Кипение жидкости и его свойства. Как происходит измерение

Наш мир живёт по законам, которые легко объяснимы благодаря законам химии и физики. О том, какой именно процесс произошёл с каким-то телом или веществом, можно судить по характеру изменений. А по каким признакам можно узнать, кипение воды - это физическое или химическое явление?

Характеристики явлений

Основным признаком всех физических явлений считается неизменность состава тел. Проще говоря, все вещества, которые участвовали в процессе, по его окончании сохраняют свой первоначальный состав. Изменяться может форма вещества или его агрегатное состояние. Например, состав воды остаётся одним и тем же, будь она в твёрдом, жидком либо парообразном состоянии. При понижении температуры вода может превратиться в лёд, а при повышении – снова перейти в жидкое состояние.

Во время химических реакций происходит превращение одних веществ в другие, и при этом приобретаются новые свойства.

Например, при сжигании бумаги, кроме золы, образуется некоторое количество влаги и углекислого газа. Причём получить бумагу обратно уже невозможно. Также сюда относится ржавление железа. Его реакция с кислородом, входящим в состав воздуха, ведёт к образованию оксида железа, который имеет совсем другие свойства, нежели первоначальный металл.

В отличие от физических явлений, химические протекают с изменением цвета, запаха, температуры, выделением различных газов. Каждое вещество имеет свой состав и обладает какими-то особенными свойствами. Одна из главных задач химии – изучение строения тел, а также особенностей их превращения во время реакций. Очень часто химические реакции осуществляются одновременно с физическими. Поэтому физические свойства тел зависят и от химических реакций, протекающих в них.

Что такое испарение

Процесс парообразования принято называть испарением. Объясняется оно таким образом. При ударах молекул друг о друга их скорость изменяется. Часто она увеличивается до такой степени, что превышает притяжение близлежащих молекул. Это позволяет молекуле, которая передвигается с большой скоростью, отрываться от поверхности. Следует сказать, что процесс парообразования является постоянным, независимо от температуры воздуха.

Молекулы, оторвавшиеся от поверхности, некоторое время находятся над ней в виде пара. Благодаря хаотичному движению определённое их количество может вернуться снова в воду. Поэтому на скорость испарения влияет ветер, который своей силой переносит пар в сторону. В закрытой ёмкости парообразование моментально прекращается, поскольку оторвавшиеся молекулы через определённое время снова попадают в воду.

Поскольку это явление не влияет на изменение состава, можно выразить сомнения относительно распространённого мнения, что испарение воды – это химический процесс. Скорость парообразования зависит также от следующих факторов:

  1. Если притяжение молекул в жидкости понижается, то интенсивность парообразования возрастает.
  2. С увеличением площади поверхности, занимаемой жидкостью, увеличивается и скорость испарения.
  3. Повышенная температура оказывает существенное влияние на скорость движения молекул, а, следовательно, и на интенсивность парообразования.

Что такое кипение

Очень интересно происходит также кипение воды. Какое это явление? Его суть заключается в интенсивном парообразовании, происходящем во время повышения температуры жидкости, появлении в ней пара в виде пузырьков, которые, всплывая на поверхность, разрываются. При кипении температура воды не меняется, и этот градус называют температурой кипения.

Эти знания быстро улетучиваются, и постепенно люди прекращают обращать внимание на сущность привычных явлений. Иногда бывает полезно вспомнить теоретические знания.

Определение

Что такое кипение? Это физический процесс, в ходе которого происходит интенсивное парообразование как на свободной поверхности жидкости, так и внутри ее структуры. Одним из признаков кипения является образование пузырьков, которые состоят из насыщенного пара и воздуха.

Стоит отметить существование такого понятия, как температура кипения. От давления также зависит скорость образования пара. Оно должно быть постоянным. Как правило, основной характеристикой жидких химических веществ является температура кипения при нормальном атмосферном давлении. Тем не менее на данный процесс также могут оказать влияние такие факторы, как интенсивность звуковых волн, ионизация воздуха.

