Космические станции будущего рисунки схемы планы. Космические корабли будущего

К освоению космоса в очередной раз человечество подтолкнул Голливуд: после показа фильма «Марсианин», наверно, каждый второй садовод захотел вырастить свою собственную картошку на поверхности Красной планеты. А после «Интерстеллара» многие школьники и студенты люди загорелись желанием заниматься освоением бескрайнего космоса во благо человечества. Что же, подобные мечты всё ближе к реальности!

Освоение космоса начинается с Марса

Можно бесконечно критиковать правительства стран за то, что мы до сих пор не занимались в полной мере освоением космоса, и не переселились на Марс, ведь если бы не было войн и разделяющих народы и ученых противостояний, человечество ушло бы далеко вперед, но это спорное суждение.

Исследование космического пространства началось и развивалось благодаря соперничеству между СССР и США на протяжении многих лет. Сейчас же, когда «холодная война» ушла в прошлое, необходимость таких проектов, как, скажем, переселение на Марс, ставится под сомнение. В поиске финансирования своих проектов, ученые должны пройти через бюрократический ад, провести массу исследований и расчетов, а главное, представить спонсору (будь то государство, корпорация или частное лицо) коммерческие или оборонные перспективы своего проекта.

Освоение космоса - забота содружества стран

Тем не менее, освоение космоса не стоит на месте, а наоборот привлекает новых участников в свои бескрайние просторы возможностей и открытий. Помимо ветеранов данной области, таких как СССР, США, Китай и Европейский Союз, на сегодняшний день запуски проводит Индия, Япония, Испания и знаменитая частная компания Илона Маска – SpaceX.

Основные этапы будущих космических проектов по освоению космоса

Роскосмос ищет жизнь на Марсе

Поговорим о планах наиболее крупных участников, первым из которых станет Роскосмос. Объектом неугасающего интереса исследователей является Красная планета. Несмотря на неудачу при посадке спускаемого аппарата Скиапарелли (Schiaparelli ) 19 октября 2016 года, проект ЭкзоМарс продолжает функционировать. Его основной задачей остается поиск жизни на Марсе. Вторую фазу программы планируются осуществить в 2020. В ходе шестимесячного путешествия марсохода, оснащенного уникальной бурильной установкой, планируется взять пробы породы на глубине до 2 метров.

Европа проводит освоение космоса совместно с Россией

Программа ЭкзоМарс, как и оснащение марсохода, является интернациональной. Как отметил Рене Пишель, глава представительства Европейского космического агентства в России, совместная работа является необходимым условием успешных миссий. До 2020 года на орбиту Земли планируется доставить космическую обсерваторию «Спектр-РГ», состоящую из 2 телескопов российского и немецкого производства.

Роскосмос, заказав соответствующие исследования, вновь возродил идею высадки человека на Луну к 2030 году, однако, как отметил представитель компании Игорь Буренков, при сохранении столь низкого финансирования данный проект осуществлен не будет. Всего на 2017 год планируется запуск более 12 ракет-носителей.

Второй крупный участник совместного освоения космоса – NASA. Естественно, Национальное управление по воздухоплаванию и исследованию космического пространства не могло остаться в стороне от изучения Красной планеты. Так же, как и Роскосмос, NASA в 2020 году планирует запустить свой марсоход. Нужно сразу отметить, что преимущество его программ заключается в конкурсном отборе приборов для проведения миссий, а конкуренция, как нам известно из курса экономики, способствует поднятию качества.

Свой телескоп, под названием TESS, NASA планирует запустить уже в этом, 2017 году. Его основной задачей станет обнаружение ранее не известных экзопланет. Особое место в планах Управления занимает исследование Европы – спутника Юпитера. На этом объекте, покрытом льдом, ученые планируют обнаружить признаки жизни.

В будущем к планетам полетят гибкие роботы

Сложность представляет разработка специального аппарата, способного к глубокому и долгому погружению в неблагоприятную среду. На данный момент в перспективных планах на будущее есть проект разработки особого гибкого робота, напоминающего по форме угря, который будет получать энергию для своей работы от магнитных полей. План использования робота по назначению пока не был разработан, ведь ему еще нужно доказать свою пригодность на Земле.

Long March 2F rocket (Chang Zheng 2F) с пилотируемого космического корабля Shenzhou-8 на стартовой площадке космодрома Цзюцюань. Center.DLR / wikimedia.org (CC BY 3.0 DE)

Китай - затаившийся космический дракон

Китай не намерен останавливаться на столь значительных успехах в экономике, теперь его цель – космос. Космическая программа Китая, стартовавшая еще в 1956 году, не может похвастаться значительными успехами, но амбиции, определенно, имеются. С 2011 года планомерно ведется осуществление программы вывода на орбиту первой китайской многомодульной космической станции «Тяньгун-3».

