Клиническое значение вектора эдс сердца. Векторное изображение синусоидальных эдс, напряжений и токов

18. Методика регистрации ЭКГ. Виды отведений .Работа 5.8 – стр.188

ЭКГ – запись биопотенциалов (которые возникают в сердце во время распространения возбуждения) с помощью электродов, расположенных на поверхности тела. ЭКГ помогает определить место возикновения импульса (водитель ритма) и характер распространения возбуждения по миокарду предсердий и желудочков.

ГЕНЕЗ ЗУБЦОВ:(См. схему ЭКГ): зубец Р отражает процесс деполяризации предсердий; сегмент PQ (изоэлектрическая линия) отражает время проведения через АВ-узел (атриовентрикулярная задержка); комплекс зубцов QRS отражает процесс деполяризации желудочков; сегмент ST (изоэлектрическая линия) – полное возбуждение всех кардиомиоцитов желудочков (совпадает с фазой «плато» потенциала действия); зубец Т отражает процесс реполяризации желудочков.

Отведение ЭКГ – это расположение двух электродов на поверхности тела (в определенных точках). Линия, соединяющая два электрода, называется осью отведения. Ось отведения имеет определенную полярность : один из электродов «отрицательный» (-), т.е. сигнал от него подается на отрицательный «вход» электрокардиографа, другой электрод -«положительный» (+), т.е. сигнал от него подается на положительный «вход» электрокардиографа.

При обследовании больных регстрируют как минимум 12 отведений: 3 стандартных отведения от конечностей (I, II и III); 3 усиленных отведения от конечностей (AVR, AVL, AVF) и 6 грудных отведений (V 1 – V 6).

Стандартные отведения от конечностей: биполярные (двухполюсные) – оба электрода активные Оси этих отведений представляют собой стороны треугольника Эйнтховена:

1 станд.отв.: правая рука (-) и левая рука (+)

II станд.отв.: правая рука (-) и левая нога (+)

III станд.отв.: левая рука (-) и левая нога (+)

Усиленные отведения от конечностей : униполярные (однополюсные) – один электрод активный другой – пассивный (индифферентный, электрод сравнения, нулевой).

AVR: активный электрод на правой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVL: активный электрод на левой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVF: активный электрод на левой ноге (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

Оси всех отведений от конечностей расположены во фронтальной плоскости. Для анализа ЭКГ их можно объединить в общую шестиосевую систему координат.


Грудные отведения : униполярные (однополюсные) – один электрод активный, расположен в определенной точке на поверхности грудной клетки (+); другой –электрод сравнения (нулевой) получен путем соединения всех трех электродов конечностей. Сигнал от него через дополнгительное сопротивление подается на отрицательный «вход» электрокардиографа.

Оси грудных отведений расположены в горизонтальной плоскости.

19. Амплитудно-временные характеристики электрокардиограммы здорового человека Анализ электрокардиограммы здорового человекаРабота 5.8 – стр.188

20. Определение электрической оси сердца по стандартным отведениям ЭКГ Алипов

Что называют осью отведения? В каких единицах и как определяют положение оси отведения?

Ось отведения – условная линия, соединяющая два электрода данного ЭКГ-отведения. Положение оси отведения определяют величиной угла, образованного положительной полуосью данного отведения и положительной полуосью 1 стандартного отведения (горизонтальная линия), условно принятой за 0.

Укажите положение осей стандартных отведений (I, II, III) в трехосевой системе координат.

I стандартное отведение 0 о; II стандартное отведение +60 о; III +120 о.

12. Укажите направление осей однополюсных усиленных отведений от конечностей (aVR, aVL, aVF) в шестиосевой системе координат.

aVF +90; aVR + 210 (-150); aVL +330 (-30).

В какой плоскости преимущественно регистрируются потенциалы электрического поля сердца с помощью стандартных и усиленных однополюсных отведений от конечностей и грудных отведений?

С помощью отведений от конечностей – во фронтальной плоскости, с помощью грудных отведений – в горизонтальной плоскости.

Что называют средним результирующим вектором ЭДС сердца?

Среднюю величину и направление суммарного вектора ЭДС сердца в течение всего периода распространения волны деполяризации или реполяризации по соответствующим отделам сердца.

Сколько средних результирующих векторов ЭДС сердца в течение сердечного цикла принято различать? Как их называют и обозначают?

Три вектора: вектор деполяризации предсердий (Р), вектор деполяризации желудочков (QRS), вектор реполяризации желудочков (Т).

Векторы ЭДС сердца . Вектор Р – предсердный вектор – нарвлен сверху вниз, справа налево. Вектор Q – 1-ый вектор деполяризации желудочков – направлен снизу вверх, слева направо (0.02 сек от начала деполяризации желудочков; возбуждение нижней части межжелудочковой перегородки).

Вектор R – 2-ой вектор деполяризации желудочков – направлен сверху вниз, справа налево (0.04 сек от начала деполяризации желудочков; возбуждение распространяется от верхушки сердца к основанию желудочков, причем от эндокарда к эпикарду).

Вектор S – 3-ий вектор деполяризации желудочков – направлен снизу вверх, слева направо, (0.06 сек от начала деполяризации желудочков; возбуждение основания левого желудочка).

Вектор Т – направлен сверху вниз, справа налево (реполяризация, происходит во всех отделах желудочков, причем от эпикарда к эндокарду).

Проекция суммарного моментного вектора (P,Q,R,S,T) на ось отведения соответствует определенному зубцу на кривой ЭКГ. Если проекция вектора направлена к (+) полюсу оси отведения, зубец ЭКГ направлен вверх от изоэлектрической линии (положительный зубец). Если проекция вектора направлена к (-) полюсу оси отведения, зубец ЭКГ направлен вниз от изоэлектрической линии (отрицательный зубец). Амплитуда зубца пропорциональна длине проекции вектора на оси отведения. Если вектор проходит параллельно оси отведения – его проекция на ось данного отведения (а значит и амплитуда зубца в данном отведении) максимальна. Если вектор проходит перпендикулярно к оси отведения – его проекция на ось данного отведения равна нулю (значит зубец в данном отведении отсутствует).

Электрическая ось сердца. – это проекция среднего результирующего вектора деполяризации желудочков на фронтальную плоскость. Средний результирующий вектор деполяризации желудочков получен путем суммации трех моментных векторов – Q, R и S. Направление электрической и анатомической осей сердца у взрослого здорового человека совпадают. У астеников это направление более вертикальное (правограмма), у гиперстеников – более горизонтальное (левограмма).

21. Исследование сердечного выброса СВ учебник

22. Оценка сократительной функции миокарда учебник

Показатели давления: изучают скорость увеличения давления в желудочках сердца во время изометрического сокращения (dP/dt). Для этого проводят зондирование полостей сердца и регистрацию кровяного давления с помощью обычного и дифференциального манометра. Показатель dP/dt для левого желудочка 2000мм Hg/сек, для правого желудочка 200 мм Hg/сек.

Показатели объема: (1) минутный объем крови МОК (или сердечный выброс СВ) – объем крови, который сердце перекачивает в артерии за минуту. МОК = СО х ЧСС; МОК=70 мл х 75 уд/мин = 5 л/мин (ЧСС – частота сердечных сокращений)

Сердечный индекс (СИ) = МОК, который приходится на 1 м 2 площади поверхности тела. (в норме 3-4 л/мин/м 2) – показывает, насколько сердечная деятельность удовлетворяет метаболические потребности организма в покое.

Методы определения МОК: (1)метод Фика, (2) метод разведения индикатора (см.учебник)

(2) систолический объем (СО) – объем крови, который поступает из желудочка в артерии во время одной систолы (примерно 70 мл). СО = МОК : ЧСС

Систолический объем правого и левого желудочков в норме одинаковый.

Фракция выброса (ФВ) = СО : КДО (в норме 0.5-0.7) – показывает, какую часть конечно-диастолического объема крови (КДО) желудочек перекачивает в артерии во время систолы.

Методы определения СО: УЗИ (ультразвуковое исследование) в настоящее время успешно заменило многие рентгеновские и др. методы. Данные УЗИ обрабатывает компьютер и расчитывает все важнейшие показатели деятельности сердца.

23. Исследование звуковых явлений - тонов сердца (аускультация, фонокардиография). Работа 5.10 – стр.191

ТОНЫ СЕРДЦА

Звуки, которые возникают во время сердечных сокращений, называются тонами сердца. Обычно при аускультации слышны основные тоны I и II (и только иногда можно услышать тоны III и IV – чаще у детей и спортсменов). Выслушивание тонов сердца дает информацию о состоянии клапанов (недостаточность) и отверстий (стеноз), а так же о состоянии миокарда..

ПРОИСХОЖДЕНИЕ ТОНОВ СЕРДЦА:

I тон (систолический) возникает в самом начале систолы желудочков за счет напряжения мышц желудочков и захлопывания атриовентрикулярных клапанов.

II тон (диастолический) возникает в самом начале диастолы желудочков за счет захлопывания полулунных клапанов оарты и легочной артерии.

III тон (диастолический) возникает во время быстрого пассивного наполнения желудочков.

IV тон (предсердный) возникает во время систолы предсердий (т.е. быстрого активного наполнения желудочков).

МЕСТА ВЫСЛУШИВАНИЯ ТОНОВ СЕРДЦА

I и II тоны хорошо слышны над всей поверхностью сердца. Чтобы оценить состояние каждого из четырех клапанов (два атриовентрикулярных и два полулунных клапана) найдены четыре точки на поверхности грудной клетки. В каждой из этих точек наилучшим образом выслушиваются звуки, создаваемые одним клапаном. Эти точки не совпадают с местом проекции клапанов на поверхность грудной клетки; звуки работающего клапана доносятся сюда током крови.

(1) Место выслушивания левого атриовентрикулярного клапана (I тон) – в области верхушки сердца (пятое межреберье слева на 1.5 см кнутри от среднеключичной линии).

(2) Место выслушивания правого атриовентрикулярного клапана (I тон) – по срединной линии у места прикрепления мечевидного отростка к грудине.