Стадии кипения воды

Непременно начинает образовываться пар во время такой процедуры, как нагревание. Кипение подразумевает прохождение жидкости через 4 стадии:

  1. На дне сосуда, а также на его стенках начинают образовываться небольшие пузырьки. Это является результатом того, что в трещинках материала, из которого изготовлена емкость, содержится воздух, который расширяется под воздействием высокой температуры.
  2. Пузырьки начинают увеличиваться в объеме, в результате чего они вырываются на поверхность воды. Если верхний слой жидкости еще не достиг температуры кипения, полости опускаются ко дну, после чего снова начинают стремиться вверх. Этот процесс приводит к образованию звуковых волн. Именно поэтому во время кипения воды мы можем услышать шум.
  3. На поверхность выплывает наибольшее количество пузырьков, что создает впечатление После этого жидкость бледнеет. Учитывая визуальный эффект, данную стадию кипения называют "белым ключом".
  4. Наблюдается интенсивное бурление, которое сопровождается образованием больших пузырей, которые быстро лопаются. Этот процесс сопровождается появлением брызг, а также интенсивным образованием пара.

Удельная теплота парообразования

Практически ежедневно мы сталкиваемся с таким явлением, как кипение. Удельная теплота парообразования представляет собой физическую величину, которая определяет количество теплоты. С ее помощью жидкое вещество может быть обращено в пар. Для того чтобы рассчитать данный параметр, нужно разделить показатель теплоты испарения на массу.

Как происходит измерение

Показатель удельной измеряется в лабораторных условиях путем проведения соответствующих экспериментов. Они включают в себя следующие действия:

  • отмеряется необходимое количество жидкости, которое затем переливается в калориметр;
  • проводится первоначальный замер температуры воды;
  • на горелку устанавливается колба с заранее помещенным в нее исследуемым веществом;
  • пар, выделяемый исследуемым веществом, запускается в калориметр;
  • производится повторный замер температуры воды;
  • калориметр подвергается взвешиванию, что позволяет вычислить массу сконденсированного пара.

Пузырьковый режим кипения

Разбираясь с вопросом о том, что такое кипение, стоит отметить, что оно имеет несколько режимов. Так, при нагревании пар может образовываться в виде пузырей. Они периодически растут и лопаются. Такой режим кипения называется пузырьковым. Обычно полости, наполненные паром образуются именно у стенок сосуда. Это связано с тем, что они, как правило, перегреты. Это необходимое условие для кипения, ведь в противном случае пузырьки будут схлопываться, не достигая больших размеров.

Пленочный режим кипения

Что такое кипение? Проще всего объяснить этот процесс как парообразование при определенной температуре и постоянном давлении. Помимо пузырькового режима, выделяют также пленочный. Его сущность состоит в том, что при усилении теплового потока отдельные пузырьки объединяются, образуя паровой слой на стенках сосуда. При достижении критического показателя они прорываются на поверхность воды. Данный режим кипения отличается тем, что степень теплопередачи от стенок сосуда к самой жидкости значительно снижается. Причиной этому становится та самая паровая пленка.

Температура кипения

Стоит отметить, что существует зависимость температуры кипения от давления, которое оказывается на поверхность нагреваемой жидкости. Так, принято считать, что вода кипит при нагревании до 100 градусов Цельсия. Тем не менее данный показатель можно считать справедливым лишь в том случае, если показатель атмосферного давления будет считаться нормальным (101 кПа). Если же оно будет увеличиваться, температура кипения также поменяется в сторону повышения. Так, например, в популярных кастрюлях-скороварках давление равно примерно 200 кПа. Таким образом, температура кипения повышается на 20 пунктов (до 20 градусов).

Примером низкого атмосферного давления можно считать горные районы. Так, учитывая, что там оно достаточно небольшое, вода начинает закипать при температуре около 90 градусов. Жителям подобных районов приходится тратить намного больше времени на приготовление пищи. Так, например, чтобы сварить яйцо, придется нагреть воду не меньше, чем на 100 градусов, иначе белок не свернется.

Кипение вещества зависит от показателя давления насыщенного пара. Влияние его на температуру обратно пропорционально. Например, ртуть закипает при нагревании до 357 градусов Цельсия. Это можно объяснить тем, что давление насыщенных паров равно всего лишь 114 Па (для воды данный показатель составляет 101 325 Па).

Кипение в разных условиях

В зависимости от условий и состояния жидкости, температура кипения может существенно отличаться. Например, стоит добавить в жидкость соль. Ионы хлора и натрия размещаются между молекулами воды. Таким образом, на закипание требуется на порядок больше энергии, а соответственно - времени. Кроме того, такая вода образует намного меньше пара.

