу 120 км (при этом он мог разгоняться, тормозить и стоять на перекрестках), то его средняя скорость равна 40 км/ч.

4. Насколько уменьшится средняя скорость только что упомянутого автомобиля, если из-за остановок в пробках общее время движения увеличится на 1 ч?

Средняя скорость на двух участках движения

Во многих задачах рассматривается движение тела на двух участках, на каждом из которых движение можно считать равномерным. В таком случае, согласно определению средней скорости (1), можно записать:

vср = (l1 + l2)/(t1 + t2), (2)

где l1 и t1 – путь и время для первого участка, а l2 и t2 – для второго. Рассмотрим примеры.
Саша выехал из поселка на велосипеде со скоростью 15 км/ч и ехал в течение часа. А потом велосипед сломался, и Саша еще час шел пешком со скоростью 5 км/ч.

5. Найдите:
а) путь, пройденный Сашей за все время движения;
б) общее время движения Саши;
в) среднюю скорость Саши.

В рассмотренном случае средняя скорость оказалась равной среднему арифметическому скоростей, с которыми Саша ехал и шел. Всегда ли это справедливо? Рассмотрим следующий пример.
Пусть Саша ехал на велосипеде в течение часа со скоростью 15 км/ч, а потом прошел такое же расстояние пешком со скоростью 5 км/ч.

6. Найдите:
а) путь, который Саша прошел пешком;
б) путь, пройденный Сашей за все время движения;
в) общее время движения Саши;
б) среднюю скорость Саши.

Рассмотрев этот случай, вы увидите, что на этот раз средняя скорость не равна среднему арифметическому скоростей езды и ходьбы. А если присмотреться еще внимательнее, то можно заметить, что во втором случае средняя скорость меньше, чем в первом. Почему?

7. Сравните промежутки времени, в течение которых Саша ехал и шел пешком в первом и втором случаях.

Обобщим рассмотренные выше ситуации.

Рассмотрим сначала случай, когда тело двигалось с разными скоростями в течение равных промежутков времени.

Пусть первую половину всего времени движения тело двигалось со скоростью v1, а вторую половину – со скоростью v2. Можно ли найти среднюю скорость движения на всем участке, если не известны ни общее время движения, ни путь, пройденный телом за все время движения?

Можно: для этого введем обозначения для всех нужных нам величин независимо от того, известны они или неизвестны. Это распространенный прием при решении многих задач.

Обозначим все время движения t, весь путь l, а пути, пройденные за первую и вторую половину времени движения, обозначим соответственно) l1 и l2.

8. Выразите через v1, v2 и t:
a) l1 и l2; б) l; в) среднюю скорость.

Найдя ответы на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках с разными скоростями в течение равных промежутков времени, то его средняя скорость на всем пути равна среднему арифметическому скоростей движения на двух участках.

Рассмотрим теперь случай, когда тело двигалось с разными скоростями первую и вторую половину пути.

Пусть теперь первую половину всего пути тело двигалось со скоростью v1, а вторую половину – со скоростью v2. Обозначим снова все время движения t, весь путь l, а промежутки времени, в течение которых тело двигалось на первом и втором участке, обозначим соответственно t1 и t2.

9. Выразите через v1, v2 и l:
а) t1 и t2; б) t; в) среднюю скорость.

Ответив на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках равной длины с разными скоростями, то его средняя скорость на всем пути не равна среднему арифметическому этих скоростей.

10. Докажите, что средняя скорость тела, которое двигалось на двух участках равной длины с разными скоростями, меньше, чем если бы оно двигалось на двух участках с теми же скоростями в течение равных промежутков времени.
Подсказка. Выразите для каждого из двух случаев среднюю скорость через скорости на первом и втором участках и сравните полученные выражения.

11. На первом участке пути тело двигалось со скоростью v1, а на втором – со скоростью v2. Чему равно отношение длин этих участков, если средняя скорость движения оказалась равной среднему арифметическому v1 и v2?

Дополнительные вопросы и задания

12. Одну треть всего времени движения поезд ехал со скоростью v1, а оставшееся время – со скоростью v2.
а) Выразите пройденный поездом путь через v1, v2 и все время движения t.
б) Выразите среднюю скорость поезда через v1 и v2.
в) Найдите числовое значение средней скорости при v1 = 60 км/ч, v2 = 90 км/ч.

13. Автомобиль ехал три четверти всего пути со скоростью v1, а оставшийся участок пути – со скоростью v2.
а) Выразите все время движения автомобиля через v1, v2 и весь пройденный путь l.
б) Выразите среднюю скорость движения автомобиля через v1 и v2.
в) Найдите числовое значение средней скорости при v1 = 80 км/ч, v2 = 100 км/ч.

14. Автомобиль ехал 2 ч со скоростью 60 км/ч. Сколько времени после этого он должен ехать со скоростью 80 км/ч, чтобы его средняя скорость на всем пути стала равной 66,7 км/ч?

