Каково отношение модулей напряженности электрического поля. Поля точечных зарядов

Каждый электрический заряд окружает электрическое поле. В результате длительных исследований ученые-физики пришли к выводу, что взаимодействие заряженных тел происходит благодаря электрическим полям, их окружающим. Они являются особой формой материи, которая неразрывно связана со всяким электрическим зарядом.

Изучение электрического поля проводят, вводя в него мелкие заряженные тела. Эти тела называют «пробными зарядами». Например, зачастую в роли пробного заряда используют заряженный пробковый шарик.

При внесении пробного заряда в электрическое поле тела, имеющего положительный заряд, лёгкий положительно заряженный пробковый шарик под его действием будет отклоняться тем больше, чем ближе мы будем его подносить к телу.

При перемещении пробного заряда в электрическом поле произвольного заряженного тела можно с легкостью обнаружить, что сила, действующая на него, будет различна в разных местах.

Так, при помещении последовательно в одну точку поля различных по величине пробных положительных зарядов q1, q2, q3, …, qn можно обнаружить, что силы, действующие на них, F1, F2, F3, …, Fn различны, однако отношение силы к размеру определенного заряда для такой точки поля неизменно:

F1/q1 = F2/q2 = F3/q3 = … = Fn/qn.

Если подобным образом будем исследовать разные точки поля, то получим следующее заключение: для каждой отдельно взятой точки в электрическом поле отношение величины силы, действующей на пробный заряд, к величине такого заряда неизменно и независимо от величины пробного заряда.

Из этого следует, что величина этого отношения характеризует электрическое поле в произвольной его точке. Величина, которая измеряется отношением силы, воздействующей на положительный заряд, расположенный в этой точке поля, к размеру заряда и является напряженностью электрического поля:

Она, как это видно из её определения, равна силе, которая действует на единицу позитивного заряда, помещенного в определенную точку поля.

За единицу напряженности электрополя принимают действующего на заряд размером в одну электростатическую единицу с силой в одну дину. Такую единицу называют абсолютной электростатической единицей напряженности.

Чтобы определить напряженность электрического поля любого точечного заряда q в произвольной точке поля А данного заряда, отстоящей от него на расстоянии r1, необходимо поместить в эту произвольную точку пробный заряд q1 и вычислить силу Fa, которая действует на него (для вакуума).

Fa = (q1q)/r²₁.

Если мы возьмем отношение величины силы, которая влияет на заряд, к его величине q1, то можно произвести расчет напряженности электрополя в точке А:

Кроме того, можно найти напряженность в произвольной точке В; она будет равна:

Поэтому напряженность электрического поля точечного заряда в определенной точке поля (в вакууме) будет прямо пропорциональна размеру данного заряда и обратно пропорциональна квадрату дистанции между этим зарядом и точкой.

Напряженность поля выступает в роли его силовой характеристики. Зная ее в произвольной точке поля Е, легко рассчитать и силу F, воздействующую на заряд q в данной точке:

Поля - Направление напряженности в каждой определенной точке поля будет совмещаться с направлением силы, воздействующей на положительный заряд, помещенный в точку.

При образовании поля несколькими зарядами: q1 и q2 - напряженность Е в любой точке А данного поля будет равняться геометрической сумме напряженности Е1 и Е2, создаваемых в данной точке отдельно зарядами q1 и q2.

Напряженность электрического поля в произвольной точке можно отобразить графически с помощью направленного отрезка, который исходит из этой точки, аналогично изображению силы и прочих векторных величин.

Электрическое поле

Закон Кулона, был установлен экспериментально и справедлив для покоящихся заряженных тел. Каким же образом происходит взаимодействие заряженных тел на расстоянии? До некоторых пор при изучении электрических взаимодействий бок о бок развивались две принципиально разные теории: теория близкодействия и теория дальнодействия (действия на расстоянии).

Теория близкодействия заключается в том, что заряженные тела взаимодействуют друг с другом посредством промежуточного звена (например, цепь в задаче о поднятии ведра из колодца является промежуточным звеном, посредством которого мы воздействуем на ведро, то есть поднимаем его).

