Канонический ансамбль. Распределение Гиббса

Расширенная по сравнению с Максвеллом и Больцманом трактовка статистической физики была дана Гиббсом. В его трактовке задача заключается в вычислении средних значений физических величин. Вместо усреднения по времени в рамках одной системы рассматривается совокупность большого числа определенным образом неупорядоченных одинаковых систем. Замкнутая система определяется как система с постоянной энергией, постоянным числом частиц и постоянным объемом. Основополагающими понятиями в этом описании являются понятия ансамбля, совокупности частиц и фазового пространства.

Под фазовым Г-пространством понимают пространство всех обобщенных координат q и импульсов р. Микросостояние системы или ее фаза изображаются в этом пространстве точкой. При наличии n степеней свободы мы имеем пространство 2n-измерений.

Представим себе, что имеется N вариантов изучаемой системы, полностью адекватных в макроскопическом отношении: все они находятся в одинаковых внешних условиях, имеют одинаковый состав и строение. Такая условная совокупность тождественных, невзаимодействующих друг с другом систем называется ансамблем Гиббса. Различные системы ансамбля отличаются друг от друга микросостояниями. Будем предполагать, что в ансамбле представлены все возможные микроскопические состояния, совместимые с данными внешними условиями. С течением времени вследствие движения частиц микроскопические состояния сменяют друг друга.

В классической статистике каждое микросостояние системы характеризуется точкой. находящейся в объеме DpDq 6N-мерного пространства. Вероятность данного микросостояния системы, или вероятность того, что координаты и импульсы частиц находятся в заданном интервале Dx, Dp:

где N- полное число систем в ансамбле, DN- число микросостояний, изображаемых точками, лежащими внутри заданного объема.

Вероятность определенного состояния системы пропорциональна заданному фазовому объему DpDq и плотности распределения точек, изображающих состояния систем ансамбля в фазовом пространстве.

Функцией распределения (функцией состояния) f(p,q) называется плотность распределения (число точек в единице объема фазового пространства), отнесенных к полному количеству систем в ансамбле N.

(1.6.2)

Из определения вероятности следует, что должно иметь место условие нормировки

Таким образом, функция распределения для некоторой изолированной (находящейся в термостате) системы имеет вид

, (1.6.4)

где W(p,q) - полная энергия системы, а коэффициент A(T) определяется из условия нормировки (1.6.2). Полученное распределение называется распределением Гиббса или каноническим распределением.


В случае квантовой статистики необходимо заменить непрерывное распределение различных состояний их дискретным набором. Характеристикой замкнутой системы служит энтропия. Каждому значению энергии W i отвечает некоторая группа N(W i) квантовых состояний (степень вырождения).

Так как все состояния с заданной энергией равновероятны, вероятность нахождения системы в одном из состояний с данной энергией

Это микроканоническое распределение Гиббса. Оно показывает, что вероятность нахождения замкнутой системы в одном из состояний с данной энергией пропорциональна кратности его вырождения (см. библиографический список (3)).

Условие нормировки:

Отсюда следует каноническое распределение Гиббса

(1.6.6)

При помощи распределения Гиббса можно вычислить среднее значение любой величины, зависящей от состояния системы. Состояние, отвечающее максимуму распределения Гиббса, является наиболее вероятным.

1.3. Распределения Гиббса

При статистическом методе для определения основной характеристики (X – совокупность координат и импульсов всех частиц системы) используются те или иные модели строения рассматриваемого тела .

Оказывается возможным нахождения общих свойств общих статистических закономерностей, которые не зависят от строения вещества и являются универсальными. Выявление таких закономерностей является основной задачей термодинамического метода описания тепловых процессов. Все основные понятия и законы термодинамики могут быть раскрыты на основе статистической теории.

Для изолированной (замкнутой) системы или системы в постоянном внешнем поле состояние называется статистически равновесным, если функция распределения не зависит от времени.