На данный момент запущены базовый модуль «Тяньгун-1» и космическая лаборатория «Тяньгун-2», основная задача которых – проведение тестов и подготовка вывода модулей «Тяньгун-3». Сможет ли китайский космический проект сравниться со станцией «Мир» и «МКС» (на которой Китай, кстати, не представлен из-за противодействия США) можно будет узнать в 2022 году.

Япония добудет в космосе солнечную энергию

Япония, несмотря на провал миссии по очистке орбиты Земли от космического мусора в декабре 2016 года и падение самой маленькой ракеты-носителя в январе 2017, планирует осуществление одной из самых масштабных и значительных программ – создание к 2030 орбитального спутника. Он благодаря фотоэлементам, преобразующим фотоны в электроэнергию, будет способен собирать и пересылать солнечную энергию на Землю.

По представлениям футуристов, он должен обладать большим количеством солнечных панелей. Естественно, что при сохранении значительного количества орбитального мусора, осуществление этого проекта будет сталкиваться с рядом проблем, связанных с прочностью и долговечностью конструкции.

Корабли Маска всегда возвращаются

Новым, но уже заявившим о себе, участником освоения космоса является SpaceX под руководством миллиардера Илона Маска. Первые три запуска ракеты «Falcon-1» могли поставить точку в истории компании, однако уже в 2015 году она получила контракт на поставку необходимых запасов для МКС, для чего разработала космический корабль Dragon, способный возвращаться на Землю.

Плавающий космодром

SpaceX также успешно реализовала проект посадки первой ступени ракеты-носителя на плавающую платформу. Это должно снизить затраты на космические запуски. Так же компания активно развивает космический туризм, деньги от которого идут на дальнейшие разработки. Особый интерес представляет разработка межпланетной транспортной системы, которая позволит в будущем транспортировать людей и грузы на Марс.

От раздувания космических амбиций к совместной работе для всех

На данный момент не существует амбициозных программ по созданию «Звезды смерти» или «терраформированию» (формирование пригодных для жизни людей условий) поверхности ближайших планет, однако освоение космоса движется в своём собственном темпе. Нельзя не радоваться факту включения в процесс частных компаний, способных разогнать кровь по жилам старой космической гвардии, и развитию экскурсионных частных полетов, которые могут открыть дорогу дополнительным финансовым потокам в сферу исследований бескрайнего «черного моря».

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Orion

После трагедии с шаттлом «Колумбия» авторитет кораблей программы Space Shuttle был серьезно подорван, и перед NASA появилась задача создать новый многоразовый пилотируемый челнок. В середине 2000-х годов этот проект получил название Crew Exploration Vehicle, однако впоследствии обрел более звучное и красивое имя – «Орион».

«Орион» - это частично пилотируемый многоразовый корабль, который, по сути, повторяет технический дизайн кораблей серии «Аполлон», но обладает куда более совершенной «начинкой», особенно электронной. Обновлению подверглось почти все - даже туалет в новом челноке будет по образу тех, что используются на МКС.

Предполагается, что корабли «Орион» начнут с околоземной деятельности – в основном, займутся доставкой астронавтов на орбитальную станцию. Потом начнется самое интересное: представители NASA заявляют, что новый челнок сможет вернуть человека на Луну, поможет высадить астронавтов на астероид и даже сделать «следующий большой скачок» (Next Giant Leap – уже официально один из слоганов, сопутствующих программе «Орион») – позволить человеку, наконец, ступить на поверхность Марса.

Первое серьезное испытание (Exploration Flight Test-1) во многом готового корабля начнется уже в декабре 2014 года – правда, это будет лишь орбитальный и непилотируемый полет для проведения первичных тестов. Первый же полет астронавтов на «Орионе» запланирован на начало 2020-х годов. Самой привлекательной, и от того наиболее вероятной (из-за своей сравнительно низкой цены) пилотируемой миссией, уготованной NASA новому челноку, пока что является посещение астероида, предварительно доставленного на лунную орбиту.

Концепт челнока «Орион» / ©NASA

SpaceShipTwo

Британская компания Virgin Galactic во главе с миллиардером Ричардом Брэнсоном является одним из локомотивов космического туризма и вскоре собирается поднять коммерческую космонавтику на новую ступень.