Чайник используется для кипячения воды в бытовых условиях. Если используется чистая жидкость, то температура данного процесса составляет стандартные 100 градусов. При аналогичных условиях закипает дистиллированная вода. Тем не менее будет затрачено немного меньше времени, если учесть отсутствие посторонних примесей.

Чем отличается кипение от испарения

Всякий раз, когда происходит кипение воды, пар выделяется в атмосферу. Но эти два процесса нельзя отождествлять. Они являются лишь способами парообразования, которое происходит при определенных условиях. Так, кипение - это первого рода. Данный процесс является более интенсивным, чем обусловлено образованием паровых очагов. Также стоит отметить, что процесс испарения происходит исключительно на поверхности воды. Кипение же касается всего объема жидкости.

От чего зависит испарение

Испарение представляет собой процесс преобразования жидкого или твердого вещества в газообразное состояние. Происходит "вылетание" атомов и молекул, связь которых с остальными частицами оказывается ослабленной под воздействием определенных условий. Скорость испарения может изменяться под влиянием следующих факторов:

  • площадь поверхности жидкости;
  • температура самого вещества, а также окружающей среды;
  • скорость движения молекул;
  • вид вещества.

Энергия кипения воды широко используется человеком в быту. Данный процесс стал настолько обыденным и привычным, что никто не задумывается о его природе и особенностях. Тем не менее с кипением связан целый ряд интересных фактов:

  • Наверное, все замечали, что в крышке чайника есть отверстие, но мало кто задумывается о его предназначении. Оно проделывается с той целью, чтобы частично выпускать пар. В противном случае вода может расплескаться через носик.
  • Продолжительность варки картофеля, яиц и прочих продуктов питания не зависит от того, насколько мощным является нагреватель. Имеет значение лишь тот факт, как долго они находились под воздействием кипящей воды.
  • На такой показатель, как температура кипения, никак не влияет мощность нагревательного прибора. Она может сказаться лишь на скорости испарения жидкости.
  • Кипение связано не только с нагреванием воды. При помощи данного процесса можно также заставить жидкость замерзнуть. Так, в процессе кипения нужно производить непрерывную откачку воздуха из сосуда.
  • Одна из самых актуальных проблем для хозяек заключается в том, что молоко может "убежать". Так, риск этого явления значительно повышается во время ухудшения погоды, которое сопровождается падением атмосферного давления.
  • Самый горячий кипяток получается в глубоких подземных шахтах.
  • Путем экспериментальных исследований ученым удалось установить, что на Марсе вода закипает при температуре 45 градусов Цельсия.

Может ли вода кипеть при комнатной температуре?

Путем несложных подсчетов ученым удалось установить, что вода может закипеть при на уровне стратосферы. Аналогичные условия можно воссоздать при помощи вакуумного насоса. Тем не менее подобный опыт можно провести и в более простых, приземленных условиях.

В литровой колбе нужно вскипятить 200 мл воды, а когда емкость заполнится паром, ее нужно плотно закрыть, снять с огня. Поместив ее над кристаллизатором, нужно дождаться окончания процесса кипения. Далее колбу обливают холодной водой. После этого в емкости снова начнется интенсивное кипение. Это связано с тем, что под воздействием низкой температуры пар, находящийся в верхней части колбы, опускается.

Кипение – процесс интенсивного парообразования жидкости, включающий рождение пузырьков пара, их рост и движение к поверхности жидкости. Кипение, характеризующееся образованием пузырьков пара на поверхности соприкосновения жидкости с твердым телом, называется поверхностным. В реальных условиях мы всегда имеем дело с поверхностным кипением, которое происходит на границе между жидкостью и твердым телом, нагретым выше температуры кипения (нагреватель). При нагревании жидкости до начала кипения основная часть подводимой теплоты расходуется на нагревание, остальная – на испарение. Пусть температура дна сосуда T 1 , температура жидкости на свободной поверхности T 2 . До тех пор, пока температурный перепад невелик, теплота переносится в жидкой среде только путем теплопроводности. В этом случае, как мы знаем, стационарное распределение температуры в жидкости удовлетворяет одномерному уравнению теплопроводности (4.5.21). Решением этого уравнения является функция (4.5.23), т. е. температура жидкости падает линейно от дна сосуда (x = 0) до свободной поверхности (x = d ). При этом градиент температуры постоянен и равен (рис. 78, а ).