Конкретный вид функции распределения рассматриваемой системы зависит как от совокупности внешних параметров , так и от характера взаимодействия с окружающими телами. Под внешними параметрами в данном случае будем понимать величины, определяемые положением не входящих в рассматриваемую систему тел. Это, например, объем системы V , напряженность силового поля и т.д. Рассмотрим два наиболее важных случая:

1) Рассматриваемая система энергетически изолирована. Полная энергия частиц Е постоянна. При этом . Е можно включить в а , но выделение его подчеркивает особую роль Е. Условие изолированности системы при заданных внешних параметрах можно выразить равенством:

2) Система не замкнута – возможен обмен энергией. В этом случае нельзя найти , она будет зависеть от обобщенных координат и импульсов частиц окружающих тел. Это оказывается возможным, если энергия взаимодействия рассматриваемой системы с окружающими телами .

При этом условии функция распределения микросостояний зависит от средней интенсивности теплового движения окружающих тел, которую характеризуют температурой Т окружающих тел: .

Температура также играет особую роль. Она не имеет (в отличие от а ) аналога в механике: (не зависит от Т ).

В состоянии статистического равновесия не зависит от времени, неизменны и все внутренние параметры. В термодинамике такое состояние называют состоянием термодинамического равновесия . Понятия статистического и термодинамического равновесия эквивалентны.

Функция распределения микроскопической изолированной системы – микроканоническое распределение Гиббса

Случай энергетически изолированной системы. Найдем вид функции распределения для этого случая.

Существенную роль при нахождении при функции распределения играют лишь интегралы движения – энергия, – импульс системы и – момент импульса. Лишь они являются контролируемыми.

Гамильтониану в механике отводится особая роль, т.к. именно функцией Гамильтона определяется вид уравнения движения частиц. Сохранение полного импульса и момента импульса системы при этом является следствием уравнений движения.

Поэтому выделяют именно такие решения уравнения Лиувилля, когда зависимость проявляется лишь через гамильтониан :

.

Так как , .

Из всех возможных значений Х (совокупность координат и импульсов всех частиц системы) выделяются те, которые совместимы с условием . Константу С можно найти из условия нормировки:

,

где – площадь гиперповерхности в фазовом пространстве , выделяемой условием постоянства энергии.

Т.е. – микроканоническое распределение Гиббса.

В квантовой теории равновесного состояния, так же существует микроканоническое распределение Гиббса. Введем обозначения: – полный набор квантовых чисел, характеризующих микросостояние системы частиц, – соответствующие допустимые значения энергии. Их можно найти, решая стационарное уравнение для волновой функции рассматриваемой системы.

Функция распределения микросостояний в таком случае будет представлять собой вероятность для системы находиться в определенном состоянии: .

Квантовое микроканоническое распределение Гиббса может быть записано в виде:

,

где – символ Кронекера, – из нормировки: – число микросостояний с заданным значением энергии (а так же ). Она называется статистическим весом.

Из определения все состояния удовлетворяющие условию имеют одинаковою вероятность, равную . Таким образом, в основе квантового микроканонического распределения Гиббса лежит принцип равных априорных вероятностей.

Функция распределения микросостояний системы в термостате – каноническое распределение Гиббса.

Рассмотрим теперь систему, обменивающуюся энергией с окружающими телами. Этому подходу с термодинамической точки зрения соответствует система, окруженная очень большим термостатом с температурой T . Для большой системы (наша система + термостат) можно использовать микроканоническое распределение, поскольку такая система может считаться изолированной. Будем полагать, что рассматриваемая система составляет малую, но макроскопическую часть большей системы с температурой Т и числом частиц в ней . То есть выполняется равенство (>>).

Будем обозначать переменные нашей системы через X , а переменные термостата через X 1 .

Тогда для всей системы запишем микроканоническое распределение:

Нас будет интересовать вероятность состояния системы из N частиц при любых возможных состояниях термостата. Эту вероятность можно найти, проинтегрировав это уравнение по состояниям термостата

Функция Гамильтона системы и термостата может быть представлена в виде

Будем пренебрегать энергией взаимодействия между системой и термостатом по сравнению, как с энергией системы, так и с энергией термостата. Это можно сделать, поскольку энергию взаимодействия для макросистемы пропорциональна площади ее поверхности, в то время как энергия системы пропорциональна ее объему. Однако пренебрежение энергией взаимодействия по сравнению с энергией системы не означает, что оно равно нулю, в противном случае постановка задачи теряет смысл.