Приблизительно к концу 2014 года начнутся первые пассажирские запуски суборбитального челнока , который за 250 тыс. долларов будет способен прокатить шестерых счастливчиков на высоте 110 км над уровнем моря. Это на 10 км выше, чем Линия Кармана – установленная Международной авиационной федерацией граница между атмосферой Земли и космическим пространством.

Ракеты при запуске SpaceShipTwo не используются; вместо них челнок поднимает на необходимую высоту основной самолет – WhiteKnightTwo, потом корабль сбрасывают, и на нем включается основной – уже ракетный – двигатель, специально под него разработанный (RocketMotorTwo), который и выводит корабль на заветную черту в 110 км. Потом корабль снижается и на скорости 4200 км/ч вновь входит в атмосферу (причем может это делать под любым углом), а затем самостоятельно садится на аэродром.

Количество записавшихся на первые полеты SpaceShipTwo стремится к тысяче. Среди них актеры Эштон Катчер и Анджелина Джоли, а также, например, Джастин Бибер. Места для полета с Леонардо ДиКаприо вообще разыграли на благотворительном аукционе – оказалось, многие не прочь заплатить за такую услугу по миллиону долларов.

Кстати, недавнее решение Великобритании о постройке собственного коммерческого космодрома продиктовано, помимо прочего, необходимостью создания инфраструктуры для таких компаний, как Virgin Galactic. В данный момент компания использует космодром Spaceport America, располагающийся в американском штате Нью-Мексико.

SpaceShipTwo в самостоятельном полете / ©MarsScientific

Dawn

Миссия межпланетной автоматической станции Dawn («Рассвет») уникальна: спутник должен исследовать пару карликовых планет астероидного пояса (между Марсом и Юпитером), причем прямо с их орбиты. Если все удастся, то этот аппарат станет первым в истории спутником, посетившим орбиты двух разных небесных тел (не включая Землю).

Разработанный в NASA и запущенный в 2007 году, а также оснащенный экспериментальным ионным двигателем, аппарат уже успешно выполнил свое задание по исследованию каменистой протопланеты Весты в 2012 году. Все данные, полученные спутником, находятся в открытом публичном доступе.

В данный момент Dawn направляется к еще более интересному объекту - ледяной Церере. Эта протопланета (ранее классифицировавшаяся как астероид) обладает диаметром в 950 километров и очень приближенной к сферической формой. Имея массу в треть от всего астероидного пояса, Церера могла официально стать планетой (5-ой от Солнца), однако в 2006 году вместе с Плутоном получила статус карликовой планеты. По расчетам, ледяная мантия на ее поверхности может достигать 100 км в глубину; это значит, что пресной воды на Церере больше, чем на Земле.

Оба объекта – и Веста, и Церера – представляют для ученых огромный интерес. Их исследование позволит углубиться в понимание процессов, происходящих при формировании планет, а также факторов, на это влияющих.

Прибытие Dawn на орбиту Цереры ожидается в феврале 2015 года.

Концепт приближающегося к Весте Dawn / ©NASA/JPL-Caltech

New Horizons

Чуть позже, в июле 2015 года, планируется еще одно крупное событие, связанное с миссией другой межпланетной автоматической станции. Примерно в это время орбиты Плутона достигнет запущенный NASA в 2006 году аппарат New Horizons («Новые горизонты»), миссия которого – тщательное исследование Плутона и его спутников, а также пары объектов в Поясе Койпера (в зависимости от того, какие будут наиболее доступны в окружении спутника в 2015 году)

В данный момент аппарат обладает ярким рекордом – он достиг наибольшей скорости в сравнении с любым аппаратом, запущенным с Земли, и направляется к Плутону со скоростью в 16,26 км/c. Достичь этого New Horizons помогло гравитационное ускорение, которое он получил, пролетая вблизи Юпитера.

На Юпитере и его спутниках, кстати, были протестированы многие исследовательские функции аппарата. Покинув юпитерианскую систему, аппарат для экономии энергии погрузился в «сон», от которого его пробудит лишь приближение Плутона.

Концепт New Horizons на фоне Плутона и его спутника / ©NASA

Don Quijote

Миссия межпланетной автоматической станции «Дон Кихот», разрабатываемой Европейским космическим агентством (ЕКА), поистине рыцарская. Состоящий из двух аппаратов – исследовательского «Санчо» и «импактного» «Идальго», «Дон Кихот» должен будет раз и навсегда продемонстрировать – можно ли спасти человечество от неминуемого падения астероида, заставив потенциального человекоубийцу изменить курс.

