Классическая и статистическая вероятность. Классическое и статистическое определение вероятности

Классическое определение вероятности предполагает, что все эле­ментарные исходы равновозможны . О равновозможности исходов опы­та заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим . Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

Относительной частотой события , или частотой , называется от­ношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события через , тогда по определению

(1.4.1)
где - число опытов, в которых появилось событие и - число всех произведенных опытов.

Частота события обладает следующими свойствами.

Наблюдения позволили установить, что относительная частота об­ладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного со­бытия.

Вероятностью события называется число, около которого группи­руются значения,частоты данного события в различных сериях большо­го числа испытаний.

Это определение вероятности называется статистическим .

В случае статистического определения вероятность обладает сле­дующими свойствами:
1) вероятность достоверного события равна еди­нице;
2) вероятность невозможного события равна нулю;
3) вероятность случайного события заключена между нулем и единицей;
4) вероятность суммы двух несовместных событий равна сумме вероятностей этих со­бытий.

Пример 1. Из 500 взятых наудачу деталей оказалось 8 бракован­ных. Найти частоту бракованных деталей.

Решение. Так как в данном случае = 8, = 500, то в соответствии с формулой (1.4.1) находим

Пример 2 . Игральный кубик подброшен 60 раз, при этом шестерка появилась 10 раз. Какова частота появления шестерки ?

Решение. Из условия задачи следует, что = 60, = 10, поэтому

Пример 3. Среди 1000 новорожденных оказалось 515 мальчиков.Чему равна частота рождения мальчиков?
Решение. Поскольку в данном случае , , то .

Пример 4. В результате 20 выстрелов по мишени получено 15 попаданий. Какова частота попаданий?

Решение. Так как = 20, = 15, то

Пример 5. При стрельбе по мишени частота попаданий = 0,75. Найти число попаданий при 40 выстрелах.

Решение. Из формулы (1.4.1) следует, что . Так как = 0,75, = 40, то . Таким образом, было получено 30 попаданий.

Пример 6. www.. Из высе­янных семян взошло 970. Сколько семян было высеяно?

Решение. Из формулы (1.4.1) следует, что . Поскольку , , то . Итак, было высеяно 1000 семян.

Пример 7. На отрезке натурального ряда от 1 до 20 найти частоту простых чисел.

Решение. На указанном отрезке натурального ряда чисел находятся следующие простые числа: 2, 3, 5, 7, 11, 13, 17, 19; всего их 8. Так как = 20, = 8, то искомая частота

.

Пример 8. Проведены три серии многократных подбрасываний симметричной монеты, подсчитаны числа появлений герба: 1) = 4040, =2048, 2) = 12000, = 6019; 3) = 24000, = 12012. Найти частоту появления герба в каждой серии испытаний.

Решение . В соответствии с формулой (1.4.1) находим:

Замечание. Эти примеры свидетельствуют о том, что при многократ­ных испытаниях частота события незначительно отличается от его вероятности. Вероятность появления герба при подбрасывании монеты р = 1/2 = 0,5 , так как в этом случае n = 2, m = 1.

Пример 9. Среди 300 деталей, изготовленных на автоматическом станке, оказалось 15, не отвечающих стандарту. Найти частоту появле­ния нестандартных деталей.

Решение. В данном случае n = 300, m = 15, поэтому

Пример 10. Контролер, проверяя качество 400 изделий установил, что 20 из них относятся ко второму сорту, а остальные - к первому. Най­ти частоту изделий первого сорта, частоту изделий второго сорта.

Решение. Прежде всего, найдем число изделий первого сорта: 400 - 20 = 380. Поскольку n = 400, = 380, то частота изделий перво­го сорта

Аналогично находим частоту изделий второго сорта:

Задачи

  1. Отдел технического контроля обнаружил 10 нестандартных изде­лий в партии из 1000 изделий. Найдите частоту изготовления бракован­ных изделий.
  2. Для выяснения качества семян было отобрано и высеяно в лабо­раторных условиях 100 штук. 95 семян дали нормальный всход. Какова частота нормального всхода семян?
  3. Найдите частоту появления простых чисел в следующих отрезках натурального ряда: а) от 21 до 40; б) от 41 до 50; в) от 51 до 70.
  4. Найдите частоту появления цифры при 100 подбрасываниях сим­метричной монеты. (Опыт проводите самостоятельно).
  5. Найдите частоту появления шестерки при 90 подбрасываниях иг­рального кубика.
  6. Путем опроса всех студентов Вашего курса определите частоту дней рождения, попадающих на каждый месяц года.
  7. Найдите частоту пятибуквенных слов в любом газетном тексте.

