Коэффициенты гармонической линеаризации. Метод гармонической линеаризации

Метод гармонической линеаризации позволяет с достаточной для практики точностью исследовать устойчивость и точность нелинейных систем, используя методы, разработанные для линейных систем. Метод дает возможность определить наличие автоколебаний, а также их частоту и амплитуду.

Нелинейная система представляется в виде соединения линейной и нелинейной части (рис. 5).

Рис. 5 Схема нелинейной системы

Выходной сигнал нелинейной части системы в общем случае определяется выражением

Обозначим как передаточную функцию линейной части. Система уравнений примет вид

Найдем условия, при которых на выходе линейной части системы возникают гармонические колебания вида

В этом случае сигнал y(t) нелинейной части будет представлять собой также периодическую функцию, но отличную от синусоиды. Эту функцию можно разложить в ряд Фурье

В этом выражении a i и b i - коэффициенты Фурье. Для симметричных нелинейностей F 0 =0.

Основным условием, которое накладывает метод на линейную часть системы, является условие фильтра нижних частот. Считается, что линейная часть пропускает только первую гармонику колебаний. Данное допущение позволяет считать высшие гармоники в (7.19) несущественными и ограничиться рассмотрением только первой гармоники сигнала y(t).

то выражение (7.20) можно переписать в виде

Первое уравнение системы (7.17) примет вид

В этом выражении


Результат замены нелинейности F(x,sx) выражением

и называется гармонической линеаризацией. Величины q и q 1 называются коэффициентами гармонической линеаризации или просто гармоническими коэффициентами. Для однозначных нелинейностей обычно q 1 =0 . Формулы для гармонических коэффициентов, соответствующих типовым нелинейностям, приводятся в приложениях.

Принципиальное отличие гармонической линеаризации от обычной состоит в том, что при обычной линеаризации нелинейную характеристику заменяют прямой линией с определенной постоянной крутизной, а при гармонической линеаризации - прямой линией, крутизна которой зависит от амплитуды входного сигнала нелинейного элемента.

Рассмотрим методику определения амплитуды и частоты автоколебаний.

1). В характеристическом уравнении системы, полученном из (7.22) делаем замену s=j и получим

2). Из полученного выражения выделяем вещественную и мнимую части и приравниваем их нулю, что, по критерию Михайлова, соответствует нахождению системы на колебательной границе устойчивости.

  • 3).Решение этой системы дает частоту и значения гармонических коэффициентов. Если эти значения вещественны и положительны, то в системе существует предельный цикл. По значениям гармонических коэффициентов можно определить амплитуду предельного цикла.
  • 4). Общим признаком устойчивости предельного цикла, т.е. существования автоколебаний, является равенство нулю предпоследнего определителя Гурвица при полученных значениях амплитуды и частоты предельного цикла. Часто более удобно использовать условие устойчивости предельного цикла, в основе которого лежит критерий устойчивости Михайлова.

Если это неравенство выполняется, то предельный цикл устойчив и в системе существуют автоколебания с определенными выше амплитудой и частотой. Индекс ”*” означает, что производные вычислены при уже известных значениях гармонических коэффициентах, амплитуды и частоты.

Пример. Допустим, что в уже рассмотренной выше системе стабилизации угла тангажа самолета рулевой привод нелинейный и его структурная схема имеет вид, показанный на рис. 7.6.

Рис.6 Схема нелинейного рулевого привода

Зададим следующие параметры нелинейности скоростной характеристикм рулевого привода: b = 0.12, k 1 = tg =c/b = 6.7. Коэффициенты гармонической линеаризации этой нелинейности определяются выражениями

Заменив в схеме нелинейную характеристику гармоническим коэффициентом, получим передаточную функцию рулевого привода

Подставим эту передаточную функцию в структурную схему системы стабилизации угла тангажа и определим передаточную функцию замкнутой системы

В характеристическом уравнении замкнутой системы сделаем замену s = j и выделим вещественную и мнимую части.

Из второго уравнения системы получим выражение для частоты: , и подставив его в первое уравнение, после преобразований получим

Подставив сюда ранее определенные выражения для коэффициентов характеристического уравнения, можно получить квадратное уравнение относительно гармонического коэффициента, решив которое, найдем

По этим значениям можно вычислить для двух случаев все коэффициенты характеристического уравнения и определить частоты, соответствующие каждому значению q(А). Получим:

Оба значения гармонического коэффициента и соответствующие частоты вещественны и положительны. Следовательно, в системе существуют два предельных цикла. Значения амплитуды предельного цикла определяются численно путем подбора такого значения при котором формула для коэффициента гармонической линеаризации дает значение, равное ранее вычисленному. В рассматриваемом случае получим

Теперь оценим устойчивость предельных циклов. Используем неравенство, полученное из критерия Михайлова, для чего определим

Производная от коэффициента гармонической линеаризации, входящая в полученные выражения, вычисляется по формуле


Расчеты по выше приведенным формулам показывают, что первый предельный цикл не устойчив и возникает он при (0) 0.1166(6.7 0 ). Если начальное отклонение меньше указанного, то процесс на входе нелинейного элемента затухает (рис.7. 7) и система устойчива.


Если начальное значение угла тангажа больше указанного, то процессы сходятся ко второму предельному циклу, который устойчив и, таким образом в системе возникают автоколебания (рис. 8).