а б в

При дальнейшем повышении температуры дна сосуда T 1 растет и температурный градиент в жидкой среде. Когда последний достигнет определенной величины, возникает свободная конвекция, и теплота в жидкости начинает переноситься интенсивнее (свободная конвекция тепла возникает под действием архимедовых сил и заключается в переносе верти­кально вверх масс более нагретой жидкости и опускании на ее место менее нагретой). Теперь стационарное распределение температуры определяется известным уравнением конвективного теплообмена

, (5.7.1)

где – скорость жидкости при конвекции, a – коэффициент темпера-туропроводности. Считая скорость жидкости в первом приближении постоянной, приходим к экспоненциальному убыванию температуры с высотой (рис. 78, б ). Это приводит к значительному увеличению градиента температуры в жидкости на границе с горячим дном, и, таким образом, увеличивается теплоотдача к жидкости. Пусть, наконец, температура дна стала столь значительной, что на его поверхности начинают возникать паровые пузырьки, которые постепенно увеличиваются, отрываются и всплывают. В жидкости устанавливается процесс кипения. Как показывают опыты, теплообмен в этом случае становится еще более интенсивным. Вследствие этого падение температуры жидкости вблизи горячей твердой поверхности будет происходить еще круче, чем при конвекции (рис. 78, в ).



Процесс поверхностного кипения начинается на дне сосуда, граничащего с нагревателем. В порах дна сосуда всегда имеется воздух или другой растворенный газ, который является генератором будущих пузырьков пара. По мере испарения жидкости внутрь пузырьков, давление пара в них повышается, пузырек начинает расти. Уве­личение размеров пузырька происходит особенно быстро, когда при некоторой температуре T S давление p (T S ) насыщенного пара в нем становится равным или немного больше внешнего давления, т. е. p (T S ) = p внеш. Тогда пузырек отрывается от дна и под действием архимедовой силы поднимается к поверхности жидкости.

Внешнее давление p внеш слагается из атмосферного давления p 0 , гидростатического давления (ρ– плотность жидкости, h – глубина, на которой образуется пузырек) и давления Лапласа (R – радиус пузырька, – коэффициент поверхностного натяжения жидкости). Таким образом, процесс кипения начнется при условии, что давление насыщенных паров при данной температуре T S



Температуру T S жидкости, при которой давление p (T S ) ее насыщенного пара становится равным внешнему давлению p внеш на жидкость, называют температурой кипения этой жидкости. Из равенства

(5.7.3)

следует, что температура кипения является функцией внешнего давления. Поэтому сказать, что температура кипения данного вещества равна T S , без указания, при каком внешнем давлении она получена, некорректно.

Мы знаем, что давление насыщенного пара жидкости уменьшается при понижении температуры и увеличивается при ее повышении, следовательно, и температура кипения жидкости понижается при уменьшении внешнего давления и повышается при его увеличении. Таким образом, если некоторая функция выражает зависимость давления насыщенных паров от температуры, то функция, обратная ей, определяет зависимость температуры кипения от внешнего давления. Так как уравнение Клапейрона-Клаузиса

в дифференциальной форме выражает зависимость давления насыщенных паров от температуры, то уравнение

(5.7.4)

определяет в дифференциальной форме зависимость температуры кипе-

ния от внешнего давления, т. е. уравнение (5.7.4) является уравнением кривой кипения в дифференциальной форме. В этом уравнении dT – изменение температуры кипения жидкости при изменении внешнего давления на dp .

В заключение отметим: если продолжительным кипячением из жидкости удалить воздух или другой растворенный газ, то эту жидкость можно нагреть до температуры, значительно большей, чем температура ее кипения при данном внешнем давлении. Так, полученную жидкость называют перегретой. Если в перегретую жидкость внести неоднородности, к примеру, забросить в нее песчинки, в порах которых находится воздух, то жидкость бурно вскипает, напоминая взрыв.

73. Аморфное и кристаллическое состояние вещества. Симметрия твердых тел. Основные элементы симметрии твердых тел.