Теория дальнодействия гласит, что заряженные тела взаимодействуют через пустоту. Шарль Кулон придерживался именно этой теории и говорил, что заряженные тела «чувствуют» друг друга. В начале XIX века конец спорам положил Майкл Фарадей (рис. 1). В работах, связанных с электрическим полем, он установил, что между заряженными телами существует некий объект, который и осуществляет действие заряженных тел друг на друга. Работы Майкла Фарадея были подтверждены Джеймсом Максвеллом (рис. 2). Он показал, что действие одного заряженного тела на другое распространяется за конечное время, таким образом, между заряженными телами должно существовать промежуточное звено, через которое осуществляется взаимодействие.

Рис. 2. Джеймс Клерк Максвелл (Источник)

Электрическое поле – это особая форма материи, которая создается покоящимися зарядами и определяется действием на другие заряды.

Напряженность

Электрическое поле характеризуется определенными величинами. Одна из них называется напряженностью.

Вспомним, что по закону Кулона, сила взаимодействия двух зарядов:

Максвелл показал, что это взаимодействие осуществляется за конечное время:

где l – расстояние между заряженными частицами, а c – скорость света, скорость распространения электромагнитных волн.

Рассмотрим эксперимент по взаимодействию двух зарядов. Пусть электрическое поле создается положительным зарядом +q 0 , и в это поле на некотором расстоянии помещается пробный, точечный положительный заряд +q (рис. 3,а). Согласно закону Кулона, на пробный заряд будет действовать сила электростатического взаимодействия со стороны заряда, создающего электрическое поле. Тогда отношение этой силы к величине пробного заряда будет характеризовать действие электрического поля в данной точке. Если же в эту точку будет помещен вдвое больший пробный заряд, то сила взаимодействия также увеличится вдвое (рис. 3,б). Аналогичным образом отношение силы к величине пробного заряда снова даст значение действия электрического поля в данной точке. Так же действие электрического поля определяется и в том случае, если пробный заряд отрицательный (рис. 3,в).

Рис. 3. Сила электростатического взаимодействия двух точечных зарядов

Таким образом, в точке, где находится пробный заряд, поле характеризуется величиной:

Эта величина и называется напряженностью электрического поля. Напряженность поля в данной точке не зависит от величины пробного заряда: во всех трех случаях отношение силы к величине заряда – постоянная величина. Единица измерения напряженности:

Напряженность – векторная величина, является силовой характеристикой электрического поля, направлена в ту же сторону, куда и сила электростатического взаимодействия. Она показывает, с какой силой электрическое поле действует на помещенный в него заряд.

Напряженность поля точечного заряда

Рассмотрим напряженность электрического поля уединенного точечного заряда либо заряженной сферы.

Из определения напряженности следует, что для случая взаимодействия двух точечных зарядов, зная силу их кулоновского взаимодействия, можем получить величину напряженности электрического поля, которое создается зарядом q 0 в точке на расстоянии r от него до точки, в которой исследуется электрическое поле:

Данная формула показывает, что напряженность поля точечного заряда изменяется обратно пропорционально квадрату расстояния от данного заряда, то есть, например, при увеличении расстояния в два раза, напряженность уменьшается в четыре раза.

Линии напряженности

Попытаемся теперь охарактеризовать электростатическое поле нескольких зарядов. В этом случае необходимо воспользоваться сложением векторных величин напряженностей всех зарядов. Внесем пробный заряд и запишем сумму векторов сил, действующих на этот заряд. Результирующее значение напряженности получится при разделении значений этих сил на величину пробного заряда. Данный метод называется принципом суперпозиции.

Напряженность электростатического поля принято изображать графически при помощи силовых линий, которые также называют линиями напряженности. Такое изображение можно получить, построив вектора напряженности поля в как можно большем количестве точек вблизи данного заряда или целой системы заряженных тел.

а) положительного б) отрицательного

Рис. 4. Линии напряженности электрического поля точечного заряда.

Рассмотрим несколько примеров изображения силовых линий. Линии напряженности выходят из положительного заряда (рис. 4,а), то есть положительный заряд является источником силовых линий. Заканчиваются линии напряженности на отрицательном заряде (рис. 4,б).

Рассмотрим теперь систему, состоящую из положительного и отрицательного зарядов, находящихся на конечном расстоянии друг от друга (рис. 5). В этом случае линии напряженности направлены от положительного заряда к отрицательному.