Рис. 8

Путем моделирования определено, что область притяжения устойчивого предельного цикла лежит приблизительно в пределах (0) 0.1167 - 1.4 (6.71 0 - 80.2 0 ).

Проиллюстрируем вычисление коэффициентов гармонической линеаризации на нескольких примерах: сначала для симметричных колебаний, а затем для несимметричных. Предварительно заметим, что если нечетно-симметричная нелинейность F(x) однозначна, то, согласно (4.11) и (4.10), получаем

причем при вычислении q (4.11) можно ограничиться интегрированием на четверти периода, учетверив результат, а именно

Для петлевой нелинейности F(x) (нечетно-симметричной) будет иметь место полное выражение (4.10)

причем можно пользоваться формулами

т. е. удвоением результата интегрирования на полупериоде.

Пример 1. Исследуем кубическую нелинейность (рис. 4.4, я):

Зависимость q(a) показана на рис. 4.4, б. Из рис. 4.4, а видно, что при заданной амплитуде я прямая q(a)x осредняет криволинейную зависимость F(x) на данном

участке -а£ х £. а. Естественно, что крутизна q(a) на­клона этой осредняющей прямой q{a}x увеличивается с увеличением амплитуды а (для кубической характе­ристики это увеличение происходит по квадратичному закону).

Пример 2. Исследуем петлевую релейную характе­ристику (рис. 4.5, а). На рис. 4.5,6 представлена подын­тегральная функция F(a sin y) для формул (4.21). Переключение реле имеет место при ½х ½= b, Поэтому в момент переключения величина y1 определяется выражением sin y1= b/а. По формулам (4.21) получаем (для a ³b)

На рис. 4.5, б изображены графики q(а) и q"(a). Первый из них показывает изменение крутизны наклона осредняющей прямой q(а )x с изменением а (см. рис. 4.5, а). Естественно, что q(a )à0 при аॠпри, так как сигнал на выходе остается постоянным (F(x )=c)при любом неограниченном увеличении входного сигна­ла х. Из физических соображений ясно также, почему q" <0. Это коэффициент при производной в формуле (4.20). Положительный знак давал бы опережение сиг­нала на выходе, в то время как гистерезисная петля дает запаздывание. Поэтому естественно, что q" < 0. Абсолют­ное значение q" уменьшается с увеличением амплиту­ды a, так как ясно, что петля будет занимать тем мень­шую часть «рабочего участка» характеристики F(x ), чем больше амплитуда колебаний переменной х.

Амплитудно-фазовая характеристика такой нелиней­ности (рис. 4.5, а), согласно (4.13). представляется в виде

причем амплитуда и фаза первой гармоники на выхода нелинейности имеют соответственно вид

где q и q" определены выше (рис. 4.5, б). Следовательно, гармоническая линеаризация переводит нелинейное ко­ординатное запаздывание (гистерезисную петлю) в экви­валентное запаздывание по фазе, характерное для ли­нейных систем, по с существенным отличием-зависи­мостью фазового сдвига от амплитуды входных колеба­ний, чего нет в линейных системах.



Пример 3. Исследуем однозначные релейные ха­рактеристики (рис. 4.6, а, в). Аналогично предыдущему получаем соответственно

что изображено на рис. 4.6, б, а.

Пример 4. Исследуем характеристику с зоной нечувствительности, линейным участком и насыщением (рис. 4.7, а). Здесь q" = 0, а коэффициент q (a ) имеет два варианта значений в соответствии срис. 4.7, б, где для них построена F (a sin y):

1) при b1 £ а £ b2, согласно (4.19), имеем

что сучетом соотношения a sin y1 = b 1 дает

2) при а ³ b2

что с учетом соотношения a sin y2 = b2 даёт

Графически результат представлен на рис. 4.7, а.

Пример 5. Как частные случаи, соответствующие коэффициенты q(a) для двух характеристик (рис. 4,8, а, б) равны

что изображено графически на рис. 4.8, б, г. При этом для характеристики с насыщением (рис. 4.8, а) имеем q= k при 0 £ a £ b.

Покажем теперь примеры вычисления коэффициен­тов гармонической линеаризации для несимметричных колебаний при тех же нелинейностях.

Пример 6. Для случая кубической нелинейности F(x ) = kx 3 по формуле (4.16) имеем

а по формулам (4.17)

Пример 7. Для петлевой релейной характеристики (рис. 4.5, а) по тем же формулам имеем

Пример 8. Для характеристики с зоной нечувстви­тельности (рис. 4.1:1) будут иметь место те же выраже­ния и q. Графики их представлены на рис. 4.9, а, б. При этом q" == 0. Для идеальной же релейной характе­ристики (рис. 4.10) получаем

что изображено на рис. 4.10, а и б.

Пример 9. Для характеристики с линейным участ­ком ц насыщением (рис.4.11,а) при а ³ b+½x 0 ½ имеем

Эти зависимости представлены в виде графиков на рис. 4.11, б, в.

Пример 10. Для несимметричной характеристики

(рис. 4. 12, а) по формуле (4.l6) находим

а по формулам (4.17)

Результаты изображены графически на рис. 4.12, б и в.

Полученные в этих примерах выражения и графики коэффициентов гармонической линеаризации будут ис­пользованы ниже при решении задач по исследованию

автоколебаний, вынужденных колебаний и процессов управления.