(3) Место выслушивания полулунного клапана аорты справа

у края грудины.

(4) Место выслушивания полулунного клапана легочной артерии (II тон) – во втором межреберье слева у края грудины.

ЗАПИСЬ ТОНОВ СЕРДЦА НАЗЫВАЕТСЯ ФОНОКАРДИОГРАММОЙ.

При сопоставлении ФКГ и ЭКГ важно учесть, что I тон (ФКГ) возникает после зубца Q (ЭКГ) – во время зубца R (от зубца Q до I тона проходит фаза асинхронного сокращения, когда атриовентрикулярные клапаны еще открыты). II тон возникает в конце зубца Т (ЭКГ).

24. Определение артериального давления по методу Короткова и Рива-Роччи Работа 5.23 – стр.211

АД можно измерить прямым (кровавым) методом (введение иглы, катетера в артерию) и непрямым (бескровным) методом (пальпаторный метод Рива-Роччи или аускультативный метод Короткова).

25. Прямая регистрация артериального давления (3 типа волн на кривой АД ) Работа 5.33 – стр.226

На кривой АД, записанной прямым методом, можно видеть волны 1-го порядка (это пульсовые волны частотой 70 в мин, связанные с сокращениями сердца), волны 2-го порядка (это дыхательные волны частотой 16 в мин, связанные с изменениями гемодинамики во время вдоха и выдоха), а также волны 3-го порядка (2-3 в мин), связанные с изменениями тонуса сосудодвигательного центра (например, при гипоксии ЦНС).

26. Экспериментальные исследования влияния блуждающего и депрессорного нервов на АД. Работа 5.33 – стр.226

27. Сопоставление кривых одновременной записи электрокардиограммы и фонокардиограммы Работа 5.11 – стр.193

28. Методы оценки работы клапанного аппарата сердца: аускультация, фонокардиография, эхокардиография, допплерография Работы 5.10,11,13,? – стр.191, 193,195

29. Методы оценки показателей насосной функции сердца: эхокардиография, метод Фика, Работа 5.13 – стр.195

Электрические явления в сердечной мышце

На поверхности мышечного волокна, находящегося в состоянии покоя, разности потенциалов нет (ток покоя можно зарегистрировать только с помощью внутриклеточного электрода). При подключении к противоположным концам клетки гальванометра стрелка его отклоняться не будет, запишется прямая линия - изоэлектрическая линия. При возбуждении, деполяризации, возбужденные участки становятся электроотрицательными, а невозбужденные - сохраняют положительный заряд. Если дифферентный электрод обращен к положительному заряду диполя, то регистрируется отклонение кривой вверх от изолинии. Если дифферентный электрод обращен к отрицательному заряду - отклонение вниз. Амплитуда зубца увеличивается по мере распространения возбуждения в клетке. Когда вся клетка возбудилась, вся ее наружная поверхность приобрела отрицательный заряд, разность потенциалов исчезла, вновь начинает записываться изоэлектрическая линия. При выходе из возбуждения, реполяризации, вновь возникает разность потенциалов между уже вышедшими и заряженными положительно участками и еще возбужденными, отрицательно заряженными участками. Это сопровождается появлением следующего зубца. Направление записи этого зубца зависит от того, какие участки прилежат к электроду: еще возбужденные - отрицательный зубец, уже вышедшие из возбуждения - положительный. Полный выход из состояния возбуждения приводит к поляризации клетки, вся наружная поверхность ее мембраны заряжена положительно, разности потенциалов нет, и вновь записывается изоэлектрическая линия.

Итак, в период распространения возбуждения клетка миокарда имеет два противоположно заряженных полюса и является как бы маленьким генератором электрического тока.

Поверхность желудочков сердца можно рассматривать как обширную поляризованную мембрану, охватывающую единую огромную клетку. Закономерно меняющиеся во время возбуждения сердца величина и направление электрических потенциалов сердца сопровождаются изменением потенциалов и на поверхности тела человека. Ориентация электрических зарядов в тканях тела подчиняется общим законам соответственно сердечного суммарному диполю.

В основном процессе возбуждения электрическая ось сердца направлена влево вниз - от отрицательного полюса к положительному. Поэтому с поверхности тела всегда можно зарегистрировать разность потенциалов от различных пунктов электрического поля сердца.

Формирование элементов ЭКГ

На ЭКГ записывается суммарная разность потенциалов от всех клеток миокарда, или, как ее называют, электродвижущая сила сердца (ЭДС сердца). Электрокардиограф регистрирует напряжение (разность электрических потенциалов) между 2 точками, то есть в каком-то отведении. Другими словами, ЭКГ-аппарат фиксирует на бумаге (экране) величину проекции ЭДС сердца на какое-либо отведение.

Стандартная ЭКГ записывается в 12 отведениях:

3 стандартных (I, II, III);

3 усиленных от конечностей (aVR, aVL, aVF);

6 грудных (V1, V2, V3, V4, V5, V6).

1) Стандартные отведения (предложил Эйнтховен в 1913 году). I - между левой рукой и правой рукой, II - между левой ногой и правой рукой, III - между левой ногой и левой рукой.

2) Усиленные отведения от конечностей (предложены Гольдбергером в 1942 году).

Используются те же самые электроды, что и для записи стандартных отведений, но каждый из электродов по очереди соединяет сразу 2 конечности, и получается объединенный электрод Гольдбергера. На практике запись этих отведений производится простым переключением рукоятки на одноканальном кардиографе (т.е. электроды переставлять не нужно).

aVR - усиленное отведение от правой руки (сокращение от augmented voltage right - усиленный потенциал справа). aVL - усиленное отведение от левой руки (left - левый) aVF - усиленное отведение от левой ноги (foot - нога)

3) Грудные отведения (предложены Вильсоном в 1934 году) записываются между грудным электродом и объединенным электродом от всех 3 конечностей.Точки расположения грудного электрода находятся последовательно по передне-боковой поверхности грудной клетки от средней линии тела к левой руке.

V1 - в IV межреберье по правому краю грудины. V2 V3 V4 - на уровне верхушки сердца. V5 V6 - по левой среднеподмышечной линии на уровне верхушки сердца.

Рис. 1

12 указанных отведений являются стандартными. При необходимости могут регистрироваться и дополнительные отведения.Неслучайно такое большое количество отведений. ЭДС сердца - это вектор ЭДС сердца в трехмерном мире (длина, ширина, высота) с учетом времени. На плоской ЭКГ-пленке мы можем видеть только 2-мерные величины, поэтому кардиограф записывает проекцию ЭДС сердца на одну из плоскостей во времени.

Рис. 2

В каждом отведении записывается своя проекция ЭДС сердца. Первые 6 отведений (3 стандартных и 3 усиленных от конечностей) отражают ЭДС сердца в так называемой фронтальной плоскости (см. рис.) и позволяют вычислять электрическую ось сердца с точностью до 30° (180° / 6 отведений = 30°). Недостающие 6 отведений для формирования круга (360°) получают, продолжая имеющиеся оси отведений через центр на вторую половину круга.

6 грудных отведений отражают ЭДС сердца в горизонтальной (поперечной) плоскости. Это позволяет уточнить локализацию патологического очага (например, инфаркта миокарда): межжелудочковая перегородка, верхушка сердца, боковые отделы левого желудочка и т.д.

При разборе ЭКГ используют проекции вектора ЭДС сердца, поэтому такой анализ ЭКГ называется векторным.

В процессе электрической активности сердца возникают и в определенном порядке взаимодействуют многочисленные и разнонаправленные силы, отражающие множество появляющихся диполей. Если регистрировать этот процесс при условии непосредственного приближения электродов к поверхности сердца, то формирование ЭКГ будет зависеть от того, как ориентирован результирующий вектор всех одномоментных сил по отношению к дифферентному электроду. Представим, что дифферентный электрод располагается слева внизу от массы возбуждающегося миокарда, а индефферентный - справа наверху (такой принцип размещения электродов является самым обычным в электрокардиографии).

Наиболее высоким автоматизмом обладает синусовый узел, поэтому в норме именно он является водителем ритма сердца. Однако, из-за слишком малой величины возникающей разности потенциалов, электрическая активность синусового узла на ЭКГ не регистрируется. Возбуждение миокарда предсердий начинается в области синусового узла и распространяется по поверхности миокарда во все стороны. Разнонаправленные векторы деполяризации, взаимодействуя друг с другом, частично нейтрализуются. Так как синусовый узел находится в верхней части правого предсердия, то большинство векторов ориентированы вниз и влево. Результирующий вектор возбуждения предсердий направлен, благодаря этому, вниз и влево. Такому направлению волны деполяризации способствует и ускоренное проведение импульса вниз и влево по межузловым и межпредсердным специализированным трактам. Находящийся внизу слева дифферентный электрод обращен к положительному заряду диполя во время деполяризации предсердий, поэтому регистрируется положительное отклонение - зубец Р, продолжительность которого в норме достигает 0,1 с. В течение первых 0,02 - 0,03 с своего формирования зубец Р отражает возбуждение только правого предсердия, после этого - суммарную активность обоих предсердий, а последние 0,02 - 0,03 с зубца Р связаны с деполяризацией только левого предсердия, т.к. правое предсердие к этому времени уже полностью возбуждено.

После окончания деполяризации предсердий начинается ихреполяризация, которая происходит в той же последовательности, как происходило возбуждение. Ранее всего положительный потенциал покоя восстанавливается в области синусового узла, поэтому результирующий вектор реполяризации предсердий направлен вверх вправо, от дифферентного электрода. То обусловливает формирование отрицательного зубца Та, отражающего конечную фазу реполяризации предсердий. Он очень мал по амплитуде, а по времени совпадает с желудочковым комплексом ЭКГ, поэтому в обычных условиях не может быть выделен и подвергнут анализу.