Ответы

  1. 0,01. 2. 0,95; 0,05. 3. а) 0,2; б) 0,3; в) 0,2.

Вопросы

  1. Что такое частота события?
  2. Чему равна частота достоверного события?
  3. Чему равна частота невозможного события?
  4. В каких пределах заключена частота случайного события?
  5. Чему равна частота суммы двух несовместных событий?
  6. Какое определение вероятности называют статистическим?
  7. Какими свойствами обладает статистическая вероятность?

Метки . Смотреть .

Вероятностью наступления события A называется число, равное отношению числа случаев, благоприятствующих событию A , к общему числу случаев (исходов, шансов или элементарных событий).

Вероятность (Р )

Где n ‒ общее число случаев, m ‒ число случаев, благоприятствующих событию А .

Вероятность невозможного события:

Вероятность достоверного события:

Вероятность любого случайного события:

0 ≤ P (A ) ≤ 1

Статистическое определение вероятности

Статистической вероятностью события A называется относительная частота появления события в n ‒ произведенных испытаниях.

Опытная (экспериментальная) вероятность:

Следовательно,– есть доля тех фактически произведённых испытаний, в которых событиеA появилось. При ,P (A ) ≈ (A )

Пример 1.

В коробке лежит 7 синих, 8 красных и 5 зеленых шаров.

Решение:

Событие A ‒ шар зеленый;

Пример 2.

В коробке лежат 100 электроламп, из них 5 бракованных.

Решение:

Событие A ‒ на удачу, выбранные 2 электролампы исправны.

Пример 3.

В коробке лежит 10 шаров: 6 белых и 4 черных.

Найти:

Вероятность того, что из пяти взятых наугад шаров будет 4 белых.

Решение:

Найдем число благоприятных исходов: число способов, которыми можно взять 4 белых шара из 6 имеющихся шаров, равно:

Общее число исходов определяется числом сочетаний из 10 по 5:

Искомая вероятность P = 15/252 ≈ 0,06.

Геометрическая вероятность , то есть вероятность попадания точки в некоторую область, отрезок, часть плоскости.

Геометрической вероятностью события A называют отношение меры области, благоприятствующей появлению события A , к мере всей области.

где mes ‒мера (длина, площадь, объём области).

4.Алгебра событий. Операции над случайными событиями.

Определение 1. Суммой двух событий A и B называется событие C , состоящее в осуществлении хотя бы одного из событий A или B .

Возможны два случая:

1. Если A и B несовместны, тогда A +B означает, что произойдет или A , или В .

2. Если A и B совместны, тогда A +B означает, что произойдет или A , или B , или A и B одновременно.

Определение 2. Произведением двух событий A и B называется событие C , состоящее в одновременном осуществлении событий A и B .

Пример 1. Из колоды карт наудачу вынули одну карту.

Событие A ‒ карта дама.

Событие B ‒ карта пиковой масти.

Тогда A + B ‒ вынутая карта или дама, или карта пиковой масти, или пиковая дама.

AB ‒ вынутая карта пиковая дама.

Правило произведения событий.

Если какой ни будь объект A можно выбрать m ‒ способами и после каждого такого выбора другой объект B можно выбрать k ‒ способами, то пары объектов «A и B одновременно» можно выбрать mk ‒ способами.

Пример 2.

В лотерее из 50 билетов 8 выигрышных билетов.

Найти вероятность того, что среди первых 5‒ти наугад выбранных билетов 2 будут выигрышными.

Решение:

50 ‒ 8 = 42 ‒ билета невыигрышных.

Событие A ‒ среди первых 5‒ти билетов 2 выигрышных.

Пример3.

В ящике находится 10 стандартных и 5 нестан­дартных деталей.

Какова вероятность, что среди наугад взя­тых 6 деталей будет 4 стандартных и 2 нестандартных?

Решение:

Общее число исходов равно

Число благо­приятных исходов определяется произведением

где пер­вый сомножитель соответствует числу вариантов изъятия из ящика 4‒х стандартных деталей из 10, а второй ‒ числу вари­антов изъятия из ящика 2‒х нестандартных деталей из пяти. Отсюда следует, что искомая вероятность равна

Показатель ранговой корреляции Кендалла, проверка соответствующей гипотезы о существенности связи.

2.Классическое определение вероятности. Свойства вероятности.
Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Поставим перед собой задачу дать количественную оценку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовемэлементарным исходом (элементарным событием) . Элементарные исходы обозначим через w 1 , w 2 , w 3 и т.д. В нашем примере возможны следующие 6 элементарных исходов: w 1 - появился белый шар; w 2 , w 3 - появился красный шар; w 4 , w 5 , w 6 - появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию A (появлению цветного шара) следующие 5 исходов: w 2 , w 3 , w 4 , w 5 , w 6 .

Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих A; в нашем примере А наблюдается, если наступит w 2 , или w 3 , или w 4 , или w 5 , или w 6 . В этом смысле событие А подразделяется на несколько элементарных событий (w 2 , w 3 , w 4 , w 5 , w 6); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (A) = 5 / 6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.



Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

где m - число элементарных исходов, благоприятствующих A; n - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу. Из определения вероятности вытекают следующие ее свойства:

С в о й с т в о 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m = n, следовательно,

Р (A) = m / n = n / n = 1.

С в о й с т в о 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

Р (А) = m / n = 0 / n = 0.

С в о й с т в о 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей .

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m < n, значит, 0 < m / n < 1, следовательно,

0 < Р (А) < 1

Итак, вероятность любого события удовлетворяет двойному неравенству

З а м е ч а н и е. Современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Ограничимся изложением на языке теории множеств тех понятий, которые рассмотрены выше.

Пусть в результате испытания наступает одно и только одно из событий w i , (i = 1, 2, ..., n). События w i , называют элементарными событиями (элементарными исходами) . Уже отсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называютпространством элементарных событий W, а сами элементарные события - точками пространства W.

Событие А отождествляют с подмножеством (пространства W), элементы которого есть элементарные исходы, благоприятствующие А; событие В есть подмножество W, элементы которого есть исходы, благоприятствующие В, и т.д. Таким образом, множество всех событий, которые могут наступить в испытании, есть множество всех подмножествW. Само W наступает при любом исходе испытания, поэтому W - достоверное событие; пустое подмножество пространства W - невозможное событие (оно не наступает ни при каком исходе испытания).

Заметим, что элементарные события выделяются из числа всех событий тем, что каждое из них содержит только один элемент W.

Каждому элементарному исходу w i , ставят в соответствие положительное число p i - вероятность этого исхода, причем

По определению, вероятность Р(А) события А равна сумме вероятностей элементарных исходов, благоприятствующих А. Отсюда легко получить, что вероятность события достоверного равна единице, невозможного - нулю, произвольного - заключена между нулем и единицей.

Рассмотрим важный частный случай, когда все исходы равновозможны. Число исходов равно n, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1 / n. Пусть событию А благоприятствует m исходов. Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:

Р (А) = 1 / n + 1 / n + .. + 1 / n.

Учитывая, что число слагаемых равно m, имеем

Р (А) = m / n.

Получено классическое определение вероятности.

Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятности. В системе аксиом, предложенной А. Н. Колмогоровым, неопре-деляемыми понятиями являются элементарное событие и вероятность. Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицательное действительное число Р (А). Это число называется вероятностью события А.

2. Вероятность достоверного события равна единице:

3. Вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей и зависимости между ними выводят в качестве теорем.

3.Статическое определение вероятности, относительная частота.

Классическое определение не требует проведения опыта. В то время как реальные прикладные задачи имеют бесконечное число исходов, и классическое определение в этом случае не может дать ответа. Поэтому в таких задачах будем использовать статическое определение вероятностей , которое подсчитывают после проведения эксперимента или опыта.

Статической вероятностью w(A) или относительной частотой называют отношение числа благоприятных данному событию исходов к общему числу фактически проведенных испытаний.

w (A )=nm

Относительная частота события обладает свойством устойчивости :

limn →∞P (∣ ∣ nm p ∣ ∣ <ε)=1 (свойство устойчивости относительной частоты)

4.Геометрические вероятности.

При геометрическом подходе к определению вероятности в качестве пространства элементарных событий рассматривается произвольное множество конечной лебеговой меры на прямой, плоскости или пространстве. Событиями называются всевозможные измеримые подмножества множества .

Вероятность события А определяется формулой

где обозначает лебегову меру множества А. При таком определении событий и вероятностей все аксиомы А.Н.Колмогорова выполняются.

В конкретных задачах, которые сводятся к указанной выше вероятностной схеме, испытание интерпретируется как случайный выбор точки в некоторой области , а событие А – как попадание выбранной точки в некоторую подобласть А области . При этом требуется, чтобы все точки области имели одинаковую возможность быть выбранными. Это требование обычно выражается словами «наудачу», «случайным образом» и т.д.

Классическое и статистическое определение вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Под случайными явлениями пони-маются явления с неопределенным исходом, происходящие при неоднократном воспроизведении определенного комплекса условий.

Например, при бросании монеты нельзя предсказать, какой стороной она упадет. Результат бросания монеты случаен. Но при дос-таточно большом числе бросаний монеты существует определенная закономерность (герб и решетка выпадут примерно одинаковое число раз).