Базируясь на свойстве фильтра линейной части системы (лекция 12), ищем периодическое решение нелинейной системы (рис. 4.21) на входе нелинейного элемента приближенно в виде

х = a sin wt (4.50)

с неизвестными а и w. Задана форма нелинейности у= F(x ) и передаточная функция линейной части

Производится гармоническая линеаризация нелинейности

что приводит к передаточной функции

Амплитудно-фазовая частотная характеристика разомкнутой цепи системы получает вид

Периодическое решение линеаризованной системы (4.50) получается при наличии в характеристическом уравнении замкнутой системы пары чисто мнимых корней.

А это по критерию Найквиста соответствует прохождению W (j w) через точку -1. Следо­вательно, периодическое реше­ние (4.50) определяется равен­ством

Уравнение (4.51) определяет искомые амплитуду а и частоту w периодического решения. Это уравнение ре­шается графически следующим образом. На комплексной плоскости (U, V) вычерчивается амплитудно-фазовая частотная характеристика линейной части Wл(j w)(рис. 4.22), а также обратная амплитудно-фазовая ха­рактеристика нелинейности с обратным знаком -1/ Wн(a ). Точка В их пересечения (рис. 4.22) и определяет величи­ны а и w, причем значение а отсчитывается по кривой -1/ Wн (a), а значение w - по кривой Wл (jw).

Вместо этого можно пользоваться двумя скалярными уравнениями, вытекающими из (4.51) и (4.52):

которые также определяют две искомые величины а и w.

Последними двумя уравнениями удобнее пользоваться в логарифмическом масштабе, привлекая логарифмические­

частотные характери­стики линейной части. Тогда вместо (4.53) и (4.54) будем иметь следующие два урав­нения:

На рис. 4.23 слева изображены графики левых частей уравнений (4.55) и (4.56), а справа-правых частей этих уравнений. При этом по оси абсцисс слева часто­та w откладывается, как обычно, в логарифмическом масштабе, а справа-амплитуда а в натуральном масш­табе. Решением этих уравнений будут такие значения а и w, чтобы при них одновременно соблюдались оба ра­венства: (4.55) и (4.56). Такое решение показано на рис. 4.23 тонкими линиями в виде прямоугольника.

Очевидно, что сразу угадать это решение не удастся. Поэтому делаются попытки, показанные штриховыми линиями. Последние точки этих пробных прямоугольников М1 и М2 не попадают на фазовую характеристику нели­нейности. По если они расположены по обе стороны ха­рактеристики, как на рис. 4.23, то решение находится интерполяцией - путем проведения прямой ММ1.

Нахождение периодического решения.упрощается а случае однозначной нелинейности F(х ). Тогда q" = 0 и уравнения (4.55) и (4.56) принимают вид

Решение показано на рис. 4.24.

Рис. 4.24.

После определения периодического решения надо ис­следовать его устойчивость. Как уже говорилось, перио­дическое решение имеет место в случае, когда амплитудно-фазовая характеристика разомкнутой цепи

проходит через точку -1. Дадим амплитуде отклонение Dа . Система будет возвращаться к периодическому ре­шению, если при Dа > 0 колебания затухают, а при Dа < 0 - расходятся. Следовательно, при Dа > 0 харак­теристика W(jw, а ) дол­жна деформироваться (рис. 4.25) так, чтобы при Dа > 0 критерий устойчивости Найквиста соблюдался, а при Dа < 0 - нарушался.

Итак требуется, что­бы на данной часто­те w было

Отсюда следует, что на рис. 4.22 положительный отсчет амплитуды а вдоль кривой -1/Wн (а ) должен быть на­правлен изнутри вовне через кривую Wл (jw), как там и показано стрелкой. В противном случае периодическое решение неустойчиво.

Рассмотрим примеры.

Пусть в следящей системе (рис. 4.13, а) усилитель имеет релейную характеристику (рис. 4.17, а). Па рис. 4.17, б для нее показан график коэффициента гар­монической линеаризации q(а ), причем q’(а ) =0. Для определения периодического решения частотным спосо­бом, согласно рис. 4.22, надо исследовать выражение

Из формулы (4.24) получаем для данной нелинейности

График этой функции изображен па рис. 4.26.

Передаточная функция линейной части имеет вид

Амплитудно-фазовая характеристика для нее приведена на рис. 4.27. Функция же -1/ Wн (а ), являясь в данном слу­чае вещественной (рис. 4.26), укладывается вся на отрица­тельной части вещественной оси (рис. 4.27). При этом на участке изменения амплитуды b £ a £ b амплитуда отсчи­тывается слева извне внутрь кривой Wл(jw), а на участке а > b - в обратную сторону. Следовательно, первая точка пересечения (а 1) дает неустой­чивое периодическое решение, а вторая (а 2) - устойчивое (ав­токолебания). Это согласуется с прежним решением (пример 2 лекция 15, 16).