15. Перенесите в тетрадь (по клеточкам) график зависимости координаты автомобиля от времени, изображенный на рисунке 4.4. Считайте, что автомобиль едет вдоль оси x.
а) Определите графически среднюю скорость за 6 с.
б) Используя касательную, определите, в какие примерно моменты времени мгновенная скорость автомобиля была равна его средней скорости за 6 с.

16. Тело движется вдоль оси x. Зависимость координаты тела от времени выражается формулой x = 0,2 * t2.
а) Выберите удобный масштаб и изобразите график зависимости x(t) в течение первых 6 с.
б) С помощью этого графика найдите момент времени, в который мгновенная скорость тела была равна средней скорости за все время движения.

§ 12. Графики зависимости пути от времени.

Если траектория движения точки известна, то зависимость пути , пройденного точкой, от истекшего промежутка времени дает полное описание этого движения. Мы видели, что для равномерного движения такую зависимость можно дать в виде формулы (9.2). Связь между и для отдельных моментов времени можно задавать также в виде таблицы, содержащей соответственные значения промежутка времени и пройденного пути. Пусть нам дано, что скорость некоторого равномерного движения равна 2 м/с. Формула (9.2) имеет в этом случае вид . Составим таблицу пути и времени такого движения:

Зависимость одной величины от другой часто бывает удобно изображать не формулами или таблицами, а графиками, которые более наглядно показывают картину изменения переменных величин и могут облегчать расчеты. Построим график зависимости пройденного пути от времени для рассматриваемого движения. Для этого возьмем две взаимно перпендикулярные прямые - оси координат; одну из них (ось абсцисс) назовем осью времени, а другую (ось ординат) - осью пути. Выберем масштабы для изображения промежутков времени и пути и примем точку пересечения осей за начальный момент и за начальную точку на траектории. Нанесем на осях значения времени и пройденного пути для рассматриваемого движения (рис. 18). Для «привязки» значений пройденного пути к моментам времени проведем из соответственных точек на осях (например, точек 3 с и 6 м) перпендикуляры к осям. Точка пересечения перпендикуляров соответствует одновременно обеим величинам: пути и моменту , - этим способом и достигается «привязка». Такое же построение можно выполнить и для любых других моментов времени и соответственных путей, получая для каждой такой пары значений время - путь одну точку на графике. На рис.

Определить по графику среднюю скорость движения тела для промежутков времени

18 выполнено такое построение, заменяющее обе строки таблицы одним рядом точек. Если бы такое построение было выполнено для всех моментов времени, то вместо отдельных точек получилась бы сплошная линия (также показанная на рисунке). Эта линия и называется графиком зависимости пути от времени или, короче, графиком пути.

Рис. 18. График пути равномерного движения со скоростью 2 м/с

Рис. 19. К упражнению 12.1

В нашем случае график пути оказался прямой линией. Можно показать, что график пути равномерного движения всегда есть прямая линия; и обратно: если график зависимости пути от времени есть прямая линия, то движение равномерно.

Повторяя построение для другой скорости движения, найдем, что точки графика для большей скорости лежат выше, чем соответственные точки графика для меньшей скорости (рис. 20). Таким образом, чем больше скорость равномерного движения, тем круче прямолинейный график пути, т. е. тем больший угол он составляет с осью времени.

Рис. 20. Графики пути равномерных движений со скоростями 2 и 3 м/с

Рис. 21. График того же движения, что на рис. 18, вычерченный в другом масштабе

Наклон графика зависит, конечно, не только от числового значения скорости, но и от выбора масштабов времени и длины. Например, график, изображенный на рис. 21, дает зависимость пути от времени для того же движения, что и график рис. 18, хотя и имеет другой наклон. Отсюда ясно, что сравнивать движения по наклону графиков можно только в том случае, если они вычерчены в одном и том же масштабе.

С помощью графиков пути можно легко решать разные задачи о движении. Для примера на рис. 18 штриховыми линиями показаны построения, необходимые для того, чтобы решить следующие задачи для данного движения: а) найти путь, пройденный за время 3,5 с; б) найти время, за которое пройден путь 9 м. На рисунке графическим путем (штриховые линии) найдены ответы: а) 7 м; б) 4,5 с.

На графиках, описывающих равномерное прямолинейное движение, можно откладывать по оси ординат вместо пути координату движущейся точки. Такое описание открывает большие возможности. В частности, оно позволяет различать направление движения по отношению к оси . Кроме того, приняв начало отсчета времени за нуль, можно показать движение точки в более ранние моменты времени, которые следует считать отрицательными.