Таким образом, распределение вероятностей для рассматриваемой системы можно представить в виде

Перейдем к интегрированию по энергии термостата

,

Отсюда, воспользовавшись свойством d-функции

,

Будем в дальнейшем переходить к предельному случаю, когда термостат очень велик. Рассмотрим частный случай, когда термостат представляет собой идеальный газ с N 1 частицами с массой m каждая.

Найдем величину , которая представляет собой величину

,

где представляет собой объем фазового пространства, заключенного внутри гиперповерхности . Тогда представляет собой объем гипершарового слоя (сравните с выражением для трехмерного пространства

Для идеального газа область интегрирования дается условием

.

В результате интегрирования в указанных границах получаем объем 3N 1 -мерного шара с радиусом, который будет равен . Таким образом, имеем

.

Откуда имеем

.

Таким образом, для распределения вероятностей имеем

.

Перейдем теперь к пределу N 1 ®¥ , однако, предполагая, что отношение остается постоянным (так называемый термодинамический предел). Тогда получим

.

Принимая во внимание, что

,

.

Тогда функция распределения системы в термостате может быть записана в виде

,

где С находится из условия нормировки:

Функция называется классическим статистическим интегралом. Таким образом, функция распределения системы в термостате может быть представлена в виде:

– это и есть каноническое распределение Гиббса (1901 г.).

В этом распределении Т характеризует среднюю интенсивность теплового движения – абсолютную температуру частиц окружающей среды.

Другая форма записи распределения Гиббса

,

При определении считались различными микроскопическими состояния, отличающиеся лишь перестановкой отдельных частиц. Это означает, что мы в состоянии следить за каждой частицей. Однако такое предположение приводит к парадоксу.

Выражение для квантового канонического распределения Гиббса, может быть записано по аналогии с классическим:

– статистическая сумма: .

Перейдем теперь к поставленной в главе I задаче о нахождении функции распределения для любого макроскопического тела, являющегося малой частью какой-либо большой замкнутой системы (подсистемой). Наиболее удобный и общий способ подхода к решению этой задачи основан на применении ко всей системе микроканонического распределения.

Выделим из замкнутой системы интересующее нас тело и будем рассматривать систему как составленную из двух частей: изданного тела и всей остальной ее области, которую мы будем называть по отношению к телу «средой».

Микроканоническое распределение (6,6) напишется в виде

где относятся соответственно к телу и среде, а - заданное значение энергии замкнутой системы; этому значению должна быть равна сумма энергий тела и среды.

Нашей целью является нахождение вероятности такого состояния всей системы, при котором данное тело находится в некотором определенном квантовом состоянии (с энергией ), т. е. в состоянии, описанном микроскопическим образом. Микроскопическим же состоянием среды мы при этом не интересуемся, т. е. будем считать, что она находится в некотором макроскопически описанном состоянии. Пусть есть статистический вес макроскопического состояния среды; обозначим также посредством интервал значений энергии среды, соответствующий интервалу квантовых состояний в указанном в § 7 смысле.

Искомую вероятность мы найдем, заменив в (28,1) единицей, положив и проинтегрировав по

Пусть - полное число квантовых состояний среды с энергией, меньшей или равной Е.

Поскольку подынтегральное выражение зависит только от Е, можно перейти к интегрированию по , написав:

Производную заменяем (ср. § 7) отношением

где - энтропия среды как функция ее энергии (функцией Е является, конечно, также и ). Таким образом,

Благодаря наличию - функции интегрирование сводится к замене Е на и получаем

(28,2)

Учтем теперь, что вследствие малости тела его энергия мала по сравнению с Величина относительно очень мало меняется при незначительном изменении ; поэтому в ней можно просто положить после чего она превратится в независящую от постоянную. В экспоненциальном же множителе надо разложить по степеням сохранив также и линейный член:

Но производная от энтропии S по энергии есть не что иное, как , где Т - температура системы (температура тела и среды одинакова, так как система предполагается находящейся в равновесии).

Таким образом, получаем окончательно для следующее выражение:

где А - не зависящая от нормировочная постоянная. Это - одна из важнейших формул статистики; она определяет статистическое распределение любого макроскопического тела, являющегося сравнительно малой частью некоторой большой замкнутой системы. Распределение (28,3) называется распределением Гиббса или каноническим распределением; оно было открыто Гиббсом (J. W. Gibbs) для классической статистики в 1901 г.