Предполагается, что обе части аппарата достигнут какого-нибудь заранее выбранного астероида диаметром примерно 500 метров. «Санчо» будет вращаться вокруг него, проводя необходимые исследования.

Когда все будет готово, «Санчо» удалится от астероида на безопасное расстояние, а «Идальго» врежется в него на скорости 10 км/с. Затем «Санчо» вновь займется изучением объекта – точнее тем, какие последствия оставило столкновение: изменился ли курс астероида, насколько сильны разрушения в его структуре и т.д.

«Дон Кихота» планируется запустить примерно в 2016 году.

Концепт Don Quijote на фоне безымянного астероида / ©ESA - AOES Medialab

Луна-Глоб

В России возрождаются проекты лунных аппаратов, а из уст ответственных за российскую космическую отрасль людей все чаще раздаются слова о создании лунной колонии с триколором.

Создание космической базы на Луне – пока что отдаленная перспектива, а вот проекты межпланетных автоматических станций по исследованию искусственного спутника Земли вполне осуществимы прямо сейчас, и на протяжении уже нескольких лет главным из них в России является программа «Луна-Глоб» - фактически первый необходимый шаг на пути к потенциальному лунному поселению.

Межпланетный автоматический зонд «Луна-Глоб» в основном будет состоять из посадочного спускаемого аппарата. Он сядет на поверхность Луны в ее южном полярном регионе, предположительно в кратере Богуславского, и отработает механизм посадки на лунную поверхность. Также зонд займется изучением лунного грунта – бурением с целью взятия образцов грунта и дальнейшего его анализа на наличие льда (вода необходима как для жизнедеятельности космонавтов, так и потенциально в качестве водородного топлива для ракет).

Запуск аппарата множество раз откладывался по различным причинам, в данный момент годом запуска называется 2015. В дальнейшем, до запланированного на 2030-е годы пилотируемого полета, планируется запустить еще несколько более тяжелых зондов, в том числе «Луна-Ресурс», которые также займутся изучением Луны и прочими необходимыми подготовительными мероприятиями для будущей посадки космонавтов.

Концепт посадочного аппарата Луна-Глоб / ©Rusrep

Dream Chaser

Мини-шаттл Dream Chaser от компании Sierra Nevada Corporation разрабатывается для NASA в качестве надежного и многоразового пилотируемого аппарата для суборбитальных и орбитальных полетов. Предполагается использовать Dream Chaser для доставки астронавтов на МКС.

Запуск аппарата осуществляется ракетой Атлас-5. Сам шаттл, способный нести 7 человек, оснащен гибридными ракетными двигателями. Посадку, подобно SpaceShipTwo, он осуществляет самостоятельно и горизонтально – на космодроме.

Наряду с Dragon от компании SpaceX и CST-100 от Boeing, Dream Chaser является коммерческим претендентом на статус нового основного пилотируемого корабля для США и NASA (все три проекта получили государственное финансирование). Стоит отметить, что эти аппараты разрабатываются частным сектором американской космической отрасли при частичной государственной поддержке и нацелены на операции именно в околоземном пространстве. Что касается деятельности в более глубоком космосе, то у NASA уже есть собственная программа пилотируемых аппаратов, и это упомянутый выше «Орион».

Совсем недавно (22 июля 2014 года) были проведены испытания Dream Chaser, которые показали готовность всех ключевых систем к космическим полетам. Первый тестовый пилотируемый полет шаттла назначен на 2016 год.

Концепт Dream Chaser, пристыковавшегося к МКС / ©NASA

Inspiration Mars

Конечно, очень многим известно о проекте Mars One – планируемом космическом реалити-шоу, авторы которого сейчас проводят всемирный конкурс по отбору претендентов для пилотируемого полета на Марс к началу 2020-х годов и создания там постоянного человеческого поселения. Однако есть еще один схожий проект – Inspiration Mars.

Inpsiration Mars Foundation – это некоммерческая организация, созданная первым космическим туристом - американцем Дэннисом Тито. Тито предполагает собрать необходимые средства и осуществить отправку двух людей на космическом корабле к Марсу. Ни посадки, ни выхода на орбиту не планируется; только пролет мимо Красной планеты и возвращение на Землю. При удачном стечении обстоятельств миссия должна занять 501 день.

Средства предполагается привлечь как из частного сектора, так и из бюджета США; всего требуется от 1 до 2 миллиардов долларов, точная стоимость до сих пор не названа. В качестве аппарата, который можно привлечь для миссии, называется американский «Орион».