Рис. 22. Графики движений с одной и той же скоростью, но при различных начальных положениях движущейся точки

Рис. 23. Графики нескольких движений с отрицательными скоростями

Например, на рис. 22 прямая I есть график движения, происходящего с положительной скоростью 4 м/с (т. е. в направлении оси ), причем в начальный момент движущаяся точка находилась в точке с координатой м. Для сравнения на том же рисунке дан график движения, которое происходит с той же скоростью, но при котором в начальный момент движущаяся точка находится в точке с координатой (прямая II). Прямая. III соответствует случаю, когда в момент движущаяся точка находилась в точке с координатой м. Наконец, прямая IV описывает движение в случае, когда движущаяся точка имела координату в момент с.

Мы видим, что наклоны всех четырех графиков одинаковы: наклон зависит только от скорости движущейся точки, а не от ее начального положения. При изменении начального положения весь график просто переносится параллельно самому себе вдоль оси вверх или вниз на соответственное расстояние.

Графики движений, происходящих с отрицательными скоростями (т. е. в направлении, противоположном направлению оси ), показаны на рис. 23. Они представляют собой прямые, наклоненные вниз. Для таких движений координата точки с течением времени уменьшается.

12.3. График пути для точки, движущейся со скоростью , отсекает на оси ординат отрезок . Как зависит от времени расстояние от начальной точки? Напишите формулу этой зависимости.

12.4. Точка, движущаяся со скоростью , в момент находится на расстоянии от начальной.

Как зависит от времени расстояние ?

12.5. Точка, двигаясь равномерно вдоль оси , имела координаты м и м в моменты времени с и с соответственно. Найдите графически, в какой момент точка проходила через начало координат и какова была координата в начальный момент. Найдите проекцию скорости на ось .

12.6. Найдите при помощи графика пути, когда и на каком расстоянии от точки А автомашину, вышедшую из точки А, догонит вторая автомашина, вышедшая из той же точки через 20 мин после первой, если первая машина движется со скоростью 40 км/ч, а вторая - со скоростью 60 км/ч.

12.7. Найдите при помощи графика пути, где и когда встретятся автомашины, вышедшие одновременно навстречу друг другу со скоростями 40 и 60 км/ч из пунктов А и В, лежащих на расстоянии 100 км друг от друга.

Графики пути можно строить и для случаев, в которых тело движется равномерно в течение определенного промежутка времени, затем движется равномерно, но с другой скоростью в течение другого промежутка времени, затем снова меняет скорость и т. д. Например, на рис. 26 показан график движения, в котором тело двигалось в течение первого часа со скоростью 20 км/ч, в течение второго часа - со скоростью 40 км/ч и в течение третьего часа - со скоростью 15 км/ч.

Задание: 12.8. Постройте график пути для движения, в котором за последовательные часовые промежутки тело имело скорости 10, -5, 0, 2, -7 км/ч. Чему равно суммарное перемещение тела?

1. Нахождение пути по графику зависимости скорости от времени

Покажем, как можно найти пройденный телом путь с помощью графика зависимости скорости от времени.

Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.

Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении

путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.

Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.

Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.

Разобьем мысленно все время движения на столь малые промежутки, чтобы в течение каждого из них движение тела можно было считать практически равномерным (это разбиение показано штриховыми линиями на рисунке 6.2).

Тогда путь, пройденный за каждый такой промежуток, численно равен площади фигуры под соответствующим ком графика. Поэтому и весь путь равен площади фигур заключенной под всем графиком. (Использованный нами прием лежит в основе интегрального исчисления, основы которого вы будете изучать в курсе «Начала математического анализа».)

2. Путь и перемещение при прямолинейном равноускоренном движении

Применим теперь описанный выше способ нахождения пути к прямолинейному равноускоренному движению.

Начальная скорость тела равна нулю

Направим ось x в сторону ускорения тела. Тогда ax = a, vx = v. Следовательно,

На рисунке 6.3 изображен график зависимости v(t).

1. Используя рисунок 6.3, докажите, что при прямолинейном равноускоренном движении без начальной скорости путь l выражается через модуль ускорения a и время движения t формулой

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату времени движения.

Этим равноускоренное движение существенно отличается от равномерного.

На рисунке 6.4 приведены графики зависимости пути от времени для двух тел, одно из которых движется равномерно, а другое – равноускоренно без начальной скорости.

2. Рассмотрите рисунок 6.4 и ответьте на вопросы.
а) Каким цветом изображен график для тела, движущегося равноускоренно?
б) Чему равно ускорение этого тела?
в) Чему равны скорости тел в тот момент, когда они прошли одинаковый путь?
г) В какой момент времени скорости тел равны?

3. Тронувшись с места, автомобиль за первые 4 с проехал расстояние 20 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какое расстояние проедет автомобиль:
а) за 8 с? б) за 16 с? в) за 2 с?