Рис. 3

Через 0,02 - 0,04 с от начала деполяризации предсердий волна возбуждения уже достигает области атриовентрикулярного узла. Здесь скорость распространения возбуждения резко снижается, после чего импульс быстро распространяется по пучку Гиса и внутрижелудочковым проводящим путям, достигая миокарда желудочков. На ЭКГ выделяется сегмент Р - Q(R) - отрезок линии записи от конца зубца Р до начала желудочкого комплекса QRS. Интервал P - Q(R) отражает время предсердно-желудочкого проведения импульса и составляет в норме 0,12 - 0,19 с. Нормальные колебания продолжительности P - Q(R) зависят от изменений продолжительности атриовентрикулярной задержки.

Рис. 4

Возбуждение желудочков, в отличие от возбуждения предсердий, распространяется не из одного центра, а из множества очагов, расположенных преимущественно в субэндокардиальных слоях миокарда. Источниками деполяризации являются волокна Пуркинье - конечный разветвления внутрижелудочковых проводящих путей. распространение возбуждения стенки желудочков направлено от множественных очагов в субэндокардиальных отделах к субэпикардиальным отделам, т.е. перпендикулярно к наружной поверхности сердца. Для детального разбора электрических сил, отражающих деполяризацию желудочков, удобно разделить этот непрерывный процесс на три этапа.

Первый - начальный - связан с появлением очагов деполяризации в левой части межжелудочковой перегородки, куда раньше всего приходит волна возбуждения по разветвлениям левой ножки пучка Гиса. Вектор деполяризации направлен от левой к правой поверхности межжелудочковой перегородки. При расположении активного электрода слева начальный этап деполяризации желудочков отражается небольшим отрицательным отклонением (зубцом Q), продолжительность которого составляет 0,02 с. Вслед за деполяризацией левой поверхности межжелудочковой перегородки начинается деполяризация ее правых отделов, куда возбуждение приходит по правой ножке пучка Гиса. Направление вектора этой деполяризации справа налево нейтрализует первоначально возникшее электрическое поле, и поэтому начальный этап возбуждения желудочков отражается небольшим и непродолжительным зубцом.

Следующий - главный - этап отражает распространение возбуждение через миокард свободных стенок желудочка. Суммарный вектор деполяризации левого желудочка ориентирован влево. Равнонаправленность этих векторов приводит к частичной нейтрализации электрических сил. Большая мышечная масса левого желудочка обусловливает его электрического поля над электрическим полем правого желудочка, поэтому результирующий вектор деполяризации желудочков ориентирован влево. При расположении активного электрода слева, этот главный этап деполяризации желудочков, соответствующий 0,03 - 0,05 с, регистрируется в виде положительного отклонения (зубец R).

Заключительный этап деполяризации желудочков отражает возбуждение заднебазальных межжелудочковой перегородки и желудочков. Вектор деполяризации ориентирован вверх и чаще вправо; направление терминальной деполяризации значительно варьирует. При расположении дифферентного электрода слева от сердца терминальных этап деполяризации чаще отражен небольшим отрицательным зубцом (S).

Таким образом, последовательные изменения величины и направления результирующего вектора электрического поля во время возбуждения желудочков приводят к тому, что этот единый процесс отражается комплексом QRS, состоящим их зубцов разной величины и разной полярности. В зависимости от положения электродов зубцы, отражающие начальный, главный и терминальный этапы деполяризации, могут иметь различные направления (и, вследствие этого, различные буквенные обозначения). Зубцом Q обозначают первое отклонение желудочкового комплекса, если оно направлено вниз от изолинии. Отклонение записи вверх от изолинии, независимо от того, когда оно регистрируется (т.е. является ли первым или последующим) называется зубцом R. Отрицательное отклонение, следующее за положительным, обозначают как зубец S. Таким образом, зубец Q может быть лишь один в желудочковом комплексе, а в тех случаях, когда комплекс начинается положительным отклонением, зубец Q отсутствует. Если положительных зубцов несколько, то они именуются зубцами R, но каждый последующий обозначается как R?,R? ?и т.д. Зубцов S тоже может быть несколько, и тогда они обозначаются как S?, S? ?и т.д. общая продолжительность комплекса QRS, отражающая время внутрижелудочковой проводимости составляет 0,06 - 0,10 с.

В отличие от предсердий, миокард желудочков различных слоев и отделов обладает различной продолжительностью электрических процессов. Потенциал действия субэпикардиальных слоев имеет меньшую продолжительность, чем потенциал действия субэндокардиальных слоев; потенциал действия миокардиальных волокон в области верхушки сердца короче, чем в области основания сердца. Это приводит к тому, что в стенке желудочка процессы реполяризации раньше начинаются в субэпикардиальных слоях и в области верхушки, тогда как субэндокардиальные слои и основание желудочков дольше сохраняют отрицательные заряды. Во время реполяризации результирующий вектор направлен поэтому влево, т. е. в ту же сторону, что и главный вектор деполяризации. Наибольшая электродвижущая сила возникает в фазе конечной реполяризации, этот процесс отображается появлением зубца Т. при расположении дифферентного электрода слева, вектор реполяризации желудочков направлен к этому электроду и зубец Т регистрируется положительным. Между концом комплекса QRS и началом зубца Трасполагается сегмент S-T: он соответствует второй фазе реполяризации миокарда желудочков, во время которой потенциал почти не изменяет своей величины. Разность потенциалов почти отсутствует, поэтому сегмент S - Tрасполагается на изолинии. Различная продолжительность потенциала действия в разных отделах миокарда желудочков приводит к небольшому асинхронизму фаз реполяризации и появлению небольшой разности потенциалов, что и сообщает сегменту S-T некоторую кривизну с плавным переходом его в зубец Т. интервал времени от начала комплекса QRS до начала зубца Т отражает весь период электрической активности желудочков (электрическая систола). В норме Q - T составляет 0,36 - 0,44 с и зависит от пола, возраста и частоты ритма. Вслед за зубцом Т обычно регистрируется еще одно положительное отклонение небольшой амплитуды - зубец U. Механизмы его появления точно не установлены и, по-видимому, не всегда однозначны.

Рис. 5

В процессе исследования всех зубцов, сегментов и интервалов, регистрируемых электрокардиограммой, выводится электрокардиографическое заключение, которое должно включать в себя:

1. Источник ритма (синусовый или нет).

2. Регулярность ритма (правильный или нет). Обычно синусовый ритм является правильным, хотя возможна дыхательная аритмия.

4. Положение электрической оси сердца.

5. Наличие 4 синдромов:

нарушение ритма

нарушение проводимости

гипертрофия и/или перегрузка желудочков и предсердий

повреждение миокарда (ишемия, дистрофия, некрозы, рубцы)

Тело как объемный проводник электрических явлений

Ткани и органы, окружающие сердце, играют роль проводников, передающих электрические заряды на поверхность тела.Величина потенциалов по мере удаления от сердца уменьшается. В однородной проводящей среде величина потенциала любой точки обратно пропорциональна величине расстояния от нее до источника разности потенциала. Ткани тела обладают различной электропроводностью, что вносит значительные искажения в распределение и величину потенциалов на поверхности тела. ЭКГ может изменяться под влиянием таких состояний как ожирение, кахексия, отеки тела, скопление жидкости в плевре и перикарде, эмфизема и уплотнение легких и т.п.

Чтобы понять, как работает электрокардиограф, какие процессы в организме он регистрирует, и что показывает электрокардиограмма - надо описать суть физических процессов, происходящих при сокращении сердечной мышцы.

Восстановим в памяти элементарные знания из курса школьной физики и алгебры.

Работа сердечной мышцы - это электрический процесс, постоянно текущий в организме. Пространство, в котором наблюдается действие электрических сил, называется электрическим полем. Электрическое поле подразумевает существование двух зарядов - положительного и отрицательного. Такой тандем зарядов называется электрическим диполем . На рисунке, с помощью силовых линий, изображено электрическое поле диполя. Между отрицательным и положительным зарядом находится нулевая линия, на которой величина заряда равна нулю. В точке А находящейся на расстоянии R от центра диполя (расстояние R много больше расстояния между зарядами), поле E (направленное по касательной к силовой линии) разложено на две компоненты: E1 - параллельную оси диполя и E2 - перпендикулярную к ней.

Электрический диполь создает разность потенциалов . Вообще, чтобы в любой электрической цепи начал протекать ток, необходима некая внешняя сила неэлектростатической природы. Например, электрический ток, который мы извлекаем в бытовых условиях из электрической розетки - по природе, это энергия падающей воды на ГЭС, или энергия расщепляемого атома на АЭС, или тепловая энергия угля на ТЭЦ. Электрический ток, получаемый в автомобиле - это энергия химических превращений в аккумуляторе, или энергия сжигаемого бензина в двигателе. Электрический ток, заставляющий работать наше сердце, получается в результате биохимических процессов, постоянно текущих в организме. Очень точно это было подмечено в одной из песен некогда популярной рок-группы "Круиз": "Что наша жизнь - обмен веществ в природе".

Но, вернемся к нашим "баранам". Величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока называется электродвижущей силой (ЭДС). Вектор ЭДС диполя изображается отрезком прямой, соединяющим оба его полюса, и направлен от отрицательного к положительному заряду.

Вернемся к нашему диполю. ЭДС является векторной величиной, т.к. характеризуется величиной и направлением в пространстве. Изображается ЭДС в виде прямой со стрелкой на конце. Длина этой прямой характеризует величину ЭДС, а местоположение в пространстве - направление.

Нулевая изопотенциальная линия (изопотенциальная - значит соединяющая точки с одинаковым потенциалом) разделяет поле диполя на две половины - положительное и отрицательное поле. Изопотенциальные линии, расположенные в положительном поле, называются положительными; в отрицательном поле - отрицательными. На рисунке изопотенциальные линии изображены в виде концентрических эллипсов, расположенных вокруг положительного и отрицательного зарядов. Наибольший отрицательный заряд находится рядом с нулевой линией со стороны отрицательного поля, наибольший положительный - со стороны положительного поля. Сила заряда убывает обратно пропорционально квадрату расстояния от него.