Рассмотрим также случай петлевой характеристики реле (рис. 4.28, а) в той же следящей системе (рис. 4.13, а). Амплитудно-фазовая частотная характе­ристика линейной части та же (рис. 4.28, б). Выражение же для кривой –1/Wн(а ), согласно (4.52) и (4.23), при­нимает вид

Это-прямая, параллельная оси абсцисс (рис. 4.28, б ), с отсчетом амплитуды а справа налево. Пересечение даст устойчивое периодическое решение (автоколебания). Чтобы получить графики зависимости амплитуды и частоты

от k л, представленные на рис. 4.20, нужно на рис. 4.28 построить серию кривых Wл(jw) для каждой величины k л и найти в их точках пересечения с прямой –1/Wн(а ) соответствующие значения а и w.

Метод гармонической линеаризации (гармонического баланса ) позволяет определить условия существования и параметры возможных автоколебаний в нелинейных САУ. Автоколебания определяются предельными циклами в фазовом пространстве систем. Предельные циклы разделяют пространство (в общем случае - многомерное ) на области затухающих и расходящихся процессов. В результате расчета параметров автоколебаний можно сделать заключение о их допустимости для данной системы или о необходимости изменения параметров системы.

Метод позволяет:

Определить условия устойчивости нелинейной системы;

Найти частоту и амплитуду свободных колебаний системы;

Синтезировать корректирующие цепи, для обеспечения требуемых параметров автоколебаний;

Исследовать вынужденные колебания и оценивать качество переходных процессов в нелинейных САУ.

Условия применимости метода гармонической линеаризации.

1) При использовании метода предполагается, что линейная часть системы устойчива или нейтральна.

2) Сигнал на входе нелинейного звена близок по форме к гармоническому сигналу. Это положение требует пояснений.

На рис.1 представлены структурные схемы нелинейной САУ. Схема состоит из последовательно соединенных звеньев: нелинейного звена y=F(x) и линейно-

го, которое описывается дифференциальным уравнением

При y = F(g - x) = g - x получим уравнение движения линейной системы.

Рассмотрим свободное движение, т.е. при g(t) º 0. Тогда,

В случае, когда в системе существуют автоколебания, свободное движение системы является периодическим. Непериодическое движение с течением времени оканчивается остановкой системы к некотором конечном положении (обычно, на специально предусмотренном ограничителе).

При любой форме периодического сигнала на входе нелинейного элемента сигнал на его выходе будет содержать кроме основной частоты высшие гармоники. Предположение о том, что сигнал на входе нелинейной части системы можно считать гармоническим, т.е., что

x(t)@ a×sin(wt),

где w=1/T, T - период свободных колебаний системы, равносильно предположению о том, что линейная часть системы эффективно фильтрует высшие гармоники сигнала y(t) = F(x (t)).

В общем случае при действии на входе нелинейного элемента гармонического сигнала x(t) сигнал на выходе может быть преобразован по Фурье:

Коэффициенты ряда Фурье

Для упрощения выкладок положим C 0 =0, т.е., что функция F(x) симметрична относительно начала координат. Такое ограничение не обязательно и сделано анализа. Появление коэффициентов C k ¹ 0 означает, что, в общем случае нелинейное преобразование сигнала сопровождается и фазовыми сдвигами преобразуемого сигнала. В частности, это имеет место в нелинейностях с неоднозначными характеристиками (с различного рода гистерезисными петлями), причем как запаздывание так и, в некоторых случаях, опережение по фазе .



Предположение об эффективной фильтрации означает, что амплитуды высших гармоник на выходе линейной части системы малы, то есть

Выполнению этого условия способствует то, что во многих случаях амплитуды гармоник уже непосредственно на выходе нелинейности оказываются существенно меньше амплитуды первой гармоники. Например, на выходе идеального реле при гармоническом сигнале на входе

y(t)=F(с×sin(wt))=a×sign(sin(wt))

четные гармоники отсутствуют, а амплитуда третьей гармоники в три раза меньше амплитуды первой гармоники

Сделаем оценку степени подавления высших гармоник сигнала в линейной части САУ. Для этого сделаем ряд предположений.

1) Частота свободных колебаний САУ приблизительно равна частоте среза ее линейной части. Отметим, что частота свободных колебаний нелинейной САУ может существенно отличаться от частоты свободных колебаний линейной системы так, что это допущение не всегда корректно .

2) Показатель колебательности САУ примем равным M=1.1.

3) ЛАХ в окрестностях частоты среза (w с) имеет наклон -20 дБ/дек. Границы этого участка ЛАХ связаны с показателем колебательности соотношениями

4) Частота w max является сопрягающей с участком ЛФХ, так что при w > w max наклон ЛАХ не менее минус 40 дБ/дек.

5) Нелинейность - идеальное реле с характеристикой y = sign(x) так, что на ее выходе нелинейности будут присутствовать только нечетные гармоники.

Частоты третьей гармоники w 3 = 3w c , пятой w 5 = 5w с,

lgw 3 = 0.48+lgw c ,

lgw 5 = 0.7+lgw c .

Частота w max = 1.91w с, lgw max = 0.28+lgw c . Сопрягающая частота отстоит от частоты среза на 0.28 декады.

Уменьшение амплитуд высших гармоник сигнала при их прохождении через линейную часть системы составит для третьей гармоники

L 3 = -0.28×20-(0.48-0.28)×40 = -13.6 дБ, то есть в 4.8 раза,

для пятой - L 5 = -0.28×20-(0.7-0.28)×40 = -22.4 дБ, то есть в 13 раз.