Большой интерес представляет электрическое поле между двумя бесконечными плоскостями. Если одна из пластин заряжена положительно, а другая отрицательно, то в зазоре между плоскостями создается однородное электростатическое поле, линии напряженности которого оказываются параллельными друг другу (рис. 6).

Рис. 5. Линии напряженности системы двух зарядов

Рис. 6. Линии напряженности поля между заряженными.

В случае неоднородного электрического поля величина напряженности определяется густотой силовых линий: там, где силовые линии гуще, величина напряженности поля больше (рис. 7).

Рис. 7. Неоднородное электрическое поле

Линиями напряженности называют непрерывные линии, касательные к которым в каждой точке совпадают с векторами напряженности в этой точке.

Линии напряженности начинаются на положительных зарядах, заканчиваются на отрицательных и являются непрерывными.

Изображать электрическое поле с помощью силовых линий мы можем так, как сами посчитаем нужным, то есть число силовых линий, их густота ничем не ограничивается. Но при этом необходимо учитывать направление векторов напряженности поля и их абсолютные величины.

Очень важно следующее замечание. Как говорилось ранее, закон Кулона применим только для точечных покоящихся зарядов, а также заряженных шариков, сфер. Напряженность же позволяет характери­зовать электрическое поле вне зависимости от формы заряженного тела, которое это поле создает.

5. Работа электрического поля

Темой сегодняшнего урока будет ещё одна характеристика электрического поля – энергетическая. Эта характеристика называется потенциалом, и она непосредственно связана с работой электрического поля по перемещению заряда. Но для начала вспомним другую характеристику поля – силовую характеристику, напряженность:

для произвольного поля в некоторой точке пространства напряженность равна:

а для поля точечного заряда:

Теперь вспомним из курса механики, как вычислить работу, совершаемую над телом – в нашем случае электрическое поле совершает работу по перемещению заряда:

учитывая:

Для простоты рассмотрим случай однородного электрического поля, которое можно получить между двумя заряженными пластинами. И пусть положительный заряд изначально находится вблизи положительной пластинки, тогда, естественно, он начнёт под действием кулоновских сил движение в сторону отрицательной пластинки (см. рис. 1).

Для этого случая из-за параллельности векторов силы и перемещения выражение для работы принимает следующий вид:

где d- расстояние между пластинами.

Более того, даже для любого произвольного движения заряда от пластины «+» к пластине «-» будет определяться по такой же формуле (см рис. 2).

Любую прямую или кривую можно представить в виде большого числа маленьких «ступенек». А, как известно, если сила перпендикулярна перемещению, работа на таких участках равна нулю, так как. То есть сумма работ на «ступеньках» равна сумме работ на их горизонтальных частях, то есть исходному значению.

Также нам известно, что потенциальная энергия заряда уменьшается по мере прохождения, поэтому работа электрического поля имеет вид:

Потенциал

Теперь пришло время ввести новую энергетическую характеристику поля – потенциал.

Потенциал – физическая величина, показывающая отношение потенциальной энергии заряда в некоторой точке пространства к величине этого заряда:

Так как потенциальная энергия заряда прямо пропорциональна величине заряда, то потенциал от величины заряда не зависит:

Единица измерения потенциала – вольт (В) :

Потенциал некоторой точки пространства можно определить как работу электрического поля по переносу единичного заряда из бесконечности в эту точку. В общем же виде связь потенциала с работой можно задать через ввод электрического напряжения:

Полученная зависимость справедлива вдоль некоторой силовой линии, и здесь – расстояние между двумя точками на одной силовой линии.

Зависимость потенциала поля точечного заряда от расстояния имеет похожий вид с аналогичной зависимостью для напряженности, однако убывает медленнее – не пропорционально квадрату, а пропорционально первой степени:

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19

Физическая природа электрического поля и его графическое изображение . В пространстве вокруг электрически заряженного тела существует электрическое поле, представляющее собой один из видов материи. Электрическое поле обладает запасом электрической энергии, которая проявляется в виде электрических сил, действующих на находящиеся в поле заряженные тела.