Найдем теперь зависимость проекции перемещения sx от времени. В данном случае проекция ускорения на ось x положительна, поэтому sx = l, ax = a. Таким образом, из формулы (2) следует:

sx = axt2/2. (3)

Формулы (2) и (3) очень похожи, что приводит порой к ошибкам при решении простых задач. Дело в том, что значение проекции перемещения может быть отрицательным. Так будет, если ось x направлена противоположно перемещению: тогда sx < 0. А путь отрицательным быть не может!

4. На рисунке 6.5 изображены графики зависимости от времени пути и проекции перемещения для некоторого тела. Какой цвет у графика проекции перемещения?

Начальная скорость тела не равна нулю

Напомним, что в таком случае зависимость проекции скорости от времени выражается формулой

vx = v0x + axt, (4)

где v0x – проекция начальной скорости на ось x.

Мы рассмотрим далее случай, когда v0x > 0, ax > 0. В этом случае снова можно воспользоваться тем, что путь численно равен площади фигуры под графиком зависимости скорости от времени. (Другие комбинации знаков проекции начальной скорости и ускорения рассмотрите самостоятельно: в результате получится та же общая формула (5).

На рисунке 6.6 изображен график зависимости vx(t) при v0x > 0, ax > 0.

5. Используя рисунок 6.6, докажите, что при прямолинейном равноускоренном движении с начальной скоростью проекция перемещения

sx = v0x + axt2/2.

Эта формула позволяет найти зависимость координаты x тела от времени. Напомним (см. формулу (6), § 2), что координата x тела связана с проекцией его перемещения sx соотношением

где x0 - начальная координата тела. Следовательно,

x = x0 + sx, (6)

Из формул (5), (6) получаем:

x = x0 + v0xt + axt2/2. (7)

6. Зависимость координаты от времени для некоторого тела, движущегося вдоль оси x, выражается в единицах СИ формулой x = 6 – 5t + t2.
а) Чему равна начальная координата тела?
б) Чему равна проекция начальной скорости на ось x?
в) Чему равна проекция ускорения на ось x?
г) Начертите график зависимости координаты x от времени.
д) Начертите график зависимости проекции скорости от времени.
е) В какой момент скорость тела равна нулю?
ж) Вернется ли тело в начальную точку? Если да, то в какой момент (моменты) времени?
з) Пройдет ли тело через начало координат? Если да, то в какой момент (моменты) времени?
и) Начертите график зависимости проекции перемещения от времени.
к) Начертите график зависимости пути от времени.

3. Соотношение между путем и скоростью

При решении задач часто используют соотношения между путем, ускорением и скоростью (начальной v0, конечной v или ими обеими). Выведем эти соотношения. Начнем с движения без начальной скорости. Из формулы (1) получаем для времени движения:

Подставим это выражение в формулу (2) для пути:

l = at2/2 = a/2(v/a)2 = v2/2a. (9)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату конечной скорости.

7. Тронувшись с места, автомобиль набрал скорость 10 м/с на пути 40 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какой путь от начала движения проехал автомобиль, когда его скорость была равна: а) 20 м/с? б) 40 м/с? в) 5 м/с?

Соотношение (9) можно получить также, вспомнив, что путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени (рис. 6.7).

Это соображение поможет вам легко справиться со следующим заданием.

8. Используя рисунок 6.8, докажите, что при торможении с постоянным ускорением тело проходит до полной остановки путь lт = v02/2a, где v0 – начальная скорость тела, a – модуль ускорения.

В случае торможения транспортного средства (автомобиль, поезд) путь, пройденный до полной остановки, называют тормозным путём. Обратите внимание: тормозной путь при начальной скорости v0 и путь, пройденный при разгоне с места до скорости v0 с тем же по модулю ускорением a, одинаковы.

9. При экстренном торможении на сухом асфальте ускорение автомобиля равно по модулю 5 м/с2. Чему равен тормозной путь автомобиля при начальной скорости: а) 60 км/ч (максимальная разрешенная скорость в городе); б) 120 км/ч? Найдите тормозной путь при указанных скоростях во время гололеда, когда модуль ускорения равен 2 м/с2. Сравните найденные вами значения тормозного пути с длиной классной комнаты.

10. Используя рисунок 6.9 и формулу, выражающую площадь трапеции через ее высоту и полусумму оснований, докажите, что при прямолинейном равноускоренном движении:
а) l = (v2 – v02)/2a, если скорость тела увеличивается;
б) l = (v02 – v2)/2a, если скорость тела уменьшается.

11. Докажите, что проекции перемещения, начальной и конечной скорости, а также ускорения связаны соотношением

sx = (vx2 – v0x2)/2ax (10)

12. Автомобиль на пути 200 м разогнался от скорости 10 м/с до 30 м/с.
а) С каким ускорением двигался автомобиль?
б) За какое время автомобиль проехал указанный путь?
в) Чему равна средняя скорость автомобиля?