Следовательно, сигнал на выходе линейной части окажется близким к гармоническому

Это эквивалентно предположению, что система является низкочастотным фильтром.

Как уже отмечалось, в нелинейных и в особенности релейных АСР часто наблюдаются устойчивые периодические колебания постоянной амплитуды и частоты, так называемые автоколебания . Причем автоколебания могут сохраняться даже при значительных изменениях параметров системы. Практика показала, что во многих случаях колебания регулируемой величины (рис. 3) близки к гармоническим.


Близость автоколебаний к гармоническим позволяет использовать для определения их параметров – амплитуды A и частоты w 0 – метод гармонической линеаризации. В основе метода лежит предположение, что линейная часть системы является фильтром низких частот (гипотеза фильтра). Определим условия, при которых автоколебания в системе могут быть близки к гармоническим. Ограничимся системами, которые как на рис. 3 могут быть приведены к последовательному соединению нелинейного элемента и линейной части. Предположим, что сигнал задания величина постоянная, для простоты примем его равным нулю. А сигнал ошибки (рис 3) является гармоническим:

Выходной сигнал нелинейного элемента как всякий периодический сигнал – на рисунке 3 это прямоугольные колебания – может быть представлен в виде суммы гармоник ряда Фурье.

Допустим, что линейная часть системы является фильтром низких частот (рис. 4) и пропускает только первую гармонику с частотой w 0 . Вторая с частотой 2w 0 и более высокие гармоники отфильтровываются линейной частью. В этом случае на выходе линейной части будет существовать практически только первая гармоника , а влиянием высших гармоник можно пренебречь

Таким образом, если линейная часть системы является фильтром низких частот, а частота автоколебаний w 0 удовлетворяет условиям

, (4)

Предположение, что линейная часть системы является фильтром низких частот, называется гипотезой фильтра . Гипотеза фильтра выполняется всегда, если разность степеней полиномов знаменателя и числителя передаточной функции линейной части

не меньше двух

Условие (6) выполняется для многих реальных систем. Примером могут служить апериодическое звено второго порядка и реальное интегрирующее

При исследовании автоколебаний, близких к гармоническим, в расчет принимается только первая гармоника периодических колебаний на выходе нелинейного элемента, поскольку высшие гармоники все равно практически отфильтровываются линейной частью. В режиме автоколебаний осуществляется гармоническая линеаризация нелинейного элемента. Нелинейный элемент заменяется эквивалентным линейным с комплексным коэффициентом усиления (описывающей функцией) , зависящим от амплитуды входного гармонического сигнала:


где и – действительная и мнимая части ,

– аргумент ,

– модуль .

В общем случае зависит как от амплитуды так и частоты автоколебаний и постоянной составляющей . Физически комплексный коэффициент усиления нелинейного элемента , чаще называемый коэффициентом гармонической линеаризации , есть комплексный коэффициент усиления нелинейного элемента по первой гармонике . Модуль коэффициента гармонической линеаризации

численно равен отношению амплитуды первой гармоники на выходе нелинейного элемента к амплитуде входного гармонического сигнала.

Аргумент

характеризует сдвиг по фазе между первой гармоникой выходных колебаний и входным гармоническим сигналом. Для однозначных нелинейностей, таких как, например, на рис. 2,а и 2,б, действительное выражение и

Для неоднозначных нелинейностей, рис. 2,в, 2,г, определяется по формуле

где S – площадь петли гистерезиса. Площадь S берется со знаком плюс, если петля гистерезиса обходится в положительном направлении (рис. 2,в) и со знаком минус в противном случае (рис. 2,г).

В общем случае и вычисляются по формулам

где , – нелинейная функция (характеристика нелинейного элемента).

С учетом вышеизложенного, при исследовании автоколебаний, близких к гармоническим, нелинейная АСР (рис. 3) заменяется эквивалентной с коэффициентом гармонической линеаризации вместо нелинейного элемента (рис. 5). Выходной сигнал нелинейного элемента на рис. 5 обозначен как , это

Подчеркивает, что нелинейный элемент генерирует только

первую гармонику колебаний. Формулы для коэффициентов гармонической линеаризации для типовых нелинейностей можно найти в литературе, например, в . В таблице приложения В приведены характеристики исследуемых релейных элементов, формулы для и их годографы. Там же приведены формулы и годографы для обратного коэффициента гармонической линеаризации , определяемого выражением

где и действительная и мнимая часть . Годографы и строятся в координатах , и , соответственно.

Запишем теперь условия существования автоколебаний. Система на рис. 5 эквивалентна линейной. В линейной системе существуют незатухающие колебания, если она находится на границе устойчивости. Воспользуемся условием границы устойчивости по критерию Найквиста: . На рис. 6,а – две точки пересечения, что указывает на наличие двух предельных циклов.

Идея метода гармонической линеаризации принадлежит Н.М. Крылову и Н.Н. Боголюбову и базируется на замене нелинейного элемента системы линейным звеном, параметры которого определяются при гармоническом входном воздействии из условия равенства амплитуд первых гармоник на выходе нелинейного элемента и эквивалентного ему линейного звена. Данный метод может быть использован в том случае, когда линейная часть системы является низкочастотным фильтром, т.е. отфильтровывает все возникающие на выходе нелинейного элемента гармонические составляющие, кроме первой гармоники.