Основоположник электрокардиографии Вильям Эйнтховен рассматривал сердце, как источник электрического тока (во время возбуждения которого в организме образуется электрическое поле), расположенный в центре треугольника, ограниченного правой и левой рукой, и левой ногой (треугольник Эйнтховена ). Им было сделано допущение, что тело человека - это проводник тока с постоянным электрическим сопротивлением во всех участках. Левая, правая рука, и левая нога принимались им за три равноудаленные друг от друга и от центра (в котором находится сердце) точки, лежащих в одной фронтальной плоскости. Эйнтховен предположил, что, возникающий во время возбуждения сердца, вектор ЭДС смещался также только во фронтальной плоскости. В дальнейшем эта теория была дополнена и переработана, т.к. различные участки тела человека обладают различным сопротивлением, а электрическое поле сердца постоянно меняет величину и направление и меняется не только во фронтальной проекции. Дальнейшие многочисленные исследования подтвердили применимость теории диполя в клинической электрокардиографии.

Для измерения величины потенциала в различных точках поля используют гальванометры - основной узел электрокардиографа. ЭДС измеряется при помощи двух электродов, которые подсоединяются к положительному и отрицательному полюсам гальванометра.

У гальванометра существует два типа электродов: активный (дифферентный) электрод и неактивный (индифферентный) электрод. Неактивный электрод имеет заряд близкий к нулю (можно сказать, что это электрическая "масса", по аналогии с автомобильным аккумулятором) и присоединяется к отрицательному полюсу гальванометра. Активный электрод присоединяется к положительному полюсу гальванометра и показывает потенциал той точки электрического поля, в которой он находится. Если активный электрод находится в области положительного поля, то гальванометр регистрирует подъем кривой от изолинии (положительный зубец); если в области отрицательного поля - записывается снижение кривой (отрицательный зубец).

Следует знать, что гальванометр регистрирует разность потенциалов. Т.е., прибор будет фиксировать изменение кривой, если на оба электрода подан одинаковый по знаку заряд, но разный по величине.

ВНИМАНИЕ! Информация, представленная сайте сайт носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!

60339 0

Аппаратура для регистрации электрокардиограммы

Электрокардиография — метод графической регистрации изменений разности потенциалов сердца, возникающих в течение процессов возбуждения миокарда.

Первая регистрация электрокардиосигнала, прототипа современной ЭКГ, была предпринята В. Эйнтховеном в 1912 г . в Кембридже. После этого методика регистрации ЭКГ интенсивно совершенствовалась. Современные электрокардиографы позволяют осуществить как одноканальную, так и многоканальную запись ЭКГ.

В последнем случае синхронно регистрируются несколько различных электрокардиографических отведений (от 2 до 6-8), что значительно сокращает период исследования и дает возможность получить более точную информацию об электрическом поле сердца.

Электрокардиографы состоят из входного устройства, усилителя биопотенциалов и регистрирующего устройства. Разность потенциалов, возникающая на поверхности тела при возбуждении сердца, регистрируется с помощью системы электродов, закрепленных на разных участках тела. Электрические колебания преобразуются в механические смещения якоря электромагнита и тем или иным способом записываются на специальной движущейся бумажной ленте. Сейчас используют непосредственно как механическую регистрацию с помощью очень легкого пера, к которому подводятся чернила, так и тепловую запись ЭКГ с помощью пера, которое при нагревании выжигает соответствующую кривую на специальной тепловой бумаге.

Наконец, существуют такие электрокардиографы капиллярного типа (мингографы), в которых запись ЭКГ осуществляется с помощью тонкой струи разбрызгивающихся чернил.

Калибровка усиления, равная 1 мВ, вызывающая отклонение регистрирующей системы на 10 мм, позволяет сравнивать между собой ЭКГ, зарегистрированные у пациента в разное время и/или разными приборами.

Лентопротяжные механизмы во всех современных электрокардиографах обеспечивают движение бумаги с различной скоростью: 25, 50, 100 мм·с -1 и т.д. Чаще всего в практической электрокардиологии скорость регистрации ЭКГ составляет 25 или 50 мм·с -1 (рис 1.1).

Рис. 1.1. ЭКГ, зарегистрированные со скоростью 50 мм·с -1 (а) и 25 мм·с -1 (б). В начале каждой кривой показан калибровочный сигнал

Электрокардиографы должны устанавливаться в сухом помещении при температуре не ниже 10 и не выше 30 °С. Во время работы электрокардиограф должен быть заземлен

Электрокардиографические отведения

Изменения разности потенциалов на поверхности тела, возникающие во время работы сердца, записываются с помощью различных систем отведений ЭКГ. Каждое отведение регистрирует разность потенциалов, существующую между двумя определенными точками электрического поля сердца, в которых установлены электроды. Таким образом, разные электрокардиографические отведения отличаются между собой, прежде всего, участками тела, на которых измеряется разность потенциалов.

Электроды, установленные в каждой из выбранных точек на поверхности тела, подключаются к гальванометру электрокардиографа. Один из электродов присоединяют к положительному полюсу гальванометра (положительный или активный электрод отведения), второй электрод — к его отрицательному полюсу (отрицательный электрод отведения).

Сегодня в клинической практике наиболее широко используют 12 отведений ЭКГ, запись которых является обязательной при каждом электрокардиографическом обследовании больного: 3 стандартных отведения, 3 усиленных однополюсных отведения от конечностей и 6 грудных отведений.

Стандартные отведения

Три стандартных отведения образуют равносторонний треугольник (треугольник Эйнтховена), вершинами которого являются правая и левая руки, а также левая нога с установленными на них электродами. Гипотетическая линия, соединяющая два электрода, участвующие в образовании электрокардиографического отведения, называется осью отведения. Осями стандартных отведений являются стороны треугольника Эйнтховена (рис. 1. 2).

Рис. 1.2. Формирование трех стандартных отведений от конечностей

Перпендикуляры, проведенные из геометрического центра сердца к оси каждого стандартного отведения, делят каждую ось на две равные части. Положительная часть обращена в сторону положительного (активного) электрода отведения, а отрицательная — к отрицательному электроду. Если электродвижущая сила (ЭДС) сердца в какой-то момент сердечного цикла проецируется на положительную часть оси отведения, на ЭКГ записывается положительное отклонение (положительные зубцы R, Т, Р), а если на отрицательную — на ЭКГ регистрируются отрицательные отклонения (зубцы Q, S, иногда отрицательные зубцы Т или даже Р). Для записи этих отведений электроды накладывают на правой руке (красная маркировка) и левой (желтая маркировка), а также левой ноге (зеленая маркировка). Эти электроды попарно подключаются к электрокардиографу для регистрации каждого из трех стандартных отведений. Стандартные отведения от конечностей регистрируют попарно, подключая электроды:

I отведение — левая (+) и правая (-) рука;

II отведение — левая нога (+) и правая рука (-);

III отведение — левая нога (+) и левая рука (-);

Четвертый электрод устанавливается на правую но гу для подключения заземляющего провода (черная маркировка).

Знаками «+» и «-» здесь обозначено соответствующее подключение электродов к положительному или отрицатель ному полюсам гальванометра, то есть указаны положительный и отрицательный полюс каждого отведения.

Усиленные отведения от конечностей

Усиленные отведения от конечностей были предложены Гольдбергом в 1942 г . Они регистрируют разность потенциалов между одной из конечностей, на которой установлен активный положительный электрод данного отведения (правая рука, левая рука или нога) и средним потенциалом двух других конечностей. В качестве отрицательного электрода в этих отведениях используют так называемый объединенный электрод Гольдберга, который образуется при соединении двух конечностей через дополнительное сопротивление. Таким образом, aVR — это усиленное отведение от правой руки; aVL — усиленное отведение от левой руки; aVF — усиленное отведение от левой ноги (рис. 1.3).

Обозначение усиленных отведений от конечностей проис ходит от первых букв английских слов: « a » — augmented (усиленный); « V » — voltage (потенциал); «R» — right (правый); «L» — left (левый); «F» — foot (нога).

Рис. 1.3. Формирование трех усиленных однополюсных отведений от конечностей. Внизу — треугольник Эйнтховена и расположение осей трех усиленных однополюсных отведений от конечностей

Шестиосевая система координат (по BAYLEY)

Стандартные и усиленные однополюсные отведения от конечностей дают возможность зарегистрировать изменения ЭДС сердца во фронтальной плоскости, то есть в той, в которой расположен треугольник Эйнтховена. Для более точного и наглядного определения различных отклонений ЭДС сердца в этой фронтальной плоскости, в частности для определения положения электрической оси сердца, была предложена так называемая шестиосевая система координат (Bayley, 1943). Ее можно получить при совмещении осей трех стандартных и трех усиленных отведений от конечностей, проведенных через электрический центр сердца. Последний делит ось каждого отведения на положительную и отрицательную части, направленные, соответственно, к положительному (активному) или отрицательному электродам (рис. 1.4).

Рис. 1.4. Формирование шестиосевой системы координат (по Bayley)

Направление осей измеряют в градусах. За начало отсчета (0 °) условно принимают радиус, проведенный строго горизонтально из электрического центра сердца влево по направлению к активному положительному полюсу I стандартного отведения. Положительный полюс II стандартного отведения расположен под углом +60 °, отведения aVF — +90 °, III стандартного отведения — +120 °, aVL — - 30 °, a aVR — -150 °. Ось отведения aVL перпендикулярна оси II стандартного отведения, ось I стандартного отведения — оси aVF, а ось aVR —оси III стандартного отведения.

Грудные отведения

Грудные однополюсные отведения, предложенные Wilson в 1934 г ., регистрируют разность потенциалов между активным положительным электродом, установленным в определенных точках на поверхности грудной клетки и отрицательным объединенным электродом Вильсона. Этот электрод образуется при соединении через дополнительные сопротивления трех конечностей (правой и левой руки, а также левой ноги), объединенный потенциал которых близок к нулю (около 0,2 мВ). Для записи ЭКГ используют 6 общепринятых позиций активного электрода на передней и боковой поверхности грудной клетки, которые в сочетании с объединенным электродом Вильсона образуют 6 грудных отведений (рис. 1.5):

отведение V 1 — в четвертом межреберье по правому краю грудины;

отведение V 2 — в четвертом межреберье по левому краю грудины;

отведение V 3 — между позициями V 2 и V 4 , примерно на уровне четвертого ребра по левой парастернальной линии;

отведение V 4 — в пятом межреберье по левой срединно-ключичной линии;

отведение V 5 — на том же уровне по горизонтали, что и V 4 , по левой передней подмышечной линии;

отведение V 6 — по левой средней подмышечной линии на том же уровне по горизонтали, что и электроды отведений V 4 и V 5 .