Дополнительные вопросы и задания

13. От движущегося поезда отцепляют последний вагон, после чего поезд движется равномерно, а вагон – с постоянным ускорением до полной остановки.
а) Изобразите на одном чертеже графики зависимости скорости от времени для поезда и вагона.
б) Во сколько раз путь, пройденный вагоном до остановки, меньше пути, пройденного поездом за то же время?

14. Отойдя от станции, электричка какое-то время ехала равноускоренно, затем в течение 1 мин – равномерно со скоростью 60 км/ч, после чего снова равноускоренно до остановки на следующей станции. Модули ускорений при разгоне и торможении были различны. Расстояние между станциями электричка прошла за 2 мин.
а) Начертите схематически график зависимости проекции скорости электрички от времени.
б) Используя этот график, найдите расстояние между станциями.
в) Какое расстояние проехала бы электричка, если бы на первом участке пути она разгонялась, а на втором – тормозила? Какова была бы при этом ее максимальная скорость?

15. Тело движется равноускоренно вдоль оси x. В начальный момент оно находилось в начале координат, а проекция его скорости была равна 8 м/с. Через 2 с координата тела стала равной 12 м.
а) Чему равна проекция ускорения тела?
б) Постройте график зависимости vx(t).
в) Напишите формулу, выражающую в единицах СИ зависимость x(t).
г) Будет ли скорость тела равна нулю? Если да, то в какой момент времени?
д) Побывает ли тело второй раз в точке с координатой 12 м? Если да, то в какой момент времени?
е) Вернется ли тело в начальную точку? Если да, то в какой момент времени, и чему будет равен пройденный при этом путь?

16. После толчка шарик вкатывается вверх по наклонной плоскости, после чего возвращается в начальную точку. На расстоянии b от начальной точки шарик побывал дважды через промежутки времени t1 и t2 после толчка. Вверх и вниз вдоль наклонной плоскости шарик двигался с одинаковым по модулю ускорением.
а) Направьте ось x вверх вдоль наклонной плоскости, выберите начало координат в точке начального положения шарика и напишите формулу, выражающую зависимость x(t), в которую входят модуль начальной скорости шарика v0 и модуль ускорения шарика a.
б) Используя эту формулу и тот факт, что на расстоянии b от начальной точки шарик побывал в моменты времени t1 и t2 составьте систему двух уравнений с двумя неизвестными v0 и a.
в) Решив эту систему уравнений, выразите v0 и a через b, t1 и t2.
г) Выразите весь пройденный шариком путь l через b, t1 и t2.
д) Найдите числовые значения v0, a и l при b = 30 см, t1 = 1с, t2 = 2 с.
е) Постройте графики зависимости vx(t), sx(t), l(t).
ж) С помощью графика зависимости sx(t) определите момент, когда модуль перемещения шарика был максимальным.

1. Мгновенная скорость

В этом параграфе мы будем рассматривать неравномерное движение. Однако при этом нам пригодится то, что мы знаем о прямолинейном равномерном движении.

На рисунке 4.1 показаны положения разгоняющегося автомобиля на прямом шоссе с интервалом времени 1 с. Стрелка указывает на зеркальце заднего вида, положение которого мы рассмотрим далее более подробно.

Мы видим, что за равные интервалы времени автомобиль проходит разные пути, то есть движется неравномерно.

Уменьшим теперь последовательные интервалы времени в 20 раз – до 0,05 с – и проследим за изменением положения автомобиля в течение половины секунды (это нетрудно сделать, например, с помощью видеосъемки).

Чтобы не загромождать рисунок 4.2, на нем изображены только два положения автомобиля с промежутком времени 0,5 с. Последовательные положения автомобиля с интервалом 0,05 с отмечены положением его зеркальца заднего вида (показано красным цветом).

Мы видим, что когда последовательные равные промежутки времени достаточно малы, то пути, проходимые автомобилем за эти промежутки времени, практически одинаковы. А это означает, что движение автомобиля в течение столь малых промежутков времени можно с хорошей точностью считать прямолинейным равномерным.

Оказывается, этим замечательным свойством обладает любое движение (даже криволинейное): если рассматривать его за достаточно малый промежуток времени Δt, оно очень похоже на прямолинейное равномерное движение! Причем чем меньше промежуток времени, тем больше это сходство.

Скорость тела за достаточно малый промежуток времени и называют его скоростью в данный момент времени t, если этот момент времени находится в промежутке Δt. А более точное ее название – мгновенная скорость.

Насколько малым должен быть промежуток времени Δt, чтобы в течение этого промежутка движение тела можно было считать прямолинейным равномерным, зависит от характера движения тела.

В случае разгона автомобиля это доли секунды. А, например, движение Земли вокруг Солнца можно с хорошей точностью считать прямолинейным и равномерным даже в течение суток, хотя Земля за это время пролетает в космосе больше двух с половиной миллионов километров!