Коэффициенты гармонической линеаризации и эквивалентные комплексные коэффициенты передачи нелинейных элементов . В нелинейной системе (рис. 2.1) параметры линейной части и нелинейного элемента выбирают таким образом, чтобы существовали симметричные периодические колебания с частотой w.

В основе метода гармонической линеаризации нелинейностей (рис. 2.10), описываемых уравнением

y н = F(x), (2.17)

лежит предположение, что на вход нелинейного элемента подается гармоническое воздействие с частотой w и амплитудой a , т.е.

x = a sin y, где y = wt, (2.18)

а из всего спектра выходного сигнала выделяется только первая гармоника

y н 1 = a н 1 sin(y + y н 1), (2.19)

где a н 1 - амплитуда а y н 1 - фазовый сдвиг;

при этом высшие гармоники отбрасываются и устанавливается связь между первой гармоникой выходного сигнала и входным гармоническим воздействием нелинейного элемента.

Рис. 2.10. Характеристики нелинейного элемента

В случае нечувствительности нелинейной системы к высшим гармоникам нелинейный элемент может быть в первом приближении заменен некоторым элементом с эквивалентным коэффициентом передачи, который определяет первую гармонику периодических колебаний на выходе в зависимости от частоты и амплитуды синусоидальных колебаний на входе.

Для нелинейных элементов с характеристикой (2.17) в результате разложения периодической функции F(x) в ряд Фурье при синусоидальных колебаниях на входе (2.18) получим выражение для первой гармоники сигнала на выходе

y н 1 = b 1F siny + a 1F cosy, (2.20)

где b 1F , a 1F - коэффициенты разложения в ряд Фурье, определяющие амплитуды соответственно синфазной и квадратурной составляющих первой гармоники, которые определяются по формулам:

px = a w cos y, где p = d/dt,

то связь между первой гармоникой периодических колебаний на выходе нелинейного элемента и синусоидальными колебаниями на его входе можно записать в виде

y н 1 = x, (2.21)

где q = b 1F /a , q¢ = a 1F /a .

Последнее уравнение называется уравнением гармонической линеаризации , а коэффициенты q и q¢ - коэффициентами гармонической линеаризации .


Таким образом, нелинейный элемент при воздействии гармонического сигнала с точностью до высших гармоник описывается уравнением (2.21), которое является линейным. Это уравнение нелинейного элемента отличается от уравнения линейного звена тем, что его коэффициенты q и q¢ изменяются при изменении амплитуды a и частоты w колебаний на входе. Именно в этом заключается принципиальное отличие гармонической линеаризации от обычной, коэффициенты которой не зависят от входного сигнала, а определяются только видом характеристики нелинейного элемента.

Для различных видов нелинейных характеристик коэффициенты гармонической линеаризации сведены в таблицу . В общем случае коэффициенты гармонической линеаризации q(a , w) и q¢(a , w) зависят от амплитуды a и частоты w колебаний на входе нелинейного элемента. Однако, для статических нелинейностей эти коэффициенты q(a ) и q¢(a ) являются функцией только амплитуды a входного гармонического сигнала, а для статических однозначных нелинейностей коэффициент q¢(a ) = 0.

Подвергнув уравнение (2.21) преобразованию по Лапласу при нулевых начальных условиях с последующей заменой оператора s на jw (s = jw), получим эквивалентный комплексный коэффициент передачи нелинейного элемента

W Э (jw, a ) = q + jq¢ = A Э (w, a ) e j y э (w , a ) , (2.22)

где модуль и аргумент эквивалентного комплексного коэффициента передачи связаны с коэффициентами гармонической линеаризации выражениями

A Э (w, a ) = mod W Э (jw, a ) =

y Э (w, a ) = arg W Э (jw, A) = arctg.

Эквивалентный комплексный коэффициент передачи нелинейного элемента позволяет определить амплитуду и фазовый сдвиг первой гармоники (2.19) на выходе нелинейного элемента при гармоническом воздействии (2.18) на его входе, т.е.

a н 1 = a ´A Э (w, a ); y н 1 = y Э (w, a ).

Исследование симметричных периодических режимов в нелинейных системах. При исследовании нелинейных систем на основе метода гармонической линеаризации в первую очередь решают вопрос о существовании и устойчивости периодических режимов. Если периодический режим устойчив, то в системе существуют автоколебания с частотой w 0 и амплитудой a 0 .

Рассмотрим нелинейную систему (рис. 2.5), включающую в себя линейную часть с передаточной функцией

и нелинейный элемент с эквивалентным комплексным коэффициентом передачи

W Э (jw, a ) = q(w, a ) + jq¢(w, a ) = A Э (w, a ) e j y э (w , a ) . (2.24)

Принимая во внимание выражение (2.21), можно записать уравнение нелинейной системы

{A(p) + B(p)´}x = 0. (2.25)

Если в замкнутой нелинейной системе возникают автоколебания

x = a 0 sin w 0 t

с постоянной амплитудой и частотой, то коэффициенты гармонической линеаризации оказываются постоянными, а вся система стационарной. Для оценки возможности возникновения автоколебаний в нелинейной системе методом гармонической линеаризации необходимо найти условия границы устойчивости, как это делалась при анализе устойчивости линейных систем. Периодическое решение существует, если при a = a 0 и w = w 0 характеристическое уравнение гармонически линеаризованной системы

A(p) + B(p)´ = 0 (2.26)

имеет пару мнимых корней l i = jw 0 и l i +1 = -jw 0 . Устойчивость решения необходимо оценить дополнительно.