Основные понятия теории вероятностей

Испытание (опыт, эксперимент) - осуществление некоторого определенного комплекса условий, в которых наблюдается то или иное явление, фиксируется тот или иной результат.

Например: подбрасывание игральной кости с выпадением числа очков; перепад температуры воздуха; метод лечения заболевания; некоторый период жизни человека.

Случайное событие (или просто событие) – исход испытания.

Примеры случайных событий:

    выпадение одного очка при подбрасывании игральной кости;

    обострение ишемической болезни сердца при резком повышении температуры воздуха летом;

    развитие осложнений заболевания при неправильном выборе метода лечения;

    поступление в вуз при успешной учебе в школе.

События обозначают прописными буквами латинского алфа-вита: A , B , C ,

Событие называется достоверным , если в результате испытания оно обязательно должно произойти.

Событие называется невозможным , если в результате испы-тания оно вообще не может произойти.

Например,если в партии все изделия стандартные, то извлечение из неё стандартного изделия - событие достоверное, а извлечение при тех же условиях бракованного изделия – событие невозможное.

КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

Вероятность является одним из основных понятий теории вероятностей.

Классической вероятностью события называется отношение числа случаев, благоприятствующих событию , к общему числу случаев, т.е.

, (5.1)

где
- вероятность события ,

- число случаев, благоприятствующих событию ,

- общее число случаев.

Свойства вероятности события

    Вероятность любого события заключена между нулем и единицей, т.е.

    Вероятность достоверного события равна единице, т.е.

.

    Вероятность невозможного события равна нулю, т.е.

.

(Предложить решить несколько простых задач устно).

СТАТИСТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

На практике часто при оценке вероятностей событий основываются на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определение вероятности.

Статистической вероятностью события называется предел относительной частоты (отношение числа случаев m , благоприятствующих появлению события , к общему числу произведенных испытаний), когда число испытаний стремится к бесконечности, т.е.

где
- статистическая вероятность события ,
- число испытаний, в которых появилось событие , - общее число испытаний.

В отличие от классической вероятности, статистическая вероятность является характеристикой опытной. Классическая вероятность служит для теоретического вычисления вероятности события по заданным условиям и не требует, чтобы испытания проводились в действительности. Формула статистической вероятности служит для экспериментального определения вероятности события, т.е. предполагается, что испытания были проведены фактически.

Статистическая вероятность приблизительно равна относительной частоте случайного события, поэтому на практике за статистическую вероятность берут относительную частоту, т.к. статистическую вероятность практически найти нельзя.

Статистическое определение вероятности применимо к случайным событиям, которые обладают следующими свойствами:

Теоремы сложения и умножения вероятностей

Основные понятия

а) Единственно возможные события

События
называют единственно возможными, если в результате каждого испытания хотя бы одно из них наверняка наступит.

Эти события образуют полную группу событий.

Например, при подбрасывании игрального кубика, единственно возможными являются события выпадения граней с одним, двумя, тремя, четырьмя, пятью и шестью очками. Они образуют полную группу событий.

б) События называют несовместными , если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае их называют совместными.

в) Противоположными называют два единственно возможных события, образующих полную группу. Обозначают и .

г ) События называют независимыми , если вероятность наступления одного из них не зависит от совершения или несовершения других.

Действия над событиями

Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из данных событий.

Если и – совместные события, то их сумма
или
обозначает наступление или события A, или события B, или обоих событий вместе.

Если и – несовместные события, то их сумма
означает наступление или события , или события .

Сумму событий обозначают:

Произведением (пересечением) нескольких событий называется событие, состоящее в совместном наступлении всех этих событий.

Произведение двух событий обозначают
или
.

Произведение событий обозначают

Теорема сложения вероятностей несовместных событий

Вероятность суммы двух или нескольких несовместных событий равна сумме вероятностей этих событий:

Для двух событий;

- для событий.

Следствия:

а) Сумма вероятностей противоположных событий и равна единице:

Вероятность противоположного события обозначают :
.

б) Сумма вероятностей событий, образующих полную группу событий, равна единице: или
.

Теорема сложения вероятностей совместных событий

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без вероятностей их пересечения, т.е.

Теорема умножения вероятностей

а) Для двух независимых событий:

б) Для двух зависимых событий

где
– условная вероятность события , т.е. вероятность события , вычисленная при условии, что событие произошло.

в) Для независимых событий:

.

г) Вероятность наступления хотя бы одного из событий ,образующих полную группу независимых событий:

Условная вероятность

Вероятность события , вычисленная при условии, что произошло событие , называется условной вероятностью события и обозначается
или
.

При вычислении условной вероятности по формуле клас-сической вероятности число исходов и
подсчитывается с учетом того, что до совершения события произошло событие .