Рис. 4. Простейшие электрические поля: а – одиночных положительного и отрицательного зарядов; б – двух разноименных зарядов; в – двух одноименных зарядов; г – двух параллельных и разноименно заряженныx пластин (однородное поле)

Электрическое поле условно изображают в виде электрических силовых линий, которые показывают направления действия электрических сил, создаваемых полем. Принято направлять силовые линии в ту сторону, в которую двигалась бы в электрическом поле положительно заряженная частица. Как показано на рис. 4, электрические силовые линии расходятся в разные стороны от положительно заряженных тел и сходятся у тел, обладающих отрицательным зарядом. Поле, созданное двумя плоскими разноименно заряженными параллельными пластинами (рис. 4, г), называется однородным.
Электрическое поле можно сделать видимым, если поместить в него взвешенные в жидком масле частички гипса: они поворачиваются вдоль поля, располагаясь по его силовым линиям (рис. 5).

Напряженность электрического поля. Электрическое поле действует на внесенный в него заряд q (рис. 6) с некоторой силой F. Следовательно, об интенсивности электрического поля можно судить по значению силы, с которой притягивается или отталкивается некоторый электрический заряд, принятый за единицу. В электротехнике интенсивность поля характеризуют напряженностью электрического поля Е. Под напряженностью понимают отношение силы F, действующей на заряженное тело в данной точке поля, к заряду q этого тела:

E = F / q (1)

Поле с большой напряженностью Е изображается графически силовыми линиями большой густоты; поле с малой напряженностью - редко расположенными силовыми линиями. По мере удаления от заряженного тела силовые линии электрического поля располагаются реже, т. е. напряженность поля уменьшается (см. рис. 4 а,б и в). Только в однородном электрическом поле (см. рис. 4, г) напряженность одинакова во всех его точках.

Электрический потенциал . Электрическое поле обладает определенным запасом энергии, т. е. способностью совершать работу. Как известно, энергию можно также накопить в пружине, для чего ее нужно сжать или растянуть. За счет этой энергии можно получить определенную работу. Если освободить один из концов пружины, то он сможет переместить на некоторое расстояние связанное с этим концом тело. Точно так же энергия электрического поля может быть реализована, если внести в него какой-либо заряд. Под действием сил поля этот заряд будет перемещаться по направлению силовых линий, совершая определенную работу.
Для характеристики энергии, запасенной в каждой точке электрического поля, введено специальное понятие - электрический потенциал. Электрический потенциал? поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.
Понятие электрического потенциала аналогично понятию уровня для различных точек земной поверхности. Очевидно, что для подъема локомотива в точку Б (рис. 7) нужно затратить большую работу, чем для подъема его в точку А. Поэтому локомотив, поднятый на уровень Н2, при спуске сможет совершить большую работу, чем локомотив, поднятый на уровень Н2 За нулевой уровень, от которого производится отсчет высоты, принимают обычно уровень моря.

Точно так же за нулевой потенциал условно принимают потенциал, который имеет поверхность земли.
Электрическое напряжение . Различные точки электрического поля обладают разными потенциалами. Обычно нас мало интересует абсолютная величина потенциалов отдельных точек электрического поля, но нам весьма важно знать разность потенциалов?1-?2 между двумя точками поля А и Б (рис. 8). Разность потенциалов?1 и?2 двух точек поля характеризует собой работу, затрачиваемую силами поля на перемещение единичного заряда из одной точки поля с большим потенциалом в другую точку с меньшим потенциалом. Точно так же нас на практике мало интересуют абсолютные высоты Н1и Н2 точек А и Б над уровнем моря (см. рис. 7), но для нас важно знать разность уровней И между этими точками, так как на подъем локомотива из точки А в точку Б надо затратить работу, зависящую от величины Я. Разность потенциалов между двумя точками поля носит название электрического напряжения. Электрическое напряжение обозначают буквой U (и). Оно численно равно отношению работы W, которую нужно затратить на перемещение положительного заряда q из одной точки поля в другую, к этому заряду, т. е.