В зависимости от методов решения характеристического уравнения различают методы исследования нелинейных систем.

Аналитический метод . Для оценки возможности возникновения в нелинейной системе автоколебаний в гармонически линеаризованный характеристический полином системы вместо p подставляют jw

D(jw, a ) = A(jw) + B(jw)´. (2.27)

В результате получают уравнение D(jw, a ) = 0, коэффициенты которого зависят от амплитуды и частоты предполагаемого автоколебательного режима. Выделив вещественную и мнимую части

Re D(jw, a ) = X(w, a );

Im D(jw, a ) = Y(w, a ),

получим уравнение

X(w, a ) + jY(w, a ) = 0. (2.28)

Если при действительных значениях a 0 и w 0 выражение (2.28) удовлетворяется, то в системе возможен автоколебательный режим, параметры которого рассчитываются по следующей системе уравнений:

Из выражений (2.29) можно найти зависимость амплитуды и частоты автоколебаний от параметров системы, например, от коэффициента передачи k линейной части системы. Для этого необходимо в уравнениях (2.29) коэффициент передачи k считать переменной величиной, т.е. эти уравнения записать в виде:

По графикам a 0 = f(k), w 0 = f(k) можно выбрать коэффициент передачи k, при котором амплитуда и частота возможных автоколебаний имеет допустимые значения или вообще отсутствует.

Частотный метод . В соответствии с критерием устойчивости Найквиста незатухающие колебания в линейной системе возникают в том случае, когда амплитудно-фазовая характеристика разомкнутой системы проходит через точку с координатами [-1, j0]. Данное условие является также условием существования автоколебаний в гармонически линеаризованный нелинейной системе, т.е.

W н (jw, a ) = -1. (2.31)

Так как линейная и нелинейная части системы соединены последовательно, то частотная характеристика разомкнутой нелинейной системы имеет вид

W н (jw, a ) = W лч (jw)´W Э (jw, a ). (2.32)

Тогда в случае статической характеристики нелинейного элемента условие (2.31) принимает вид

W лч (jw) = - . (2.33)

Решение уравнения (2.33) относительно частоты и амплитуды автоколебаний можно получить графически как точку пересечения годографа частотной характеристики линейной части системы W лч (jw) и годографа обратной характеристики нелинейной части , взятой с обратным знаком (рис. 2.11). Если эти годографы не пересекаются, то режим автоколебаний в исследуемой системе не существует.

Рис. 2.11. Годографы линейной и нелинейной частей системы

Для устойчивости автоколебательного режима с частотой w 0 и амплитудой a 0 требуется, чтобы точка на годографе нелинейной части - , соответствующая увеличенной амплитуде a 0 +Da по сравнению со значением в точке пересечения годографов, не охватывалась годографом частотной характеристики линейной части системы и охватывалась точка, соответствующая уменьшенной амплитуде a 0 -Da .

На рис. 2.11 дан пример расположения годографов для случая, когда в нелинейной системе существуют устойчивые автоколебания, так как a 3 < a 0 < a 4 .

Исследование по логарифмическим частотным характеристикам .

При исследовании нелинейных систем по логарифмическим частотным характеристикам условие (2.31) переписывают отдельно для модуля и аргумента эквивалентного комплексного коэффициента передачи разомкнутой нелинейной системы

mod W лч (jw)W э (jw, a ) = 1;

arg W лч (jw)W э (jw, a ) = - (2k+1)p, при k=0, 1, 2, ...

с последующим переходом к логарифмическим амплитудной и фазовой характеристикам

L лч (w) + L э (w, a ) = 0; (2.34)

y лч (w) + y э (w, a ) = - (2k+1)p, при k=0, 1, 2, ... (2.35)

Условия (2.34) и (2.35) позволяют определить амплитуду a 0 и частоту w 0 периодического решения уравнения (2.25) по логарифмическим характеристикам линейной части системы L лч (w), y лч (w) и нелинейного элемента L э (w, a ), y э (w, a ).

Автоколебания с частотой w 0 и амплитудой a 0 будут существовать в нелинейной системе, если периодическое решение уравнения (2.25) устойчиво. Приближенный метод исследования устойчивости периодического решения заключается в том, что исследуется поведение системы при частоте w = w 0 и значениях амплитуды a = a 0 + Da и a = a 0 - Da , где Da > 0 - малое приращение амплитуды. При исследовании устойчивости периодического решения при a 0 + Da и a 0 - Da по логарифмическим характеристикам пользуются критерием устойчивости Найквиста.

В нелинейных системах с однозначными статическими характеристиками нелинейного элемента коэффициент гармонической линеаризации q¢(a ) равен нулю, а следовательно, равен нулю и фазовый сдвиг y э (a ), вносимый элементом. В этом случае периодическое решение уравнения системы

x = 0 (2.36)

существует, если выполняются условия:

L лч (w) = - L э (a ); (2.37)

y лч (w) = - (2k+1)p, при k=0, 1, 2, ... (2.38)

Уравнение (2.38) позволяет определить частоту w = w 0 периодического решения, а уравнение (2.37) - его амплитуду a = a 0 .