Тито полагает, что полет следует совершить уже в 2018 году (Марс в этот момент вновь максимально приблизится к Земле, что создаст удобные условия для межпланетного полета; в следующий раз такое будет только в 2031 году).

Есть и «План Б» на случай, если миссия будет не готова к 2018 году: продлить миссию до 589 дней, запустить аппарат в 2021 году и осуществить пролет не только мимо Марса, но и мимо Венеры.

Траектория вероятного полета Inspiration Mars / ©Inpsiration Mars Foundation

James Webb Telescope

Космический телескоп, который стоит больше чем три марсохода Curiosity. James Webb Telescope – это наследник всемирно известного телескопа Hubble (аппаратура которого продолжает устаревать). В разработке проекта участвовали не только США, но и 16 других стран. Существенную помощь NASA оказали космические агентства Европы и Канады.

Телескоп стоимостью 8 миллиардов долларов (последняя озвученная Конгрессом цифра) предполагается запустить на ракете Arian 5 в октябре 2018 года и разместить в точке Лагранжа между Солнцем и Землей.

Главное зеркало телескопа состоит из 18 позолоченных подвижных зеркал, соединенных в одно, и обладает диаметром в 6,5 метров. Телескоп будет «видеть» в оптическом, ближнем и среднем инфракрасных диапазонах. С его помощью предполагается изучить ранние стадии развития Вселенной и увидеть чрезвычайно отдаленные от нашей галактики небесные тела, а также сделать более четкие, чем когда-либо, снимки объектов солнечной системы.

По своим возможностям James Webb превзойдет не только Hubble, но и другой важный космический телескоп – Spitzer Space Telescope.

Концепт Телескопа James Webb / ©NASA

JUICE

Межпланетная автоматическая станция Jupiter Icy Moon Explorer, вероятно, перевернет наши представления о малых телах Солнечной системы. Спутник JUICE, разрабатываемый ЕКА, отправится к Юпитеру в 2022 году и займется долгожданными исследованиями одних из самых интересных объектов Солнечной системы – трех ближайших и крупнейших спутников Юпитера из так называемой Галилеевой группы: Европы, Ганимеда и Каллисто.

Предполагается, что каждое из этих небесных тел обладает подледным океаном, то есть теоретически – условиями для зарождения жизни. JUICE вплотную займется изучением физических характеристик этих спутников, поиском органических молекул и исследованием состава льда (удаленно, через научную аппаратуру на борту).

Данные, полученные JUICE, помогут проанализировать юпитерианские спутники в качестве потенциальных целей для будущих пилотируемых полетов. В случае удачного запуска в запланированное время, аппарат достигнет системы Юпитера в 2030 году.

Концепт JUICE на фоне Юпитера и Европы / ©ESA

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.

EmDrive

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах "ведра" – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших "ведро" Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле "Прогресс" провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Ионный двигатель

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные "товарищи", отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом "Царь-бомбы" – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания "зеркала", которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания "абсолютного отражателя". В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.


Вступительная заставка сериала «Пространство»: схематичное изображение распространения человечества по Солнечной системе

Я подготовил для журнала «Популярная механика» небольшую статью - прогноз развития космонавтики. В материал «5 сценариев будущего» (№ 4, 2016) вошла лишь малая часть статьи - всего один абзац:) Публикую полную версию!

Часть первая: ближайшее будущее — 2020-2030

В начале нового десятилетия человек вернется в окололунное пространство, в ходе осуществления программы NASA «Гибкий путь» (Flexible Path). Новая американская сверхтяжелая ракета Space Launch System (SLS), первый пуск которой запланирован на 2018 год, в этом поможет. Полезная нагрузка — 70 т на первом этапе, до 130 т на последующих. Напомню, у российского «Протона» полезная нагрузка лишь 22 т, у новой «Ангары-А5» — около 24 т. В США также строится государственный космический корабль Orion.

SLS
Источник: NASA

Американские частники обеспечат доставку астронавтов и грузов на МКС. Вначале два корабля — Dragon V2 и CST-100, затем подтянутся и другие (возможно, крылатые — например, Dream Chaser не только в грузовом, но и в пассажирском варианте).

МКС будут эксплуатировать как минимум до 2024 года (возможно и дольше, особенно российский сегмент).

Затем NASA объявит конкурс на новую околоземную базу, в котором победит, вероятно, Bigelow Aerospace с проектом станции с надувными модулями.