U = W / q (2)

Следовательно, напряжение U, действующее между различными точками электрического поля, характеризует запасенную в этом поле энергию, которая может быть отдана путем перемещения между этими точками электрических зарядов.
Электрическое напряжение - важнейшая электрическая величина, позволяющая вычислять работу и мощность, развиваемую при перемещении зарядов в электрическом поле. Единицей электрического напряжения служит вольт (В). В технике напряжение иногда измеряют в тысячных долях вольта - милливольтах (мВ) и миллионных долях вольта - микровольтах (мкВ). Для измерения высоких напряжений пользуются более крупными единицами - киловольтами (кВ) - тысячами вольт.
Напряженность электрического поля при однородном поле представляет собой отношение электрического напряжения, действующего между двумя точками поля, к расстоянию l между этими точками:

E = U / l (3)

Напряженность электрического поля измеряют в вольтах на метр (В/м). При напряженности поля в 1 В/м на заряд в 1 Кл действует сила, равная 1 ньютону (1 Н). В некоторых случаях применяют более крупные единицы измерения напряженности поля В/см (100 В/м) и В/мм (1000 В/м).

Описывается взаимодействие заряженных частиц. Однако большинство сил, с которыми мы работали, возникает при взаимодействии тел посредством контакта (т.е. тела касаются друг друга). В случае электромагнитного взаимодействия контакта нет, тогда взаимодействие происходит посредством неких невидимых элементов. Тогда взаимодействия между частицами вещества и удалёнными друг от друга макроскопическими телами осуществляются через посредство физических полей , которые создаются этими частицами или телами в окружающем пространстве. В случае с заряженными частицами, эти поля назовём электромагнитными .

Тогда логика электромагнитного взаимодействия такова: заряд создаёт вокруг себя электромагнитное поле, которое, в свою очередь, действует на любой другой заряд , находящийся на любом расстоянии от источника.

Описывает взаимодействие между двумя зарядами:

Рис. 1. Закон Кулона. Пробный заряд

Сила (1) зависит от обоих зарядов, что не позволяет толком описать электрическое поле, создаваемое каждым из взаимодействующих частиц. Тогда придумаем немного другую систему: возьмём пробный заряд — некий малый заряд, который не будет искажать поле исследуемого нами заряда . Поместим пробный заряд в различные точки пространства рядом с исследуемым нами зарядом и проиллюстрируем силы Кулона (рис. 1).

В принципе, значение силы Кулона можно найти в любой точке пространства, однако данные силы зависят как от заряда источника, так и от значения пробного заряда. Введём новую переменную, поделив значение силы Кулона на значение пробного заряда:

Подставим силу Кулона в (1):

Исходя из (3), можно заключить, что напряжённость электрического поля зависит от заряда источника поля и точки наблюдения, описываемой расстоянием от заряда (рис. 2).

Т.е. напряжённость электрического поля — параметр, описывающий поле, создаваемое зарядом-источником. Значение напряжённости электрического поля позволяет оценить сильно или слабо будет действовать поле на заряд, помещённый в него. Размерность — В/м.

Исходя из (3), можно найти напряжённость поля точечного заряда. Напряжённость электрического поля — величина векторная, поэтому для её нахождения необходимо знать как модуль, так и направление вектора. Начнём с модуля:

Чтобы выяснить направление вектора, воспользуемся уравнением (2). Исходя из (2), можно заключить, что направление напряжённости электрического поля совпадает с направлением силы Кулона, а направление силы Кулона зависит от знака взаимодействующих зарядов. Чтобы не заморачиваться с рассмотрением этих зарядов в каждой задаче, просто договоримся. Если источник поля (заряд) положителен, тогда напряжённость поля направлена от заряда, если источник поля (заряд) отрицателен, тогда напряжённость поля направлена к заряду (рис. 3).

Напряжённость системы зарядов. Принцип суперпозиции напряжённости.

В случае, если в задаче источниками поля являются несколько зарядов, тогда напряжённость в интересующей точке можно найти как векторную сумму напряжённостей от каждого из зарядов:

Важно : поиск векторной суммы чаще всего сопряжён с реализацией , иногда с векторов напряжённости на оси с последующим суммированием.

Рис. 4. Принцип суперпозиции напряжённости

Проиллюстрируем: пусть в системе присутствует 3 заряда ( , , ), найти напряжённость в точке А, находящейся на заданном расстоянии от каждого из них ( , , ) (рис. 4).

Пользуясь знаниями о зарядах, расставляем направления напряжённостей от каждого из зарядов, значение модуля каждой из них можем найти из (4). А далее геометрически складываем, получая искомый .