1. По рисунку 4.2 определите мгновенную скорость автомобиля. Длину автомобиля примите равной 5 м.

Значение мгновенной скорости автомобиля показывает спидометр (рис. 4.3).

Как найти мгновенную скорость по графику зависимости координаты от времени

На рисунке 4.4 изображен график зависимости координаты от времени для автомобиля, который движется по прямолинейному шоссе.

Мы видим, что он движется неравномерно, потому что график зависимости его координаты от времени – это кривая, а не отрезок прямой.

Покажем, как определить по этому графику мгновенную скорость автомобиля в какой-либо момент времени – скажем, при t = 3 с (точка на графике).

Для этого рассмотрим движение автомобиля за столь малый промежуток времени, в течение которого его движение можно считать прямолинейным равномерным.

На рисунке 4.5 показан интересующий нас участок графика при десятикратном увеличении (см., например, шкалу времени).

Мы видим, что этот участок графика практически неотличим от отрезка прямой (красный отрезок). За последовательные равные промежутки времени по 0,1 с автомобиль проходит практически одинаковые расстояния – по 1 м.

2. Чему равна мгновенная скорость автомобиля в момент t = 3 с?

Возвращаясь к прежнему масштабу чертежа, мы увидим, что прямая красного цвета, с которой практически совпадал малый участок графика, – касательная к графику зависимости координаты от времени в данный момент времени (рис. 4.6).

Итак, о мгновенной скорости тела можно судить по угловому коэффициенту касательной к графику зависимости координаты от времени: чем больше угловой коэффициент касательной, тем больше скорость тела. (Описанный способ определения мгновенной скорости с помощью касательной к графику зависимости координаты от времени связан с понятием производной функции. Это понятие вы будете изучать в курсе «Алгебра и начала аиализа».) А в тех точках графика, где угол наклона касательной равен нулю, то есть касательная параллельна оси времени t, мгновенная скорость тела равна нулю.

3. Рассмотрите рисунок 4.6.
а) В каких точках графика угол наклона касательной наибольший? наименьший?
б) Найдите наибольшую и наименьшую мгновенную скорость автомобиля в течение первых 6 с его движения.

2. Средняя скорость

Во многих задачах используют среднюю скорость, связанную с пройденным путем:

vср = l/t. (1)

Определенная таким образом средняя скорость является скалярной величиной, так как путь – это скалярная величина. (Иногда во избежание недоразумений ее называют средней путевой скоростью.)

Например, если автомобиль в течение трех часов проехал по городу 120 км (при этом он мог разгоняться, тормозить и стоять на перекрестках), то его средняя скорость равна 40 км/ч.

4. Насколько уменьшится средняя скорость только что упомянутого автомобиля, если из-за остановок в пробках общее время движения увеличится на 1 ч?

Средняя скорость на двух участках движения

Во многих задачах рассматривается движение тела на двух участках, на каждом из которых движение можно считать равномерным. В таком случае, согласно определению средней скорости (1), можно записать:

vср = (l1 + l2)/(t1 + t2), (2)

где l1 и t1 – путь и время для первого участка, а l2 и t2 – для второго. Рассмотрим примеры.
Саша выехал из поселка на велосипеде со скоростью 15 км/ч и ехал в течение часа. А потом велосипед сломался, и Саша еще час шел пешком со скоростью 5 км/ч.

5. Найдите:
а) путь, пройденный Сашей за все время движения;
б) общее время движения Саши;
в) среднюю скорость Саши.

В рассмотренном случае средняя скорость оказалась равной среднему арифметическому скоростей, с которыми Саша ехал и шел. Всегда ли это справедливо? Рассмотрим следующий пример.
Пусть Саша ехал на велосипеде в течение часа со скоростью 15 км/ч, а потом прошел такое же расстояние пешком со скоростью 5 км/ч.

6. Найдите:
а) путь, который Саша прошел пешком;
б) путь, пройденный Сашей за все время движения;
в) общее время движения Саши;
б) среднюю скорость Саши.

Рассмотрев этот случай, вы увидите, что на этот раз средняя скорость не равна среднему арифметическому скоростей езды и ходьбы. А если присмотреться еще внимательнее, то можно заметить, что во втором случае средняя скорость меньше, чем в первом. Почему?

7. Сравните промежутки времени, в течение которых Саша ехал и шел пешком в первом и втором случаях.

Обобщим рассмотренные выше ситуации.

Рассмотрим сначала случай, когда тело двигалось с разными скоростями в течение равных промежутков времени.

Пусть первую половину всего времени движения тело двигалось со скоростью v1, а вторую половину – со скоростью v2. Можно ли найти среднюю скорость движения на всем участке, если не известны ни общее время движения, ни путь, пройденный телом за все время движения?

Можно: для этого введем обозначения для всех нужных нам величин независимо от того, известны они или неизвестны. Это распространенный прием при решении многих задач.