Рис. 1.5. Расположение грудных электродов

Таким образом, наиболее широкое распространение получили 12 электрокардиографических отведений (3 стандартных, 3 усиленных однополюсных отведения от конечностей и 6 грудных).

Электрокардиографические отклонения в каждом из них отражают суммарную ЭДС всего сердца, то есть являются результатом одновременного воздействия на данное отведение изменяющегося электрического потенциала в левых и правых отделах сердца, в передней и задней стенке желудочков, в верхушке и основании сердца.

Дополнительные отведения

Диагностические возможности электрокардиографического исследования иногда целесообразно расширить при применении некоторых дополнительных отведений. Их используют в тех случаях, когда обычная программа регистрации 12 общепринятых отведений ЭКГ не позволяет достаточно надежно диагностировать ту или иную электрокардиографическую патологию или требует уточнения некоторых изменений.

Методика регистрации дополнительных грудных отведений отличается от методики записи 6 общепринятых грудных от ведений лишь локализацией активного электрода на поверхности грудной клетки. В качестве электрода, соединенного с отрицательным полюсом кардиографа, используют объединенный электрод Вильсона.

Рис. 1.6. Расположение дополнительных грудных электродов

Отведения V7—V9 . Активный электрод устанавливают по задней подмышечной (V 7), лопаточной (V 8) и паравертебральной (V 9) линиях на уровне горизонтали, на которой расположены электроды V 4 —V 6 (рис. 1.6). Эти отведения обычно используют для более точной диагностики очаговых изменений миокарда в заднебазальных отделах ЛЖ.

Отведения V 3R—V6R. Грудной (активный) электрод помещают на правой половине грудной клетки в позициях, симметричных обычным точкам расположения электродов V 3 —V 6 . Эти отведения используют для диагностики гипертрофии правых отделов сердца.

Отведения по Нэбу. Двухполюсные грудные отведения, предложенные в 1938 г. Нэбом, фиксируют разность потенциалов между двумя точками, расположенными на поверхтности грудной клетки. Для записи трех отведений по Нэбу используют электроды, предназначенные для регистрации трех стандартных отведений от конечностей. Электрод, обычно устанавливаемый на правой руке (красная маркировка), помещают во втором межреберье по правому краю грудины. Электрод с левой ноги (зеленая маркировка) переставляют в позицию грудного отведения V 4 (у верхушки сердца), а электрод, располагающийся на левой руке (желтая маркировка), помещают на том же горизонтальном уровне, что и зеленый электрод, но по задней подмышечной линии. Если переключатель отведений электрокардиографа находится в положении I стандартного отведения, регистрируют отведение Dorsalis (D).

Перемещая переключатель на II и III стандартные отведения, записывают соответственно отведения Anterior (А) и Inferior (I). Отведения по Нэбу используют для диагностики очаговых изменений мио карда задней стенки (отведение D), передней боковой стенки (отведение А) и верхних отделов передней стенки (отведение I).

Техника регистрации ЭКГ

Для получения качественной записи ЭКГ необходимо придерживаться некоторых правил ее регистрации.

Условия проведения электрокардиографического исследования

ЭКГ регистрируют в специальном помещении, удаленном от возможных источников электрических помех: электромоторов, физиотерапевтических и рентгеновских кабинетов, распределительных электрощитов. Кушетка должна находиться на расстоянии не менее 1,5-2 м от проводов электросети.

Целесообразно экранировать кушетку, подложив под пациента одеяло со вшитой металлической сеткой, которая должна быть заземлена.

Исследование проводится после 10-15-минутного отдыха и не ранее чем через 2 ч после еды. Больной должен быть раздет до пояса, голени также освобождены от одежды.

Запись ЭКГ проводится обычно в положении лежа на спине, что позволяет добиться максимального расслабления мышц.

Наложение электродов

На внутреннюю поверхность голеней и предплечий в нижней их трети с помощью резиновых лент накладывают 4 пластинчатых электрода, а на грудь устанавливают один или несколько (при многоканальной записи) грудных электродов, используя резиновую грушу-присоску. Для улучшения качества ЭКГ и уменьшения количества наводных токов следует обеспечить хороший контакт электродов с кожей. Для этого необходимо: 1) предварительно обезжирить кожу спиртом в местах наложения электродов; 2) при значительной волосистости кожи смочить места наложения электродов мыльным раствором; 3) использовать электродную пасту или обильно смачивать кожу в местах наложения электродов 5-10% раствором натрия хлорида.

Подключение проводов к электродам

К каждому электроду, установленному на конечностях или на поверхности грудной клетки, присоединяют провод, идущий от электрокардиографа и маркированный определенным цветом. Общепринятой является маркировка входных проводов: правая рука — красный цвет; левая рука — желтый; левая нога — зеленый, правая нога (заземление пациента) — черный; грудной электрод — белый. При наличии 6-канального электрокардиографа, позволяющего одновременно зарегистрировать ЭКГ в 6 грудных отведениях, к электроду V 1 подключают провод, имеющий красную окраску на наконечнике; к электроду V 2 — желтую, V 3 — зеленую, V 4 — коричневую, V 5 — черную и V 6 — синюю или фиолетовую. Маркировка остальных проводов такая же, как и в одноканальных электрокардиографах.

Выбор усиления электрокардиографа

Прежде чем начинать запись ЭКГ, на всех каналах электрокардиографа необходимо установить одинаковое усиление электрического сигнала. Для этого в каждом электрокардиографе предусмотрена возможность подачи на гальванометр стандартного калибровочного напряжения (1 мВ). Обычно усиление каждого канала подбирается таким образом, чтобы напряжение 1 мВ вызывало отклонение гальванометра и регистрирующей системы, равное 10 мм . Для этого в положении переключателя отведений «0» регулируют усиление электрокардиографа и регистрируют калибровочный милли вольт. При необходимости можно изменить усиление: снизить при слишком большой амплитуде зубцов ЭКГ (1 мВ = 5 мм) или повысить при малой их амплитуде (1 мВ = 15 или 20 мм ).

Запись ЭКГ

Запись ЭКГ проводят при спокойном дыхании, а также на высоте вдоха (в отведении III). Вначале записывают ЭКГ в стандартных отведениях (I, II, III), затем в усиленных отведениях от конечностей (aVR, aVL и aVF) и грудных (V 1 -V 6). В каждом отведении записывают не менее 4 сердечных циклов PQRST. ЭКГ регистрируют, как правило, при скорости движения бумаги 50 мм·с -1 . Меньшую скорость (25 мм·с -1) используют при необходимости более длительной записи ЭКГ, например для диагностики нарушений ритма.

Сразу после окончания исследования на бумажной ленте записывают фамилию, имя и отчество пациента, год рождения, дату и время исследования.

Нормальная ЭКГ

Зубец Р

Зубец Р отражает процесс деполяризации правого и левого предсердий. В норме во фронтальной плоскости средний результирующий вектор деполяризации предсердий (вектор Р) расположен почти параллельно оси II стандартного отведения и проецируется на положительные части осей отведений II, aVF, I и III. Поэтому в этих отведениях обычно регистрируется положительный зубец Р, имеющий максимальную амплитуду в I и II отведениях.

В отведении aVR зубец Р всегда отрицательный, так как вектор Р проецируется на отрицательную часть оси этого отведения. Поскольку ось отведения aVL перпендикулярна направлению среднего результирующего вектора Р, его проекция на ось этого отведения близка к нулю, на ЭКГ в большинстве случаев регистрируются двухфазный или низкоамплитудный зубец Р.

При более вертикальном расположении сердца в грудной клетке (например у лиц с астеническим телосложением), когда вектор Р оказывается параллельным оси отведения aVF, (рис. 1.7), амплитуда зубца Р увеличивается в отведениях III и aVF и уменьшается в отведениях I и aVL. Зубец P в aVL при этом может стать даже отрицательным.

Рис. 1.7. Формирование зубца Р в отведениях от конечностей

Наоборот, при более горизонтальном положении сердца в грудной клетке (например у гиперстеников) вектор Р параллелен оси I стандартного отведения. При этом амплитуда зубца Р увеличивается в отведениях I и aVL. P aVL становится положительным и уменьшается в отведениях III и aVF. В этих случаях проекция вектора Р на ось III стандартного отведения равна нулю или даже имеет отрицательное значение. Поэтому зубец P в III отведении может быть двухфазным или отрицательным (чаще при гипертрофии левого предсердия).

Таким образом, у здорового человека в отведениях I, II и aVF зубец Р всегда положительный, в отведениях III и aVL он может быть положительным, двухфазным или (редко) отрицательным, а в отведении aVR зубец Р всегда отрицательный.

В горизонтальной плоскости средний результирующий век тор Р обычно совпадает с направлением осей грудных отведений V 4 —V 5 и проецируется на положительные части осей отведений V 2 —V 6 , как это показано на рис. 1.8. Поэтому у здорового человека зубец Р в отведениях V 2 —V 6 всегда положительный.

Рис. 1.8. Формирование зубца Р в грудных отведениях

Направление среднего вектора Р почти всегда перпендикулярно оси отведения V 1 , в то же время направление двух моментных векторов деполяризации разное. Первый начальный моментный вектор возбуждения предсердий ориентирован вперед, в сторону положительного электрода отведения V 1 , а второй конечный моментный вектор (меньший по величине) обращен назад, в сторону отрицательного полюса отведения V 1 . Поэтому зубец P в V 1 чаще бывает двухфазным (+-).

Первая положительная фаза зубца P в V 1 , обусловленная возбуждением правого и частично левого предсердий, больше второй отрицательной фазы зубца P в V 1 , отражающей относительно короткий период конечного возбуждения только левого предсердия. Иногда вторая отрицательная фаза зубца P в V 1 слабо выражена и зубец P в V 1 положительный.