Напряжённость поля бесконечной заряженной плоскости.

Отдельно в школьной физике рассматривается бесконечная (осень большая) заряженная равномерно плоскость (рис. 5).

Закон Кулона:

где F – сила взаимодействия двух точечных зарядов q 1 и q 2 ; r – расстояние между зарядами;  - диэлектрическая проницаемость среды;  0 - электрическая постоянная

.

Закон сохранения заряда:

,

где – алгебраическая сумма зарядов, входящих в изолированную систему;n – число зарядов.

Напряженность и потенциал электростатического поля:

;
, или
,

где – сила, действующая на точечный положительный зарядq 0 , помещенный в данную точку поля; П – потенциальная энергия заряда; А ∞ - работа, затраченная на перемещение заряда q 0 из данной точки поля в бесконечность.

Поток вектора напряженности электрического поля:

а) через произвольную поверхность S, помещенную в неоднородное поле:

, или
,

где  – угол между вектором напряженности и нормальюк элементу поверхности;dS – площадь элемента поверхности; E n – проекция вектора напряженности на нормаль;

б) через плоскую поверхность, помещенную в однородное электрическое поле:

.

Поток вектора напряженности через замкнутую поверхность –

(интегрирование ведется по всей поверхности).

Теорема Остроградского-Гаусса. Поток вектора напряженностичерез любую замкнутую поверхность, охватывающую зарядыq1,q2, …,qn, –

,

где – алгебраическая сумма зарядов, заключенных внутри замкнутой поверхности; n – число зарядов.

Напряженность электростатического поля, создаваемого точечным зарядом q на расстоянии r от заряда, –

.

Напряженность электрического поля, создаваемого сферой, имеющей радиус R и несущей заряд q, на расстоянии r от центра сферы такова:

внутри сферы (r R) Е=0;

на поверхности сферы (r=R)
;

вне сферы (r  R)
.

Принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность результирующего поля, созданного двумя (и более) точечными зарядами, равна векторной (геометрической) сумме напряженностей складываемых полей, выражается формулой

В случае двух электрических полей с напряженностями иабсолютное значение вектора напряженности составляет

где  - угол между векторами и.

Напряженность поля, создаваемого бесконечно длинной и равномерно заряженной нитью (или цилиндром) на расстоянии r от ее оси, –

,

где  - линейная плотность заряда.

Линейная плотность заряда есть величина, равная его отношению к длине нити (цилиндра):

.

Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью, –

,

где  - поверхностная плотность заряда.

Поверхностная плотность заряда есть величина, равная отношению заряда, распределенного по поверхности, к ее площади:

.

Напряженность поля, создаваемого двумя бесконечными и параллельными плоскостями, заряженными равномерно и разноименно, с одинаковой по абсолютному значению поверхностной плотностью заряда (поле плоского конденсатора) –

.

Приведенная формула справедлива при вычислении напряженности поля между пластинами плоского конденсатора (в его средней части) только в том случае, если расстояние между пластинами намного меньше линейных размеров пластин конденсатора.

Электрическое смещение связано с напряженностьюэлектрического поля соотношением

,

которое справедливо только для изотропных диэлектриков.

Потенциал электрического поля есть величина, равная отношению потенциальной энергии и точечного положительного заряда, помещенного в данную точку поля:

.

Иначе говоря, потенциал электрического поля есть величина, равная отношению работы сил поля по перемещению точечного положительного заряда из данной точки поля в бесконечность к величине этого заряда:

.

Потенциал электрического поля в бесконечности условно принят равным нулю.

Потенциал электрического поля, создаваемый точечным зарядом q на

расстоянии r от заряда, –

.

Потенциал электрического поля, создаваемый металлической сферой, имеющей радиус R и несущей заряд q, на расстоянии r от центра сферы таков:

внутри сферы (r  R)
;

на поверхности сферы (r = R)
;

вне сферы (r  R)
.

Во всех формулах, приведенных для потенциала заряженной сферы,  есть диэлектрическая проницаемость однородного безграничного диэлектрика, окружающего сферу.