Нормировочная постоянная А определяется условием откуда

Среднее значение любой физической величины f, характеризующей данное тело, может быть вычислено с помощью распределения Гиббса по формуле

В классической статистике выражение, в точности соответствующее формуле (28,3), получается для функции распределения в фазовом пространстве:

где - энергия тела как функция его координат и импульсов. Нормировочная постоянная А определяется условием

На практике часто приходится иметь дело со случаями, когда квазиклассическим является не все микроскопическое движение частиц, а лишь движение, соответствующее части степеней свободы, в то время как по остальным степеням свободы движение является квантовым (так, например, может быть квазиклассическим поступательное движение молекул при квантовом характере внутримолекулярного движения атомов). В таком случае уровни энергии тела можно написать в виде функций от квазиклассических координат и импульсов: где обозначает совокупность квантовых чисел, определяющих «квантовую часть» движения, для которого значения и q играют роль параметров. Формула распределения Гиббса напишется тогда в виде

где - произведение дифференциалов «квазиклассических» координат и импульсов.

Наконец, необходимо сделать следующее замечание по поводу круга вопросов, для решения которых можно применять распределение Гиббса. Мы все время говорили о последнем как о статистическом распределении для подсистемы, каковым оно в действительности и является. Весьма важно, однако, что это же распределение можно с полным успехом применять и для определения основных статистических свойств замкнутых тел.

Действительно, такие свойства тела, как значения его термодинамических величин или распределения вероятностей для координат и скоростей отдельных его частиц, очевидно, не зависят от, того, рассматриваем ли мы тело как замкнутое или как помещенное в воображаемый термостат (§ 7). В последнем случае, однако, тело становится «подсистемой» и распределение Гиббса применимо к нему буквально. Отличие замкнутого тела от незамкнутого проявляется при применении распределения Гиббса по существу лишь при рассмотрении сравнительно мало интересного вопроса о флуктуациях полной энергии тела. Распределение Гиббса дает для средней флуктуации этой величины отличное от нуля значение, которое для тела, находящегося в среде, имеет реальный смысл, а для замкнутого тела совершенно фиктивно, так как энергия такого тела по определению постоянна и не флуктуирует.

Возможность применения (в указанном смысле) распределения Гиббса к замкнутым телам видна также и из того, что оно по существу очень слабо отличается от микроканонического (и в то же время несравненно удобнее для проведения конкретных расчетов). Действительно, микроканоническое распределение эквивалентно, грубо говоря, признанию равновероятными всех микросостояний тела, отвечающих заданному значению его энергии. Каноническое же распределение «размазано» по некоторому интервалу значений энергии, ширина которого (порядка величины средней флуктуации энергии), однако, для макроскопического тела ничтожно мала.

Гиббса распределение

фундаментальный закон статистической физики (См. Статистическая физика), определяющий вероятность данного микроскопического состояния системы, т. е. вероятность того, что координаты и импульсы частиц системы имеют определённые значения.

Для систем, находящихся в тепловом равновесии с окружающей средой, в которой поддерживается постоянная температура (с термостатом), справедливо каноническое Г. р., установленное Дж. У. Гиббс ом в 1901 для классической статистики. Согласно этому распределению, вероятность определённого микроскопического состояния пропорциональна функции распределения f (q i , p i ), зависящей от координат q i и импульсов p i частиц системы:

где H (q i , p i ) - функция Гамильтона системы, т. е. её полная энергия, выраженная через координаты и импульсы частиц, k - Больцмана постоянная , Т - абсолютная температура; постоянная А не зависит от q i и p i и определяется из условия нормировки (сумма вероятностей пребывания системы во всех возможных состояниях должна равняться единице). Т. о., вероятность микросостояния определяется отношением энергии системы к величине kT (которая является мерой интенсивности теплового движения молекул) и не зависит от конкретных значений координат и импульсов частиц, реализующих данное значение энергии.

В квантовой статистике вероятность w n данного микроскопического состояния определяется значением энергетического уровня системы Ε п .

Для идеального газа, т. е. газа. в котором энергией взаимодействия частиц можно пренебречь, каноническое Г. р. переходит в Больцмана распределение, определяющее вероятность того, что координата и импульс (энергия) отдельной частицы имеют данные значения (см. Больцмана статистика).