Можно прогнозировать к концу 2020-х годов наличие на орбите нескольких частных пилотируемых орбитальных станций различного назначения (от туризма до орбитальной сборки спутников).

С использованием тяжелой ракеты (с грузоподъемностью немного больше 50 т, иногда ее классифицирует как сверхтяжелую) Falcon Heavy и Dragon V2, сделанных в фирме Илона Маска, вполне вероятны туристические полеты на орбиту вокруг Луны — не просто облет, а именно работа на окололунной орбите — ближе к середине 2020-х.

Также ближе к середине-концу 2020-х вероятен конкурс от NASA на создание лунной транспортной инфраструктуры (частные экспедиции и частная лунная база). По недавно опубликованным оценкам частникам потребуется около $10 млрд государственного финансирования, чтобы вернуться на Луну в обозримое (меньше 10 лет) время.

Макет лунной базы частной компании Bigelow Aerospace
Источник: Bigelow Aerospace

Таким образом, «Гибкий путь» ведет NASA на Марс (экспедиция к Фобосу — в начале 30-х, на поверхность Марса — только в 40-х, если не будет мощного ускоряющего импульса от общества), а низкую околоземную орбиту и даже Луну отдадут частному бизнесу.

Кроме того, будут введены в строй новые телескопы, которые позволят найти не только десятки тысяч экзопланет, но и измерить прямым наблюдениям спектры атмосфер ближайших из них. Рискну предположить, что до 30-го года будут получены доказательства существования внеземной жизни (кислородная атмосфера, ИК-сигнатуры растительности и т.д.), и вновь возникнет вопрос о Великом фильтре и парадоксе Ферми.

Состоятся новые полеты зондов к астероидам, газовым гигантам (к спутнику Юпитера Европе, к спутникам Сатурна Титану и Энцеладу, а также к Урану или Нептуну), появятся первые частные межпланетные зонды (Луна, Венера, возможно, и Марс с астероидами).

Разговоры о добычи ресурсов на астроидах до 30-го года так и останутся разговорами. Разве что частники проведут совместно с государственными агентствами небольшие технологические эксперименты.

Начнут массово летать туристические суборбитальные системы — сотни людей побывают на границе космоса.

Китай в начале 20-х построит свою многомодульную орбитальную станцию, а к середине — концу десятилетия осуществит пилотируемый облет Луны. Также запустит множество межпланетных зондов (например, китайский марсоход), но на первое место в космонавтике не выйдет. Хотя и будет находиться на третьем-четвертом — сразу за США и крупными частниками.

Россия в лучшем случае сохранит «прагматичный космос» — связь, навигацию, дистанционное зондирование Земли, а также советское наследие по пилотируемой космонавтике. К российскому сегменту МКС будут летать космонавты на «Союзах», и после выхода США из проекта, вероятно, российский сегмент образует отдельную станцию — намного меньше советского «Мира» и даже меньше китайской станции. Но этого хватит, чтобы сохранить отрасль. Даже по средствам выведения Россия откатится на 3-4 место. Но этого будет хватать, чтобы выполнять задачи народно-хозяйственного значения. В плохом варианте после завершения эксплуатации МКС пилотируемое направление в космонавтике в России будет полностью закрыто, а в наиболее оптимистичном варианте — будет объявлена лунная программа с реальными (а не в середине 2030-х) сроками и четким контролем, что позволит уже в середине 2020-х провести высадки на Луну. Но такой сценарий, увы, маловероятен.

К клубу космических держав присоединятся новые страны, в том числе несколько стран с пилотируемыми программами — Индия, Иран, даже Северная Корея. И это не говоря о частных фирмах: пилотируемых орбитальных частных аппаратов к концу десятилетия будет много — но вряд ли больше десятка.

Множество небольших фирм создаст свои сверхлегкие и легкие ракеты. Причем некоторые из них постепенно будут наращивать полезную нагрузку — и выходить в средние и даже тяжелые классы.

Принципиально новых средств выведения не появится, люди будут летать на ракетах, однако многоразовость первых ступеней или спасение двигателей станут нормой. Вероятно, будут проводиться эксперименты с аэрокосмическими многоразовыми системами, новыми топливами, конструкциями. Возможно, к концу 20-х будет построен и начнет летать одноступенчатый многоразовый носитель.

Часть вторая: превращение человечества в космическую цивилизацию — от 2030 до конца XXI века

На Луне множество баз — как государственных, так и частных. Естественный спутник Земли используется как ресурсная база (энергия, лед, различные составляющие реголита), опытный и научный полигон, где проверяются космические технологии для дальних полетов, в затененных кратерах размещены инфракрасные телескопы, а на обратной стороне — радиотелескопы.