Таким образом, у здорового человека в грудных отведениях V 2 -V 6 всегда регистрируется положительный зубец Р, а в от ведении V 1 он может быть двухфазным или положительным.

Амплитуда зубцов Р в норме не превышает 1,5-2,5 мм, а продолжительность — 0,1 с.

Интервал Р Q(R)

Интервал Р-Q(R) измеряется от начала зубца Р до на чала желудочкового комплекса QRS (зубца Q или R). Он отражает продолжительность АV-проведения, то есть время распространения возбуждения по предсердиям, АV-узлу, пучку Гиса и его разветвлениям (рис. 1.9). Не следует интервал Р-Q(R) с сегментом РQ(R), который измеряется от конца зубца Р до начала Q или R

Рис. 1.9. Интервал Р-Q(R)

Длительность интервала Р-Q(R) колеблется от 0,12 до 0,20 с и у здорового человека зависит в основном от ЧСС: чем она выше, тем короче интервал Р-Q(R).

Желудочковый комплекс QRS T

Желудочковый комплекс QRST отражает сложный процесс распространения (комплекс QRS) и угасания (сегмент RS-Т и зубец Т) возбуждения по миокарду желудочков. Если амплитуда зубцов комплекса QRS достаточно велика и превышает 5 мм , их обозначают заглавными буквами латинского алфавита Q, R, S, если мала (менее 5 мм ) — строчными буквами q, r, s.

Зубцом R обозначают любой положительный зубец, входящий в состав комплекса QRS. Если имеется несколько таких положительных зубцов, их обозначают соответственно как R, Rj, Rjj и т.д. Отрицательный зубец комплекса QRS, непосредственно предшествующий зубцу R, обозначают буквой Q (q), а отрицательный зубец, следующий сразу после зубца R, — S (s).

Если на ЭКГ регистрируется только отрицательное отклонение, а зубец R отсутствует совсем, желудочковый комплекс обозначают как QS. Формирование отдельных зубцов комплекса QRS в различных отведениях можно объяснить существованием трех моментных векторов желудочковой деполяризации и различной их проекцией на оси ЭКГ-отведений.

Зубец Q

В большинстве ЭКГ-отведений формирование зубца Q обу словлено начальным моментным вектором деполяризации меж желудочковой перегородки, длящейся до 0,03 с. В норме зубец Q может быть зарегистрирован во всех стандартных и усиленных однополюсных отведениях от конечностей и в грудных отведениях V 4 -V 6 . Амплитуда нормального зубца Q во всех отведениях, кроме aVR, не превышает 1 / 4 высоты зубца R, а его продолжительность — 0,03 с. В отведении aVR у здорового человека может быть зафиксирован глубокий и широкий зубец Q или даже комплекс QS.

Зубец R

Зубец R во всех отведениях, за исключением правых грудных отведений (V 1 , V 2) и отведения aVR, обусловлен проекцией на оси отведения второго (среднего) моментного вектора QRS, или условно вектора 0,04 с. Вектор 0,04 с отражает процесс дальнейшего распространения возбуждения по миокарду ПЖ и ЛЖ. Но, поскольку ЛЖ является более мощным отделом сердца, вектор R ориентирован влево и вниз, то есть в сторону ЛЖ. На рис. 1.10а видно, что во фронтальной плоскости вектор 0,04 с проецируется на положительные части осей отведений I, II, III, aVL и aVF и на отрицательную часть оси отведения aVR. Поэтому во всех отведениях от конечностей, за исключением aVR, формируются высокие зубцы R, причем при нормальном анатомическом положении сердца в грудной клетке зубец R в отведении II имеет максимальную амплитуду. В отведении aVR, как было сказано выше, всегда преобладает отрицательное отклонение — зубец S, Q или QS, обусловленный проекцией вектора 0,04 с на отрицательную часть оси этого отведения.

При вертикальном положении сердца в грудной клетке зубец R становится максимальным в отведениях aVF и II, а при горизонтальном положении сердца — в I стандартном отведении. В горизонтальной плоскости вектор 0,04 с обычно совпадает с направлением оси отведения V 4 . Поэтому зубец R в V 4 превышает по амплитуде зубцы R в остальных грудных отведениях, как это показано на рис. 1.10б. Таким образом, в левых грудных отведениях (V 4 -V 6) зубец R формируется в результате проекции главного моментного вектора 0,04 с на положительные части этих отведений.

Рис. 1.10. Формирование зубца R в отведениях от конечностей

Оси правых грудных отведений (V 1 , V 2) обычно перпендикулярны направлению главного моментного вектора 0,04 с, по этому последний почти не оказывает своего влияния на эти отведения. Зубец R в отведениях V 1 и V 2 , как было показано выше, формируется в результате проекции на оси этих отведений начального моментного выбора (0,02 с) и отражает распространение возбуждения по межжелудочковой перегородке.

В норме амплитуда зубца R постепенно увеличивается от отведения V 1 к отведению V 4 , а затем вновь несколько уменьшается в отведениях V 5 и V 6 . Высота зубца R в отведениях от конечностей не превышает обычно 20 мм, а в грудных отведениях — 25 мм. Иногда у здоровых людей зубец r в V 1 столь слабо выражен, что желудочковый комплекс в отведении V 1 приобретает вид QS.

Для сравнительной характеристики времени распространения волны возбуждения от эндокарда до эпикарда ПЖ и ЛЖ принято определять так называемый интервал внутреннего отклонения (intrinsical defl ection) соответственно в правых (V 1 , V 2) и левых (V 5 , V 6) грудных отведениях. Он измеряется от начала желудочкового комплекса (зубца Q или R) до вершины зубца R в соответствующем отведении, как показано на рис. 1.11.

Рис. 1.11. Измерение интервала внутреннего отклонения

При наличии расщеплений зубца R (комплексы типа RSRj или qRsrj) интервал измеряется от начала комплекса QRS до вер шины последнего зубца R.

В норме интервал внутреннего отклонения в правом грудном отведении (V 1) не превышает 0,03 с, а в левом грудном отведении V 6 -0,05 с.

Зубец S

У здорового человека амплитуда зубца S в разных ЭКГ-отведениях колеблется в больших пределах, не превышая 20 мм .

При нормальном положении сердца в грудной клетке в отведениях от конечностей амплитуда S мала, кроме отведения aVR. В грудных отведениях зубец S постепенно уменьшается от V 1 , V 2 до V 4 , а в отведениях V 5 , V 6 имеет малую амплитуду или отсутствует.

Равенство зубцов R и S в грудных отведениях (переходная зона) обычно регистрируется в отведении V 3 или (реже) между V 2 и V 3 или V 3 и V 4 .

Максимальная продолжительность желудочкового комплекса не превышает 0,10 с (чаще 0,07-0,09 с).

Амплитуда и соотношение положительных (R) и отрицательных зубцов (Q и S) в различных отведениях во многом зависят от поворотов оси сердца вокруг трех его осей: переднезадней, продольной и сагиттальной.

Сегмент RS—Т

Сегмент RS-Т — отрезок от конца комплекса QRS (конца зубца R или S) до начала зубца Т. Он соответствует периоду полного охвата возбуждением обоих желудочков, когда разность потенциалов между различными участками сердечной мышцы отсутствует или мала. Поэтому в норме в стандартных и усиленных однополюсных отведениях от конечностей, электроды которых расположены на большом расстоянии от сердца, сегмент RS—Т расположен на изолинии и его смещение вверх или вниз не превышает 0,5 мм . В грудных отведениях (V 1 -V 3) даже у здорово го человека нередко отмечают небольшое смещение сегмента RS-Т вверх от изолинии (не более 2 мм ).

В левых грудных отведениях сегмент RS-T чаще регистрируется на уровне изолинии — так же, как в стандартных (± 0,5 мм).

Точка перехода комплекса QRS в сегмент RS-Т обозначается как j. Отклонения точки j от изолинии часто используют для количественной характеристики смещения сегмента RS-Т.

Зубец Т

Зубец T отражает процесс быстрой конечной реполяризации миокарда желудочков (фаза 3 трансмембранного ПД). В норме суммарный результирующий вектор желудочковой реполяризации (вектор Т) обычно имеет почти такое же направление, как и средний вектор деполяризации желудочков (0,04 с). Поэтому в большинстве отведений, где регистрируется высокий зубец R, зубец Т имеет положительное значение, проецируясь на положительные части осей электрокардиографических отведений (рис. 1.12). При этом наибольшему зубцу R соответствует наибольший по амплитуде зубец Т, и наоборот.

Рис. 1.12. Формирование зубца Т в отведениях от конечностей

В отведении aVR зубец T всегда отрицательный.

При нормальном положении сердца в грудной клетке на правление вектора Т иногда бывает перпендикулярным оси III стандартного отведения, в связи с чем в этом отведении иногда может регистрироваться двухфазный (+/-) или низко амплитудный (сглаженный) зубец T в III.

При горизонтальном расположении сердца вектор Т может проецироваться даже на отрицательную часть оси отведения III и на ЭКГ регистрируется отрицательный зубец Т в III. Однако в отведении aVF при этом зубец Т остается положительным.

При вертикальном расположении сердца в грудной клетке вектор Т проецируется на отрицательную часть оси отведения aVL и на ЭКГ фиксируется отрицательный зубец T в aVL.

В грудных отведениях зубец Т обычно имеет максимальную амплитуду в отведении V 4 или V 3 . Высота зубца T в грудных отведениях обычно увеличивается от V 1 к V 4, а затем несколько уменьшается в V 5 -V 6 . В отведении V 1 зубец Т может быть двухфазным или даже отрицательным. В норме всегда T в V 6 больше Т в V 1 .

Амплитуда зубца Т в отведениях от конечностей у здорового человека не превышает 5-6 мм, а в грудных отведениях — 15-17 мм. Продолжительность зубца Т колеблется от 0,16 до 0,24 с.