В физике различают аморфные и кристаллические твердые тела. По признаку сохранения формы аморфные тела относят к твердым, во всем остальном они не отличаются от жидкостей. Аморфные тела рассматривают как переохлажденные жидкости с аномально большим коэффициентом вязкости, благодаря которому они при обычной температуре не могут течь. Однако при повышении температуры они постепенно размягчаются, не имея определенной температуры плавления, и приобретают обычную для жидкостей способность течь. Свойства аморфных тел одинаковы по всем направлениям, т. е. они изотропны. К примеру, если из стекла (аморфное тело) изготовить шар, то его свойства окажутся одинаковыми в различных направлениях. Так, при сжатии его с одинаковой силой в разных направлениях, он будет уменьшаться на одинаковую величину. Если измерять теплопроводность стекла, нагревая шар сверху и охлаждая его снизу или нагревая слева и охлаждая справа, найдем, что теплопроводность стекла во всех направлениях также одинакова. Для лучей света, пронизывающих стекло по всем направлениям, показатель преломления также оказывается одинаковым. Если поместить стеклянный шар между двумя пластинами заряженного конденсатора и вращать шар вокруг его центра, то не будет отмечено никакого изменения емкости конденсатора; это значит, что диэлектрическая постоянная не зависит от направления электрического поля внутри его.

Совершенно иначе ведут себя кристаллические твердые тела. Кристаллы имеют определенную, зависящую от внешнего давления температуру плавления. Скорость распространения света, изотермический коэффициент сжатия, коэффициент теплопроводности, модуль упругости, диэлектрическая проницаемость и многие другие физические свойства кристалла сильно зависят от направления в нем.

Кристаллы можно получать различными способами, например, охлаждением жидкости. При таком охлаждении, если не принять специальных мер, в жидкой фазе возникает множество центров кристаллизации, вокруг которых происходит образование твердой фазы. Возникает множество мелких кристалликов, сливающихся друг с другом хаотически и образующих так называемый поликристалл. Хотя каждый из кристаллов, образующих поликристалл, анизотропен, но ввиду хаотичности ориентировки этих кристаллов поликристаллическое тело в целом является изотропным.

Если же в охлажденную жидкость ввести затравку – маленький кристаллик, то кристаллизация начнется на нем, и можно вырастить большой монокристалл правильной формы. Для этого необходимо, чтобы условия роста кристалла были одинаковы на всех его поверхностях, что может быть достигнуто вращением затравки в растворе. При выращивании больших монокристаллов металлов и полупроводников затравку очень медленно со скоростью несколько миллиметров в час выдвигают в вертикальном направлении из нагревательной печи.

Согласно закону, открытому в 1783 г. Роме де Лиллем, во всех кристаллах одного и того же вещества углы между соответственными гранями равны. Так, например, в кристаллах каменной соли (NaCl) все углы между гранями 90˚. Если из такого кристалла выточить шарик и поместить его в насыщенный раствор каменной соли, то кубическая форма кристалла будет стремиться восстановиться. Причиной такого восстановления формы кристаллов является хорошо известное условие устойчивости равновесия термодинамической системы: условие минимума потенциальной энергии. Для кристаллов это условие выражено в принципе, сформулированном Гиббсом, Кюри и Вульфом: поверхностная энергия должна быть минимальной. Этот минимум должен находиться при условии, что заданы углы между гранями кристалла.

При помещении кристалла в насыщенный раствор или в расплав между твердой и жидкой фазами устанавливается динамическое равновесие: атомы из твердой фазы переходят в жидкую фазу, а из жидкой – в твердую; но осаждение из жидкой фазы идет так, что образуется система с минимумом потенциальной энергии, т. е. образуется характерная для данного вещества форма кристалла и все бывшие нарушения этой формы исчезают, потому шарик в описанном опыте стремится превратиться вновь в кубическую структуру или другую характерную кристаллическую форму.

Если условия роста кристалла неодинаковы в разных точках его поверхности, то форма растущего кристалла может быть отлична от характерной формы, хотя углы между основными гранями остаются та­кими, как и при правильной форме.

Давайте рассмотрим второй всем известный способ образования пара – кипение. Продемонстрируем это явление на опыте. Возьмем открытый стеклянный сосуд с водой и будем его нагревать, измеряя при этом его температуру. При повышении температуры воды, ее испарение усиливается, а в некоторых случаях можно увидеть даже туман. Во время охлаждения, водяной пар в воздухе конденсируется, образуя при этом маленькие капельки (сам пар невозможно увидеть).

Если и дальше увеличивать температуру мы сможем увидеть появление небольших пузырьков на воде. Их размеры будут постепенно увеличиваться. Мы видим растворенные пузырьки воздуха, содержащиеся в воде. Во время нагревания, излишки воздуха выделяются из воды в виде пузырьков. Они содержат насыщенный водяной пар, потому что вода испаряется внутрь этих пузырьков воздуха.