Луна включена в земную экономику — энергия лунных электростанций (поля солнечных батарей и солнечных концентраторов построенных из местных ресурсов) передается как на космические буксиры в околоземном пространстве, так и на Землю. Решена задача доставки вещества с поверхности Луны на низкую околоземную орбиту (торможение в атмосфере и захват). Лунный водород и кислород используется в окололунных и околоземных заправочных станциях. Конечно, все это только первые эксперименты, но уже на них частные фирмы делают состояния. Гелий-3 пока добывается только в небольших количествах для экспериментов связанных с термоядерными ракетными двигателями.

На Марсе — научная станция-колония. Совместный проект «частников» (в основном — Илона Маска) и государств (в основном — США). Люди имеют возможность вернуться на Землю, однако многие улетают в новый мир навсегда. Первые эксперименты по возможному терраформированию планеты. На Фобосе — перевалочная база для тяжелых межпланетных кораблей.

Марсианская база
Источник: Bryan Versteeg

По всей Солнечной системе множество зондов, цель которых — подготовка к освоению, поиск ресурсов. Полеты скоростных аппаратов с ядерными энергодвигательными установками в пояс Койпера к недавно обнаруженному газовому гиганту — девятой планете. Роверы на Меркурии, аэростатные, плавающие, летающие зонды на Венере, изучение спутников планет-гигантов (например, подводные лодки в морях Титана).

Распределенные сети космических телескопов позволяют фиксировать экзопланеты прямым наблюдением и даже составить карты (очень низкого разрешения) планет у ближайших звезд. В фокус гравитационной линзы Солнца отправлены большие автоматические обсерватории.

Развернуты и работают одноступенчатые многоразовые средства выведения, на Луне активно используются не ракетные способы доставки грузов — механические и электромагнитные катапульты.

Летает множество туристических космических станций. Есть несколько станций — научных институтов с искусственной гравитацией (станция-тор).

Тяжелые пилотируемые межпланетные корабли не только достигли Марса и обеспечили развертывание на Красной планете базы-колонии, но и активно исследуют пояс астероидов. Множество экспедиций отправлено к околоземным астероидам, осуществлена экспедиция на орбиту Венеры. Началась подготовка к развертыванию исследовательских баз у планет-гигантов — Юпитера и Сатурна. Возможно, планеты-гиганты станут целью первого испытательного полета межпланетного корабля с термоядерным двигателем с магнитным удержанием плазмы.

Запуск метеозонда на Титане

June 15th, 2014

Все мы много раз видели самые разнообразные космические станции и космические города в фантастических фильмах. Но все они нереалистичные. Брайан Верстиг из компании Spacehabs на основе реальных научных принципов разрабатывает концепты космических станций, которые однажды действительно можно будет построить. Одной из таких станций-поселений является Kalpana One. Точнее, улучшенная, современная версия концепта разработанного в 1970-х годах. Kalpana One представляется из себя цилиндрическую структуру с радиусом 250 метров и длиной 325 метров. Приблизительный уровень населения: 3000 граждан.

Давайте посмотрим на этот город подробнее …

Фото 2.

«Космическая станция Kalpana One Space Settlement является результатом исследований вполне реальных лимитов структуры и форм огромных космических поселений. Начиная с конца 60-х годов и вплоть до 80-х годов прошлого века человечество впитало в себя представление о тех формах и размерах возможных космических станций будущего, которые показывались все это время в научно-фантастических фильмах и на различных картинках. Однако многие из этих форм имели некоторые конструктивные недостатки, в результате которых в реальности такие сооружения страдали бы от недостаточной стабильности во время вращения в условиях космоса. Другие формы недостаточно эффективно использовали соотношение структурной и защитной массы для создания обитаемых областей», - рассказывает Верстиг.

Фото 3.

«При поиске той формы, которая позволила бы создать в условиях воздействия перегрузок живую и обитаемую область и обладала необходимой защитной массой, было установлено, что продолговатая форма станции станет самым подходящим выбором. Ввиду огромных размеров и дизайна такой станции, потребуется совсем немного усилий и корректировок, чтобы избегать ее колебаний».

Фото 4.