Обозначим все время движения t, весь путь l, а пути, пройденные за первую и вторую половину времени движения, обозначим соответственно) l1 и l2.

8. Выразите через v1, v2 и t:
a) l1 и l2; б) l; в) среднюю скорость.

Найдя ответы на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках с разными скоростями в течение равных промежутков времени, то его средняя скорость на всем пути равна среднему арифметическому скоростей движения на двух участках.

Рассмотрим теперь случай, когда тело двигалось с разными скоростями первую и вторую половину пути.

Пусть теперь первую половину всего пути тело двигалось со скоростью v1, а вторую половину – со скоростью v2. Обозначим снова все время движения t, весь путь l, а промежутки времени, в течение которых тело двигалось на первом и втором участке, обозначим соответственно t1 и t2.

9. Выразите через v1, v2 и l:
а) t1 и t2; б) t; в) среднюю скорость.

Ответив на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках равной длины с разными скоростями, то его средняя скорость на всем пути не равна среднему арифметическому этих скоростей.

10. Докажите, что средняя скорость тела, которое двигалось на двух участках равной длины с разными скоростями, меньше, чем если бы оно двигалось на двух участках с теми же скоростями в течение равных промежутков времени.
Подсказка. Выразите для каждого из двух случаев среднюю скорость через скорости на первом и втором участках и сравните полученные выражения.

11. На первом участке пути тело двигалось со скоростью v1, а на втором – со скоростью v2. Чему равно отношение длин этих участков, если средняя скорость движения оказалась равной среднему арифметическому v1 и v2?

Дополнительные вопросы и задания

12. Одну треть всего времени движения поезд ехал со скоростью v1, а оставшееся время – со скоростью v2.
а) Выразите пройденный поездом путь через v1, v2 и все время движения t.
б) Выразите среднюю скорость поезда через v1 и v2.
в) Найдите числовое значение средней скорости при v1 = 60 км/ч, v2 = 90 км/ч.

Автомобиль ехал три четверти всего пути со скоростью v1, а оставшийся участок пути – со скоростью v2.
а) Выразите все время движения автомобиля через v1, v2 и весь пройденный путь l.
б) Выразите среднюю скорость движения автомобиля через v1 и v2.
в) Найдите числовое значение средней скорости при v1 = 80 км/ч, v2 = 100 км/ч.

14. Автомобиль ехал 2 ч со скоростью 60 км/ч. Сколько времени после этого он должен ехать со скоростью 80 км/ч, чтобы его средняя скорость на всем пути стала равной 66,7 км/ч?

15. Перенесите в тетрадь (по клеточкам) график зависимости координаты автомобиля от времени, изображенный на рисунке 4.4. Считайте, что автомобиль едет вдоль оси x.
а) Определите графически среднюю скорость за 6 с.
б) Используя касательную, определите, в какие примерно моменты времени мгновенная скорость автомобиля была равна его средней скорости за 6 с.

16. Тело движется вдоль оси x. Зависимость координаты тела от времени выражается формулой x = 0,2 * t2.
а) Выберите удобный масштаб и изобразите график зависимости x(t) в течение первых 6 с.
б) С помощью этого графика найдите момент времени, в который мгновенная скорость тела была равна средней скорости за все время движения.

§ 14. ГРАФИКИ ПУТИ И СКОРОСТИ

Определение пути по графику скорости

В физике и математике используют три способа подачи информации о связи между различными величинами: а) в виде формулы, например, s =v ∙ t; б) в виде таблицы; в) в виде графика (рисунка).

Зависимость скорости от времени v(t) - график скорости изображается с помощью двух взаимно перпендикулярных осей. Вдоль горизонтальной оси будем откладывать время, а по вертикальной - скорость (рис. 14.1). Надо заблаговременно продумать масштаб, чтобы рисунок не был слишком большим или слишком малым. У конца оси указывают букву, которая является обозначением численно равна площади заштрихованного прямоугольника abcd величины, что на ней откладывается. Возле буквы указывают единицу измерения этой величины. Например, возле оси времени указывают t, с, а возле оси скорости v(t), мес. Выбирают масштаб и наносят деления на каждую ось.

Рис. 14.1. График скорости тела, равномерно движущегося со скоростью 3 м/сек. Путь, пройденный телом со 2-й по 6-ю секунды,

Изображение равномерного движения таблицей и графиками

Рассмотрим равномерное движение тела со скоростью 3 м/с, то есть числовое значение скорости будет постоянным в течение всего времени движения. Сокращенно это записывают так: v = const (константа, то есть постоянная величина). В нашем примере она равна трем: v = 3 . Вы уже знаете, что информацию о зависимости одной величины от другой можно подавать в виде таблицы (массива, как говорят в информатике):

Из таблицы видно, что во все указанные моменты времени скорость равна 3 м/сек. Пусть масштаб оси времени 2 кл. = 1 с, а оси скорости 2 кл. = 1 м/сек. График зависимости скорости от времени (сокращенно говорят: график скорости) приведены на рисунке 14.1.