Если система изолирована, то её энергия постоянна; в этом случае справедливо микроканоническое Г. р., согласно которому все микроскопические состояния изолированной системы равновероятны. Микроканоническое Г. р. лежит в основе Г. р. канонического.

Г. Я. Мякишев.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Гиббса распределение" в других словарях:

    Каноническое распределение вероятностей различных состояний макроскопической системы с постоянным объемом и постоянным числом частиц, находящейся в равновесии с окружающей средой заданной температуры; если система может обмениваться частицами со… … Большой Энциклопедический словарь

    Каноническое, распределение вероятностей различных состояний макроскопической системы с постоянным объёмом и постоянным числом частиц, находящейся в равновесии с окружающей средой заданной температуры; если система может обмениваться частицами со … Энциклопедический словарь

    Распределение вероятностей обнаружения равновесной статистич. системы в любом из ее стационарных микроскопич. состояний. Последние обычно задаются как чистые квантово механич. состояния, определяемые решением yn стационарного Шрёдингера уравнения … Математическая энциклопедия

    Каноническое, распределение вероятностей разл. состояний макроскопич. системы с пост. объёмом и пост. числом частиц, находящейся в равновесии с окружающей средой заданной темп ры; если система может обмениваться частицами со средой, то Г. р. наз … Естествознание. Энциклопедический словарь

    Распределение Гиббса распределение, определяющее количества частиц в различных квантовых состояниях. Основывается на постулатах статистики: Все доступные микросостояния системы равновероятны. Равновесию соответствует наиболее вероятное… … Википедия

    Распределение вероятностей состояний статистического ансамбля систем, к рые находятся в тепловом и материальном равновесии со средой (термостатом и резервуаром ч ц) и могут обмениваться с ними энергией и ч цами (через полупроницаемые перегородки) … Физическая энциклопедия

    Равновесные распределения вероятностей состояний статистич. систем в разл. физ. условиях фундам. законы статистич. физики, установленные Дж. У. Гиббсом (1901). Г. р. имеют место как для состояний классич. систем, полная энергия к рых определяется … Физическая энциклопедия

    Как функция от ε/μ, построенная для 4 различных температур. С ростом температуры ступенька размывается Статистика Ферми Дирака в статистической физике квантовая статистика, применяемая к системам тождественных фермионов (как правило, частиц с… … Википедия

    Статистический ансамбль для макроскопич. систем пост. объёма в тепловом равновесии с термостатом и в материальном равновесии с резервуаром ч ц (обмен ч цами можно осуществить при помощи полупроницаемых перегородок). У рассматриваемых систем… … Физическая энциклопедия

    Статистика Максвелла Больцмана статистический метод описания физических систем, содержащих большое число невзаимодействующих частиц, движущихся по законам классической механики (то есть классического идеального газа); предложена в 1871 г.… … Википедия

Книги

  • Теоретическая физика. В десяти томах. Том 5. Статистическая физика , Ландау Лев Давидович, Лифшиц Евгений Михайлович. От производителя Авторы стремились дать в настоящей книге систематическое изложение статистической физики вместе с термодинамикой. В основу положен метод Гиббса. Все конкретные задачи…
  • Теоретическая физика. В 10-и томах. Том 5. Статистическая физика. В 2-х частях. Часть 1. Учебное пособие. Гриф МО РФ , Ландау Лев Давидович, Лифшиц Евгений Михайлович. От производителяАвторы стремились дать в настоящей книге систематическое изложение статистической физики вместе с термодинамикой. В основу положен метод Гиббса. Все конкретные задачи…

Введение в термодинамику.

Макроскопическое описание систем с большим числом степеней свободы. Изолированные и замкнутые системы. Подсистемы макроскопической системы. Термодинамическое равновесие и нулевое начало термодинамики. Понятие температуры.

Формализм термодинамики.

Квазистационарные процессы, элементарная работа над замкнутой системой и канонически сопряженные макропараметры. Обмен теплом между подсистемами и первое начало термодинамики.

Второе начало термодинамики. Адиабатический процесс. Определение энтропии и температуры. Аддитивность энтропии. Принцип максимума энтропии.