«С тем же радиусом 250 метров и глубиной в 325 метров, станция будет совершать два полных оборота вокруг себя в минуту и создавать ощущение того, что человек, находясь в ней, будет испытывать то чувство, как если бы он находился в условиях земной гравитации. А это очень важный аспект, так как гравитация позволит нам жить дольше в условиях космоса, ведь наши кости и мускулы будут развиваться так же, как они развивались бы на Земле. Так как подобные станции в будущем могут стать постоянным местом обитания для людей, то очень важно создать на них условия, максимально близкие к условиям на нашей планете. Сделать так, чтобы люди могли на ней не только работать, но и отдыхать. И отдыхать с изысками».

Фото 5.

«И хотя физика удара или бросания, скажем, мяча будет очень отличаться в такой среде от земной, на станции определенно будут предлагаться самые разнообразные спортивные (и не только) занятия и развлечения».

Фото 6.

Брайан Верстиг является концептуальным дизайнером и сосредоточен на работе будущих технологий и космических исследований. Он работал со множеством частных космических компаний, а также печатных изданий, которым демонстрировал концепты того, что человечество будет использовать в будущем для покорения космоса. Проект Kalpana One как раз является одним из таких концептов.

Фото 7.

Фото 8.

Фото 9.

Фото 10.

Фото 11.

А вот например еще старые концепты:

Научная база на Луне. Концепт 1959 года

Изображение: Журнал «Техника молодежи», 1965/10

Концепт Тороидальной колонии

Изображение: Дон Дэвис/ NASA/Ames Research Center

Разработанныйаэрокосмическим агентством NASA в 1970-х годах прошлого века. По задумке колония предназначалась бы для жизни 10 000 человек. Сама конструкция была модульная и позволяла бы подсоединять новые отсеки. Передвигаться в них можно было бы на специальном транспорте, получившего название ANTS.

Изображение и представление: Дон Дэвис/NASA/Ames Research Center

Сферы Берналь

Изображение: Дон Дэвис/NASA/Ames Research Center

Еще один концепт разрабатывался в NASA Ames Research Center в 1970-х годах. Население: 10 000. Основная идея Сферы Берналь заключается в сферических жилых отсеках. Населенная зона находится в центре сферы, ее окружают зоны для аграрного и сельскохозяйственного производства. В качестве освещения для жилых и сельскохозяйственных зон используется солнечный свет, который перенаправляется в них за счет системы солнечных зеркальных батарей. Остаточное тепло в космос выделяют специальные панели. Заводы и доки для космических кораблей находятся в специальной длиной трубе в центре сферы.

Изображение: Рик Гайдис/NASA/Ames Research Center

Изображение: Рик Гайдис /NASA/Ames Research Center

Концепт цилиндрической колонии, разработанный в 1970-х годах

Изображение: Рик Гайдис/ NASA/Ames Research Center

Предназначается для населения более одного миллиона человек. Идея концепта принадлежит американскому физику Джерарду К. Онилу.

Изображение: Дон Дэвис/NASA/Ames Research Center

Изображение: Дон Дэвис/NASA/Ames Research Center

Изображение и представление: Рик Гайдис/NASA/Ames Research Center

1975 год. Вид изнутри колонии, идея концепта которой принадлежит Онилу. Сельскохозяйственные сектора с различными видами овощей и растений располагаются на террасах, которые устанавливаются на каждый уровень колонии. Свет для урожая обеспечивают зеркала, отражающие солнечные лучи.

Изображение: NASA/Ames Research Center

Изображение: Журнал «Техника молодежи», 1977/4

Огромные орбитальные фермы, как эта на картинке, будут производить достаточно пищи для космических поселенцев

Изображение: Delta, 1980/1

Шахтерская колония на астероиде

Изображение: Delta, 1980/1

Тороидальная космическая колония будущего. 1982 год

Концепт космической базы. 1984 год

Изображение: Les Bosinas/NASA/Glenn Research Center

Концепт лунной базы. 1989 год

Изображение: NASA/JSC

Концепт многофункциональной марсианской базы. 1991 год

Изображение: NASA/Glenn Research Center

1995 год. Луна

Естественный спутник Земли представляется отличным местом для проверки оборудования и подготовки людей для миссий по отправке на Марс.

Особые гравитационные условия Луны станут отличным местом для проведения спортивных соревнований.

Изображение: Пэт Ролингс/NASA

1997 год. Добыча льда на в темных кратерах лунного южного полюса открывают возможности для человеческой экспансии внутри Солнечной системы. В этом уникальном месте люди из космической колонии, работающей на энергии Солнца, будут производить топливо для отправки космических кораблей с лунной поверхности. Вода из потенциальных ледяных источников, или реголита будет течь внутри купольных ячеек и предотвращать воздействие пагубной радиации.

Изображение: Пэт Ролингс/NASA