Чем дольше мы нагреваем воду, тем крупнее и многочисленнее становятся пузырьки. С их ростом (пузырьков) увеличивается и сила Архимеда, выталкивающая сила, а затем они всплывают наружу. Обычно мы слышим шум, который предшествует кипению. Во время определенной температуры объем пузырьков, которые приближаются к поверхности жидкости, резко возрастает. При выходе на поверхность они лопаются, и насыщенный в них пар выходит наружу – вода кипит.

Кипением называется интенсивный переход жидкости в пар, во время которого начинается образование пузырьков пара по всему объему жидкости при определенной температуре. Не стоит забывать, что у разных жидкостей разная температура кипения. В отличие от процесса испарения, который может происходить при любой температуре, кипение в состоянии происходить только при определенной температуре, которая постоянна для каждой жидкости. Таким образом, к примеру, при парке пищи необходимо уменьшать огонь после вскипания воды. Можно сэкономить топливо, в то же время оставив температуру воды постоянной.

Температуру, во время которой жидкость вскипает, называют температурой кипения.

При кипении температура жидкости остается постоянной. Когда давление увеличивается, повышается и температура кипения жидкости (и наоборот). Выяснено, что давление воздуха уменьшается с увеличением высоты над уровнем моря. Таким образом, температура кипения жидкости с увеличением высоты также уменьшается.

Некоторые вещества, которые при обычных условиях пребывают в газообразном состоянии, при достаточно низкой температуре превращаются в жидкости, вскипающие при очень низкой температуре. Возьмем, к примеру, жидкий кислород, который при атмосферном давлении кипит при температуре – 183° С. Вещества, которые мы можем видеть в обычных условиях в твердом состоянии, при плавлении превращаются в жидкость, вскипающую при очень высокой температуре. Возьмем, к примеру, медь, которая кипит при 2567° С, или железо – при 2750° С.

Возможен ли процесс кипения в холодной воде? Если создать определенные условия то да. Проведем опыт. Вскипятим воду и нальем ее в колбу, закрыв ее сверху крышкой. Приступим к ее охлаждению путем полива холодной водой из крана. Удивительно, но на протяжении всего того времени, что мы будем ее поливать, вода внутри колбы будет продолжать кипеть. Спустя некоторое время, колба остынет настолько, что ее будет можно держать голыми руками, но вода в ней все еще будет кипеть, если мы продолжим поливать ее холодной водой. Процесс кипения происходит за счет того, что в колбе практически нет воздуха – его вытеснил пар. Во время того, как мы поливаем колбу холодной водой, пар охлаждается и конденсируется. Таким образом, в колбе образуется вакуум, пространство, которое разряжено. Давление воды, а также то давление, которое над водой понижается. Создаются подходящие условия для кипения, (образования пузырей с паром внутри воды).

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В разделе на вопрос Что называют температурой кипение жидкости? заданный автором Косоворотка лучший ответ это температуру кипения жидкости
Анна
Мыслитель
(8819)
Что не понятного??? Температура кипения. При какой температуре жидкость закипает, мозгами шивили маненько!!!

Ответ от Вровень [новичек]
(точка кипения) - температура, при которой жидкость столь интенсивно превращается в пар (т. е. газ), что в ней образуются паровые пузырьки, которые поднимаются на поверхность и лопаются. Бурное образование пузырьков во всем объеме жидкости и называется кипением. В отличие от простого испарения при кипении жидкость переходит в пар не только со свободной поверхности, но и по всему объему - внутрь образующихся пузырьков. Температура кипения любой жидкости постоянна при заданном атмосферном или ином внешнем давлении, но повышается с повышением давления и понижается с его понижением. Например, при нормальном атмосферном давлении, равном 100 кПа (таково давление на уровне моря), температура кипения воды составляет 100° С. На высоте же 4000 м над уровнем моря, где давление падает до 60 кПа, вода кипит примерно при 85° С, и для того, чтобы сварить пищу в горах, требуется больше времени. По той же причине пища готовится быстрей в кастрюле-"скороварке": давление в ней повышается, а вслед за этим повышается и температура кипящей вод


Ответ от Просунуться [новичек]
температура при которой жидкость превращается в газ