Термодинамические потенциалы и их свойства (энтропия, свободная энергия, энтальпия, термодинамический потенциал Гиббса, большой термодинамический потенциал). Экстенсивные и интенсивные параметры в простых подсистемах. Принцип ле-Шателье и термодинамические неравенства.

Тепловые машины. Максимальная работа, извлекаемая из замкнутой неравновесной системы. Работа в циклических процессах, КПД цикла, цикл Карно. Максимальная работа тела во внешней среде. Модели двигателя внутреннего сгорания.

Формализм статистической физики

Микро-описание динамики макроскопической системы на основе канонических уравнений Гамильтона. Основная задача статистической физики. Парадокс обратимости и основные постулаты статистической физики. Макроскопические параметры как результат усреднения своих микроаналогов.

Эргодическая гипотеза и статистичекий анасамбль систем. Фазовое пространство, функция распределения и кинетическое уравнение Лиувиля. Расчет различных распределений вероятности по заданной функции распределения. Стационарные функции распределения в замкнутой системе. Адиабатический процесс и его интеграл.

Микроканоническое распределение.

Микроканоническое распределение как предел функции распределения, пригодной к расчету макроскопических параметров методом усреднения адиабатического процесса. Равновероятность микросостояний и неравновероятность макросостояний. Расчет распределений вероятностей по различным параметрам.

Статистическое определение энтропии замкнутой системы (принцип максимума и аддитивность энтропии, введение термодинамики).

Статистический расчет уравнения состояния идеального газа. Идеальный газ во внешнем потенциальном поле. Распределение Максвелла - Больцмана в идеальном газе.

Парадокс Гиббса и его разрешение в рамках классической статистической физики. Определение энтропии системы одинаковых частиц.

Распределение Гиббса

Статистическое описание равновесной подсистемы в термостате. Каноническое распределение в классической статистической физике. Статистический интеграл и свободная энергия системы.

Постулирование канонического распределения. Эквивалентность макроскопической термодинамики, построенной на базе канонического и микроканонического ансамблей.

Канонические распределения в термостатах различного типа и термодинамические потенциалы. Эквивалентность соответствующих формулировок термодинамических соотношений.

Анализ идеального газа в рамках распределения Гиббса. Уравнение состояния и теплоемкость одноатомного идеального газа. Идеальный газ во внешнем потенциальном поле. Закон равнораспределения кинетической энергии по степениям свободы. Теплоемкость многоатомных газов. Поражение классической статистической физики.

Квантовое распределение Гиббса

Квантовое обобщение канонического распределения Гиббса. Статистическая сумма и ее квазиклассическое представление. Формула Планка для средней энергии осциллятора. «Вымораживание» степеней свободы при низких температурах. Теорема Нернста.

Квантование поступательных степеней свободы. Понятие тождественных частиц, происхождение фактора и условия классического описания невырожденного идеального газа.

Тождественные частицы

Статистический расчет простейших систем тождественных частиц (ротатор, осциллятор).

Системы с большим числом невзаимодействующих тождественных частиц Ансамбль тождественных осцилляторов с нулевым спином. Представление чисел заполнения и большое каноническое распределение в квантовой статистической физике.

Идеальный газ тождественных частиц. Распределения Бозе-Эйнштейна и Ферми-Дирака. Эффекты вырождения в газе тождественных частиц, конденсация бозе-газа, энергия Ферми и полностью вырожденный ферми-газ. Теплоемкость и термодинамика вырожденного ферми-газа. Вырожденный идеальный газ во внешних полях. Идеальный газ электронов в твердом теле (введение в зонную теорию).

Равновесное излучение

Равновесное излучение в замкнутом объеме (модель фотонного газа и модель осцилляторов поля). Распределение Планка. Энергия, давление и термодинамика фотонного газа.

Спектральные характеристики случайного поля (плотность энергии и интенсивность теплового излучения). Перенос теплового излучения в прозрачной неоднородной среде. Излучение "черного" и "серых" тел.

Неидеальные газы

Статистическое описание разреженного реального газа со слабым взаимодействием между молекулами. Термодинамика неидеального газа в рамках модели Ван-дер-Ваальса. Процесс Джоуля-Томпсона. Термодинамика классической плазмы.