Интервал Q-T (QRST)

Интервал Q-Т (QRST) измеряется от начала комплекса QRS (зубца Q или R) до конца зубца Т. Интервал Q-Т (QRST) называют электрической систолой желудочков. Во время электрической систолы возбуждаются все отделы желудочков сердца. Продолжительность интервала Q-Т в первую очередь зависит от частоты ритма сердца. Чем выше частота ритма, тем короче должный интервал Q-Т. Нормальная продолжительность интервала Q-Т определяется по формуле Q-Т=K√R-R, где К — коэффициент, равный 0,37 для мужчин и 0,40 для женщин; R-R — продолжительность одного сердечного цикла. Поскольку длительность интервала Q-T зависит от ЧСС (удлиняясь при его замедлении), для оценки она должна быть откорректирована относительно ЧСС, поэтому для расчетов применяется формула Базетта: QТс=Q-T/√R-R.

Иногда на ЭКГ, особенно в правых грудных отведениях, сразу после зубца Т регистрируется небольшой положительный зубец U, происхождение которого до сих пор неизвестно. Есть предположения, что зубец U соответствует периоду кратковременного повышения возбудимости миокарда желудочков (фаза экзальтации), наступающему после окончания электрической систолы ЛЖ.



О.С. Сычев, Н.К. Фуркало, Т.В. Гетьман, С.И. Деяк "Основы элекрокардиографии"

1. Электрокардиография как наука

Сердце является самым необычным органом в организме человека. Контроль деятельности сердца осуществляется нервной системой (сосудодвигательный центр, симпатические и блуждающие нервы), а также посредством влияния различных веществ (гормонов, ионов). Но в этом отношении сердце мало отличается от остальных органов.

Самое удивительное то, что сердце имеет собственную автономную «нервную систему». Еще в XIX веке ученые отметили тот факт, что изолированное (без воздействия извне) сердце способно некоторое время исправно функционировать. Это возможно из-за существования зоны активации в сино-атриальном узле (ее называют «водитель ритма») и особых нервных путей (проводящие пути). Импульс, рождаемый в «водителе ритма», за считанные доли секунды проводится до мышечных клеток сердца по проводящим путям. Как результат, возникает сокращение мышечных стенок, кровь из-за повышения давления в камерах направляется в артерии. Но что представляет собой этот импульс? Это электрический ток, который можно уловить в любой точке организма, так как организм легко проводит электричество.

Электрокардиография представляет собой метод графической регистрации электрических процессов, возникающих при деятельности сердца. Кривая, которая при этом регистрируется, называется электрокардиограммой. Электрокардиография - целая наука, изучающая электрокардиограммы. Слово «электрокардиограмма» с латинского языка переводится дословно следующим образом: «электро» - электрические потенциалы; «кардио» - сердце; «грамма» - запись.

Электрический ток появляется между двумя точками, соединенными проводником, только тогда, когда между ними имеется разность электрических зарядов. С увеличением или уменьшением этой разности соответственно изменяется величина электрического тока в цепи. Величину разности зарядов принято называть разностью потенциалов. Разность потенциалов электрической активности сердца очень мала. Она выражается в милливольтах (мВ). Эта величина векторная, т. е. она имеет численное значение и определенное направление в пространстве.

Уоллер в 1887 г. впервые зарегистрировал электродвижущую силу сердца у человека. Современная ЭКГ была получена с помощью чувствительного струнного гальванометра в 1903 г. Эйнтховеном. Дальнейшее развитие электрокардиографии связано с физиологическими работами А.Ф. Самойлова, клинико-физиологическими работами В.Ф. Зеленина и работами других авторов.

2. Физические и медицинские основы электрокардиограммы

.1 Физические явления, лежащие в основах метода электрокардиографии

электрокардиография миокард сердечный мышца

Электрическое поле - это особый вид материи, посредством которой осуществляется взаимодействие электрических зарядов.

Электрический ток - упорядоченное движение заряженных частиц под действием электрического поля. Для существования электрического тока необходимы свободно заряженные частицы (электроны, ионы).

Потенциал - физическая величина, определяемая работой по перемещению единичного положительного заряда при удалении его из данной точки поля на бесконечность. Эта работа численно равна работе, совершаемой внешними силами по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Разность потенциалов.

К этому понятию мы приходим, рассматривая работу сил электрического поля.

Предположим, что электрический заряд перемещается в каком-нибудь электрическом поле из некоторой точки 1 в другую точку 2. Так как на заряд в электрическом поле действует сила, то при таком перемещении будет произведена определенная работа, которую мы обозначим А12. Ясно, что если тот же заряд переместиться по прежнему пути в обратном направлении, то работу будет той же, но изменится ее знак, т.е. А12 = А21.

Рассмотрим теперь электрическое поле, созданное неподвижными зарядами (электростатическое поле). В нем работа при перемещении заряда не зависит от формы пути, по которому движется заряд, и определяется только положением точек 1 и 2 - начала и конца пути заряда.

Предположим теперь, что в электростатическом поле из точки 1 в точку 2 перемещается положительный заряд +q. Так как заряд выбран определенным, то работа, совершаемая силами поля при перемещении этого заряда, зависит только от существующего электрического поля и поэтому может служить его характеристикой. Она называется разностью потенциалов точек 1 и 2 в данном электрическом поле или электрическим напряжением между точками 1 и 2. Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами поля при перемещениизаряда +q из точки 1 в точку 2.

При перемещении заряда произвольной величины q в каждой точке сила, действующая на заряд, увеличивается в q раз. Поэтому работа А12, совершаемая силами поля при перемещении заряда q из точки 1 в точку 2, равна

А12 = qU12

Из этого соотношения следует физический смысл разности потенциалов электростатического поля:


Физический смысл имеет только разность потенциалов между двумя точками поля, так работа определена только тогда, когда заданы две точки - начало и конец пути.

Единица разности потенциалов в системе СИ есть вольт (В). Вольтом называется потенциал в такой точке, для перемещения в которую из бесконечности заряда, равного 1 Кл, надо совершить работу 1 Дж.

Электродвижущая сила.

Электродвижущая сила (далее - ЭДС) - физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

Происхождение сторонних сил может быть различным: в генераторах - это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или сила Лоренца, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах - это химические силы и т.д. ЭДС источника равна электрическому напряжению на его зажимах при разомкнутой цепи. ЭДС определяет силу тока в цепи при заданном её сопротивлении. Измеряется, как и электрическое напряжение, в вольтах.

ЭДС является интегральной характеристикой замкнутого контура, и в общем случае нельзя строго указать место её "приложения". Однако довольно часто ЭДС можно считать приближённо локализованной в определённых устройствах или элементах цепи. В таких случаях её принято считать характеристикой устройства (гальванической батареи, аккумулятора, динамо-машины и т.п.) и определять через разность потенциалов между его разомкнутыми полюсами. По типу преобразований энергии в этих устройствах различают следующие виды ЭДС: химическая ЭДС в гальванических батареях, ваннах, аккумуляторах, при коррозионных процессах (гальваноэффекты), фотоэлектрическая ЭДС (фотоэдс <#"280" src="/wimg/11/doc_zip1.jpg" />

Рис. 1 - Расположение 6 грудных электродов при записи ЭКГ

указанных отведений являются стандартными. При необходимости могут регистрироваться и дополнительные отведения.Неслучайно такое большое количество отведений. ЭДС сердца - это вектор ЭДС сердца в трехмерном мире (длина, ширина, высота) с учетом времени. На плоской ЭКГ-пленке мы можем видеть только 2-мерные величины, поэтому кардиограф записывает проекцию ЭДС сердца на одну из плоскостей во времени.

Рис. 2 - Плоскости тела, используемые в анатомии

В каждом отведении записывается своя проекция ЭДС сердца. Первые 6 отведений (3 стандартных и 3 усиленных от конечностей) отражают ЭДС сердца в так называемой фронтальной плоскости (см. рис.) и позволяют вычислять электрическую ось сердца с точностью до 30° (180° / 6 отведений = 30°). Недостающие 6 отведений для формирования круга (360°) получают, продолжая имеющиеся оси отведений через центр на вторую половину круга.

грудных отведений отражают ЭДС сердца в горизонтальной (поперечной) плоскости. Это позволяет уточнить локализацию патологического очага (например, инфаркта миокарда): межжелудочковая перегородка, верхушка сердца, боковые отделы левого желудочка и т.д.

При разборе ЭКГ используют проекции вектора ЭДС сердца, поэтому такой анализ ЭКГ называется векторным.

В процессе электрической активности сердца возникают и в определенном порядке взаимодействуют многочисленные и разнонаправленные силы, отражающие множество появляющихся диполей. Если регистрировать этот процесс при условии непосредственного приближения электродов к поверхности сердца, то формирование ЭКГ будет зависеть от того, как ориентирован результирующий вектор всех одномоментных сил по отношению к дифферентному электроду. Представим, что дифферентный электрод располагается слева внизу от массы возбуждающегося миокарда, а индефферентный - справа наверху (такой принцип размещения электродов является самым обычным в электрокардиографии).

Наиболее высоким автоматизмом обладает синусовый узел, поэтому в норме именно он является водителем ритма сердца. Однако, из-за слишком малой величины возникающей разности потенциалов, электрическая активность синусового узла на ЭКГ не регистрируется. Возбуждение миокарда предсердий начинается в области синусового узла и распространяется по поверхности миокарда во все стороны. Разнонаправленные векторы деполяризации, взаимодействуя друг с другом, частично нейтрализуются. Так как синусовый узел находится в верхней части правого предсердия, то большинство векторов ориентированы вниз и влево. Результирующий вектор возбуждения предсердий направлен, благодаря этому, вниз и влево. Такому направлению волны деполяризации способствует и ускоренное проведение импульса вниз и влево по межузловым и межпредсердным специализированным трактам. Находящийся внизу слева дифферентный электрод обращен к положительному заряду диполя во время деполяризации предсердий, поэтому регистрируется положительное отклонение - зубец Р, продолжительность которого в норме достигает 0,1 с. В течение первых 0,02 - 0,03 с своего формирования зубец Р отражает возбуждение только правого предсердия, после этого - суммарную активность обоих предсердий, а последние 0,02 - 0,03 с зубца Р связаны с деполяризацией только левого предсердия, т.к. правое предсердие к этому времени уже полностью возбуждено.