Потенциал электрического поля, образуемого системой n точечных зарядов в данной точке в соответствии с принципом суперпозиции электрических полей, равен алгебраической сумме потенциалов
, создаваемых отдельными точечными зарядами
:

.

Энергия W взаимодействия системы точечных зарядов
определяется работой, которую эта система может совершить при удалении их относительно друг друга в бесконечность, и выражается формулой

,

где - потенциал поля, создаваемый всеми (n-1) зарядами (за исключением i-го) в точке, где находится заряд .

Потенциал связан с напряженностью электрического поля соотношением

.

В случае электрического поля, обладающего сферической симметрией, эта связь выражается формулой

,

или в скалярной форме

.

В случае однородного поля, т.е. поля, напряженность которого в каждой его точке одинакова как по абсолютному значению, так и по направлению, –

,

где  1 и  2 – потенциалы точек двух эквипотенциальных поверхностей; d - расстояние между этими поверхностями вдоль электрической силовой линии.

Работа, совершаемая электрическим полем при перемещении точечного заряда q из одной точки поля, имеющей потенциал  1 , в другую, имеющую потенциал  2 , равна

, или
,

где E – проекция вектора на направление перемещения;
- перемещение.

В случае однородного поля последняя формула принимает вид

,

где – перемещение; - угол между направлениями вектора и перемеще-ния.

Диполь есть система двух точечных (равных по абсолютному значению и противоположных по знаку) зарядов, находящихся на некотором расстоянии друг от друга.

Электрический момент диполя есть вектор, направленный от отрицательного заряда к положительному, равный произведению зарядана вектор, проведенный от отрицательного заряда к положительному, и называемый плечом диполя, т.е.

.

Диполь называется точечным, если его плечо намного меньше расстоянияr от центра диполя до точки, в которой нас интересует действие диполя ( r), см. рис. 1.

Напряженность поля точечного диполя:

,

где р – электрический момент диполя; r – абсолютное значение радиус-вектора, проведенного от центра диполя к точке, напряженность поля в которой нас интересует;  - угол между радиус-вектором и плечомдиполя.

Напряженность поля точечного диполя в точке, лежащей на оси диполя

(=0), находится по формуле

;

в точке, лежащей на перпендикуляре к плечу диполя, восстановленном из его середины
, – по формуле

.

Потенциал поля точечного диполя в точке, лежащей на оси диполя (=0), составляет

,

а в точке, лежащей на перпендикуляре к плечу диполя, восстановленном из его середины
, –

Напряженность и потенциал неточечного диполя определяются так же как и для системы зарядов.

Механический момент, действующий на диполь с электрическим моментом р, помещенный в однородное электрическое поле с напряженностью Е, –

, или
,

где  - угол между направлениями векторов и.

Электроемкость уединенного проводника или конденсатора –

,

где q – заряд, сообщенный проводнику; - изменение потенциала, вызванное этим зарядом.

Электроемкость уединенной проводящей сферы радиусом R, находящейся в бесконечной среде с диэлектрической проницаемостью , –

.

Если сфера полая и заполнена диэлектриком, то ее электроемкость при этом не изменяется.

Электроемкость плоского конденсатора:

,

где S – площадь каждой пластины конденсатора; d – расстояние между пластинами;  - диэлектрическая проницаемость диэлектрика, заполняющего пространство между пластинами.

Электроемкость плоского конденсатора, заполненного n слоями диэлектрика толщиной d i и диэлектрической проницаемостью  i каждый (слоистый конденсатор), составляет

.

Электроемкость сферического конденсатора (две концентрические сферы радиусом R 1 и R 2 , пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью ) находится так:

.

Электроемкость последовательно соединенных конденсаторов составляет:

в общем случае –

,

где n – число конденсаторов;

в случае двух конденсаторов –

;

.

Электроемкость параллельно соединенных конденсаторов определяется следующим образом:

в общем случае –

С=С 1 +С 2 +…+С n ;

в случае двух конденсаторов –

С= С 1 +С 2 ;

в случае n одинаковых конденсаторов с электроемкостью С 1 каждый –

Энергия заряженного проводника выражается через заряд q, потенциал  и электроемкость С проводника следующим образом:

.

Энергия заряженного конденсатора –

,

где q – заряд конденсатора; С – электроемкость конденсатора; U – разность потенциалов на его пластинах.