При сравнительно простой линейной части решения этих уравнений могут быть получены аналитически. Однако в большинстве случаев их целесообразно решать графически (рис. 2.12).

При исследовании устойчивости периодического решения уравнения (2.36), т.е. при определении существования автоколебаний в нелинейной системе с однозначной нелинейной статической характеристикой пользуются критерием Найквиста : периодическое решение с частотой w = w 0 и амплитудой a = a 0 устойчиво, если при изменении частоты от нуля до бесконечности и положительном приращении амплитуды Da > 0 разность между числом положительных (сверху вниз) и отрицательных (снизу вверх) переходов фазовой характеристики линейной части системы y лч (w) через линию -p равна нулю в диапазоне частот, где L лч (w)³-L э (w 0 ,a 0 +Da ), и не равна нулю в диапазоне частот, где L лч (w)³-L э (w 0 ,a 0 -Da ).

На рис. 2.12 показан пример определения периодических решений в нелинейной системе с ограничением. В такой системе имеются три периодических решения с частотами w 01 , w 02 и w 03 , определяемыми в точках пересечения фазовой характеристики y лч (w) с линией -180 0 . Амплитуды периодического решения a 01 , a 02 и a 03 определяются из условия (2.37) по логарифмическим амплитудным характеристикам нелинейного элемента -L э (w 01 , a ), -L э (w 02 , a ) и -L э (w 03 , a ).

Рис. 2.12. Логарифмические амплитудные и фазовая характеристики

Из трех решений, определенных на рис. 2.12, устойчивы два. Решение с частотой w = w 01 и амплитудой a = a 01 устойчиво, так как в диапазоне частот 1, где L лч (w)³-L э (w 01 ,a 01 +Da ), фазовая характеристика y лч (w) не пересекает линию -180 0 , а в диапазоне частот 2, где L лч (w)³-L э (w 01 ,a 01 -Da ), фазовая характеристика y лч (w) один раз пересекает линию -180 0 . Решение с частотой w = w 02 и амплитудой a = a 02 неустойчиво, так как в диапазоне частот, где L лч (w)³-L э (w 02 ,a 02 +Da ), фазовая характеристика y лч (w) один раз пересекает линию -180 0 . Высокочастотное периодическое решение с частотой w = w 03 и амплитудой a = a 03 устойчиво, так как в диапазоне частот, где L лч (w)³-L э (w 03 ,a 03 +Da ), имеется один положительный и один отрицательный переход фазовой характеристики y лч (w) через линию -180 0 , а в диапазоне частот, где L лч (w)³-L э (w 03 ,a 03 -Da ), имеются два положительных и один отрицательный переход фазовой характеристики y лч (w) через линию -180 0 .

В рассмотренной системе при малых по величине возмущениях установятся высокочастотные автоколебания с частотой w 03 и амплитудой a 03 , а при больших по величине возмущениях - низкочастотные автоколебания с частотой w 01 и амплитудой a 01 .

Пример. Исследовать автоколебательные режимы в нелинейной системе, линейная часть которой имеет следующую передаточную функцию

где k=200 c -1 ; T 1 =1.5 c; T 2 =0.015 c,

а в качестве нелинейного элемента используется реле с зоной нечувствительности (рис. 2.4,б) при с=10 В, b=2 В.

Р е ш е н и е. По таблице для реле с зоной нечувствительности находим коэффициенты гармонической линеаризации:

При a ³ b, q¢(a ) = 0.

При построении характеристик нелинейного элемента целесообразно использовать относительное по сравнению с зоной нечувствительности значение амплитуды входного гармонического воздействия m = a /b. Перепишем выражение коэффициента гармонической линеаризации в виде

где - коэффициент передачи реле;

Относительная амплитуда.

Коэффициент передачи реле k н отнесем к линейной части системы и получим нормированные коэффициенты гармонической линеаризации

и нормированную логарифмическую амплитудную характеристику релейного элемента с обратным знаком

Если m ® 1, то -L э (m) ® ¥; а при m >> 1 -L э (m) = 20 lg m. Таким образом, асимптотами нормированной логарифмической амплитудной характеристики с обратным знаком являются вертикальная прямая и прямая с наклоном +20дб/дек, которые проходят через точку с координатами L = 0, m = 1 (рис. 2.13).

Рис. 2.13. Определение периодического решения в релейной системе

с зоной нечувствительности

a 0 = b´m 1 = = 58 В.


Для решения вопроса о существовании автоколебаний в соответствии с нормированной логарифмической амплитудной характеристикой с обратным знаком нелинейного элемента и передаточной функцией линейной части системы

на рис. 2.13 построены логарифмические характеристики L лч (w), -L э (m) и y лч (w).

Частота периодического решения w 0 = 4.3 c -1 определяется в точке пересечения фазовой характеристики y лч (w) и линии -180 0 . Амплитуды периодических решений m 1 = 29 и m 2 = 1.08 находятся по характеристикам L лч (w) и -L э (m). Периодическое решение с малой амплитудой m 2 неустойчиво, а периодическое решение с большой амплитудой m 1 устойчиво.

Таким образом, в исследуемой релейной системе существует автоколебательный режим с частотой w 0 = 4.3 c -1 и амплитудой a 0 = b´m 1 = = 58 В.