После окончания деполяризации предсердий начинается ихреполяризация, которая происходит в той же последовательности, как происходило возбуждение. Ранее всего положительный потенциал покоя восстанавливается в области синусового узла, поэтому результирующий вектор реполяризации предсердий направлен вверх вправо, от дифферентного электрода. То обусловливает формирование отрицательного зубца Та, отражающего конечную фазу реполяризации предсердий. Он очень мал по амплитуде, а по времени совпадает с желудочковым комплексом ЭКГ, поэтому в обычных условиях не может быть выделен и подвергнут анализу.

Рис. 3 - Зубцы, сегменты и интервалы на ЭКГ

Через 0,02 - 0,04 с от начала деполяризации предсердий волна возбуждения уже достигает области атриовентрикулярного узла. Здесь скорость распространения возбуждения резко снижается, после чего импульс быстро распространяется по пучку Гиса и внутрижелудочковым проводящим путям, достигая миокарда желудочков. На ЭКГ выделяется сегмент Р - Q(R) - отрезок линии записи от конца зубца Р до начала желудочкого комплекса QRS. Интервал P - Q(R) отражает время предсердно-желудочкого проведения импульса и составляет в норме 0,12 - 0,19 с. Нормальные колебания продолжительности P - Q(R) зависят от изменений продолжительности атриовентрикулярной задержки.


Возбуждение желудочков, в отличие от возбуждения предсердий, распространяется не из одного центра, а из множества очагов, расположенных преимущественно в субэндокардиальных слоях миокарда. Источниками деполяризации являются волокна Пуркинье - конечный разветвления внутрижелудочковых проводящих путей. распространение возбуждения стенки желудочков направлено от множественных очагов в субэндокардиальных отделах к субэпикардиальным отделам, т.е. перпендикулярно к наружной поверхности сердца. Для детального разбора электрических сил, отражающих деполяризацию желудочков, удобно разделить этот непрерывный процесс на три этапа.

Первый - начальный - связан с появлением очагов деполяризации в левой части межжелудочковой перегородки, куда раньше всего приходит волна возбуждения по разветвлениям левой ножки пучка Гиса. Вектор деполяризации направлен от левой к правой поверхности межжелудочковой перегородки. При расположении активного электрода слева начальный этап деполяризации желудочков отражается небольшим отрицательным отклонением (зубцом Q), продолжительность которого составляет 0,02 с. Вслед за деполяризацией левой поверхности межжелудочковой перегородки начинается деполяризация ее правых отделов, куда возбуждение приходит по правой ножке пучка Гиса. Направление вектора этой деполяризации справа налево нейтрализует первоначально возникшее электрическое поле, и поэтому начальный этап возбуждения желудочков отражается небольшим и непродолжительным зубцом.

Следующий - главный - этап отражает распространение возбуждение через миокард свободных стенок желудочка. Суммарный вектор деполяризации левого желудочка ориентирован влево. Равнонаправленность этих векторов приводит к частичной нейтрализации электрических сил. Большая мышечная масса левого желудочка обусловливает его электрического поля над электрическим полем правого желудочка, поэтому результирующий вектор деполяризации желудочков ориентирован влево. При расположении активного электрода слева, этот главный этап деполяризации желудочков, соответствующий 0,03 - 0,05 с, регистрируется в виде положительного отклонения (зубец R).

Заключительный этап деполяризации желудочков отражает возбуждение заднебазальных межжелудочковой перегородки и желудочков. Вектор деполяризации ориентирован вверх и чаще вправо; направление терминальной деполяризации значительно варьирует. При расположении дифферентного электрода слева от сердца терминальных этап деполяризации чаще отражен небольшим отрицательным зубцом (S).

Таким образом, последовательные изменения величины и направления результирующего вектора электрического поля во время возбуждения желудочков приводят к тому, что этот единый процесс отражается комплексом QRS, состоящим их зубцов разной величины и разной полярности. В зависимости от положения электродов зубцы, отражающие начальный, главный и терминальный этапы деполяризации, могут иметь различные направления (и, вследствие этого, различные буквенные обозначения). Зубцом Q обозначают первое отклонение желудочкового комплекса, если оно направлено вниз от изолинии. Отклонение записи вверх от изолинии, независимо от того, когда оно регистрируется (т.е. является ли первым или последующим) называется зубцом R. Отрицательное отклонение, следующее за положительным, обозначают как зубец S. Таким образом, зубец Q может быть лишь один в желудочковом комплексе, а в тех случаях, когда комплекс начинается положительным отклонением, зубец Q отсутствует. Если положительных зубцов несколько, то они именуются зубцами R, но каждый последующий обозначается как Ŕ,Ŕ ́и т.д. Зубцов S тоже может быть несколько, и тогда они обозначаются как Ś, Ś ́и т.д. общая продолжительность комплекса QRS, отражающая время внутрижелудочковой проводимости составляет 0,06 - 0,10 с.

В отличие от предсердий, миокард желудочков различных слоев и отделов обладает различной продолжительностью электрических процессов. Потенциал действия субэпикардиальных слоев имеет меньшую продолжительность, чем потенциал действия субэндокардиальных слоев; потенциал действия миокардиальных волокон в области верхушки сердца короче, чем в области основания сердца. Это приводит к тому, что в стенке желудочка процессы реполяризации раньше начинаются в субэпикардиальных слоях и в области верхушки, тогда как субэндокардиальные слои и основание желудочков дольше сохраняют отрицательные заряды. Во время реполяризации результирующий вектор направлен поэтому влево, т. е. в ту же сторону, что и главный вектор деполяризации. Наибольшая электродвижущая сила возникает в фазе конечной реполяризации, этот процесс отображается появлением зубца Т. при расположении дифферентного электрода слева, вектор реполяризации желудочков направлен к этому электроду и зубец Т регистрируется положительным. Между концом комплекса QRS и началом зубца Трасполагается сегмент S-T: он соответствует второй фазе реполяризации миокарда желудочков, во время которой потенциал почти не изменяет своей величины. Разность потенциалов почти отсутствует, поэтому сегмент S - Tрасполагается на изолинии. Различная продолжительность потенциала действия в разных отделах миокарда желудочков приводит к небольшому асинхронизму фаз реполяризации и появлению небольшой разности потенциалов, что и сообщает сегменту S-T некоторую кривизну с плавным переходом его в зубец Т. интервал времени от начала комплекса QRS до начала зубца Т отражает весь период электрической активности желудочков (электрическая систола). В норме Q - T составляет 0,36 - 0,44 с и зависит от пола, возраста и частоты ритма. Вслед за зубцом Т обычно регистрируется еще одно положительное отклонение небольшой амплитуды - зубец U. Механизмы его появления точно не установлены и, по-видимому, не всегда однозначны.

Рис. 5 - Схема измерения отрезков и интервалов электрокардиограммы

В процессе исследования всех зубцов, сегментов и интервалов, регистрируемых электрокардиограммой, выводится электрокардиографическое заключение, которое должно включать в себя:

Источник ритма (синусовый или нет).

Регулярность ритма (правильный или нет). Обычно синусовый ритм является правильным, хотя возможна дыхательная аритмия.

Положение электрической оси сердца.

Наличие 4 синдромов:

нарушение ритма

нарушение проводимости

гипертрофия и/или перегрузка желудочков и предсердий

повреждение миокарда (ишемия, дистрофия, некрозы, рубцы)

2.2.4 Тело как объемный проводник электрических явлений

Ткани и органы, окружающие сердце, играют роль проводников, передающих электрические заряды на поверхность тела.Величина потенциалов по мере удаления от сердца уменьшается. В однородной проводящей среде величина потенциала любой точки обратно пропорциональна величине расстояния от нее до источника разности потенциала. Ткани тела обладают различной электропроводностью, что вносит значительные искажения в распределение и величину потенциалов на поверхности тела. ЭКГ может изменяться под влиянием таких состояний как ожирение, кахексия, отеки тела, скопление жидкости в плевре и перикарде, эмфизема и уплотнение легких и т.п.


Ежегодно в стране регистрируется от 15 до 17 млн. больных сердечно-сосудистыми заболеваниями. На долю болезней системы кровообращения приходится более половины всех случаев смертности, 43,3% - случаев инвалидности, 9,0% - временной нетрудоспособности. Это обуславливает важность ранней диагностики, рациональной терапии, профилактики грозных осложнений, реабилитации больных с заболеваниями сердечно-сосудистой системы. В данных условиях востребованы технически простые методы, не требующие больших экономических и временных затрат. С появлением ЭКГ врачи получили значительные возможности в прижизненной диагностике заболеваний сердца. Метод исключительно простой (регистрацию ЭКГ может проводить любой медицинский работник), универсальный (врач из любой страны может интерпретировать результаты ЭКГ), неинвазивный (не нарушает целостность организма, практически безвреден), недорогой.Метод электрокардиографического обследования целиком отвечает современным потребностям.

Список литературы и использованных источников

1.Журавлева Н.Б. Основы клинической электрокардиографии. Л.: Экслибрис, 1990.

2.Минкин Р.Б., Павлов Ю.Д. Электрокардиография и фонокардиография. Л.: Медицина, 1988. - 256 с.

.Бармасов А.В., Холмогоров В.Е. Курс общей физики для природопользователей. Электричество. / под ред. А.П. Бобровского. СПб.: БХВ-Петербург, 2010. 448 с.

.Ремизов А.Н., Потапенко А.Я. Курс физики. Учебник для студентов вузов, обучающихся по естественнонаучным направлениям. М.: Дрофа, 2006. 720 с.

.Калашников С.Г. Электричество: Учебное пособие для студентов физических специальностей вузов. М.: ФИЗМАТЛИТ, 2004. 624 с.

.Физический энциклопедический словарь. - М.: Советская энциклопедия.

.Главный редактор А.М. Прохоров. 1983.

8.

.