С помощью графика скорости можно найти путь, который тело проходит за определенный интервал времени. Для этого нужно сопоставить два факта: с одной стороны, путь можно найти, умножив скорость на время, а с другой - произведение скорости на время, как видно из рисунка - это площадь прямоугольника со сторонами t и v.

Например, со второй до шестой секунды тело двигалось в течение четырех секунд и прошло 3 м/с ∙ 4 с = 12 м. Это площадь прямоугольника аbсd, длина которого равна 4 с (отрезок ad вдоль оси времени) и высота 3 м/с (отрезок аb вдоль вертикали). Площадь, правда, несколько необычная, поскольку измеряется не в м 2 , а в г. Следовательно, площадь под графиком скорости численно равна пройденному пути.

График пути

График пути s(t) можно изобразить, используя формулу s = v ∙ t, то есть в нашем случае, когда скорость составляет 3 м/с: s = 3 ∙ t. Построим таблицу:

Вдоль горизонтальной оси снова откладывают время (t, с), а вдоль вертикальной - путь. Возле оси пути пишем: s, м (рис. 14.2).

Определение скорости по графику пути

Изобразим теперь на одном рисунке два графика, которые будут соответствовать движениям со скоростями 3 м/с (прямая 2) и 6 м/с (прямая 1) (рис. 14.3). Видно, что чем больше скорость тела, тем круче линия точек графика.

Существует и обратная задача: имея график движения, нужно определить скорость и записать уравнение пути (рис. 14.3). Рассмотрим прямую 2. От начала движения и до момента времени t = 2 с тело прошло путь s = 6 м. Следовательно, его скорость: v = = 3 . Выбор другого интервала времени ничего не изменит, например, на момент t = 4 с путь, пройденный телом от начала движения, составляет s = 12 м. Отношение опять равна 3 м/сек. Но так и должно быть, поскольку тело движется с постоянной скоростью. Поэтому проще всего было бы выбрать интервал времени 1 с, ведь путь, пройденный телом за одну секунду, численно равна скорости. Путь, пройденный первым телом (график 1) за 1 с, равна 6 м, то есть скорость первого тела равна 6 м/сек. Соответствующие зависимости пути от времени в этих двух тел будут:

s 1 = 6 ∙ t и s 2 =3 ∙ t.

Рис. 14.2. График пути. Остальные точек, кроме шести, указанных в таблице, поставленные в задании, что движение упровдож всего времени был равномерным

Рис. 14.3. График пути в случае разных скоростей

Подведем итоги

В физике используют три способа подачи информации: графический, аналитический (по формулам) и таблицей (массивом). Третий способ более приспособлен для решения на компьютере.

Путь численно равен площади под графиком скорости.

Чем круче график s(t), тем больше скорость.

Творческие задания

14.1. Начертите графики скорости и пути, когда скорость тела равномерно увеличивается, или уменьшается.

Упражнение 14

1. Как определяют путь на графике скорости?

2. Можно ли записать формулу для зависимости пути от времени, имея график s(t)?

3. Или изменится угол наклона графика пути, если масштаб на осях уменьшить вдвое?

4. Почему график пути равномерного движения изображается прямой?

5. Какое из тел (рис. 14.4) имеет наибольшую скорость?

6. Назовите три способа представления информации о движении тела, а также (по вашему мнению) их преимущества и недостатки.

7. Как можно определить путь по графику скорости?

8. а) Чем отличаются графики пути для тел, движущихся с разными скоростями? б) Что в них общего?

9. По графику (рис. 14.1) найдите путь, пройденный телом от начала первой до конца третьей секунды.

10. Какой путь прошло тело (рис. 14.2) за: а) две секунды; б) четыре секунды? в) Укажите, где начинается третья секунда движения, и где она заканчивается.

11. Изобразите на графиках скорости и пути движение со скоростью а) 4 м/с; б) 2 м/сек.

12. Запишите формулу зависимости пути от времени для движений, изображенных на рис. 14.3.

13. а) Найдите скорости тел по графикам (рис. 14.4); б) запишите соответствующие уравнения пути и скорости. в) Постройте графики скорости этих тел.

14. Постройте графики пути и скорости для тел, движения которых заданы уравнениями: s 1 = 5 ∙ t и s 2 = 6 ∙ t. Чему равны скорости тел?

15. По графикам (рис. 14.5) определите: а) скорости тела; б) пути, пройденные ими за первые 5 сек. в) Запишите уравнение пути и постройте соответствующие графики для всех трех движений.

16. Начертите график пути для движения первого тела относительно второго (рис. 14.3).