Критерии для распределения хи квадрат. Сравнение двух частотных распределений

При проведении теста хи-квадрат проверяется взаимная независимость двух переменных таблицы сопряженности и благодаря этому косвенно выясняется зависимость обоих переменных. Две переменные считаются взаимно независимыми, если наблюдаемые частоты (f 0) в ячейках совпадают с ожидаемыми частотами (f e).

Для того, чтобы провести тест хи-квадрат с помощью SPSS, выполните следующие действия:

  • Выберите в меню команды Analyze (Анализ) › Descriptive Statistics (Дескриптивные статистики) › Crosstabs… (Таблицы сопряженности)
  • Кнопкой Reset (Сброс) удалите возможные настройки.
  • Перенесите переменную sex в список строк, а переменную psyche - в список столбцов.
  • Щелкните на кнопке Cells… (Ячейки). В диалоговом окне установите, кроме предлагаемого по умолчанию флажка Observed , еще флажки Expected и Standardized . Подтвердите выбор кнопкой Continue .
  • Щелкните на кнопке Statistics… (Статистика).

Откроется описанное выше диалоговое окно Crosstabs: Statistics .

  • Установите флажок Chi-square (Хи-квадрат). Щелкните на кнопке Continue , а в главном диалоговом окне - на ОК .

Вы получите следующую таблицу сопряженности.

Пол * Психическое состояние. Таблица сопряженности .

Психическое состояние Total
Крайне неустойчивое Неустойчивое Устойчивое Очень устойчивое
Пол женский Count 16 18 9 1 44
Expected Count 7.9 16.6 17.0 2.5 44.0
Std. Residual 2.9 0.3 -1.9 -0.9
Мужской Count 3 22 32 5 62
Expected Count 11.1 23.4 24.0 3.5 62.0
Std. Residual -2.4 -0.3 1.6 0.8
Total Count 19 40 41 6 106
Expected Count 19.0 40.0 41.0 6.0 106.0

Кроме того, в окне просмотра будут показаны результаты теста хи-квадрат:

Chi-Square Tests (Тесты хи-квадрат)

  • а. 2 cells (25.0%) have expected count less than 5. The minimum expected count is 2.49 (2 ячейки (25%) имеют ожидаемую частоту менее 5. Минимальная ожидаемая частота 2.49.)

Для вычисления критерия хи-квадрат применяются три различных подхода: формула Пирсона, поправка на правдоподобие и тест Мантеля-Хэнзеля. Если таблица сопряженности имеет четыре поля и ожидаемая вероятность менее 5, дополнительно выполняется точный тест Фишера.

Критерий хи-квадрат по Пирсону

Обычно для вычисления критерия хи-квадрат используется формула Пирсона:

Здесь вычисляется сумма квадратов стандартизованных остатков по всем полям таблицы сопряженности. Поэтому поля с более высоким стандартизованным остатком вносят более весомый вклад в численное значение критерия хи-квадрат и, следовательно, - в значимый результат. Согласно правилу, приведенному в разделе 8.7.2, стандартизованный остаток 2 или более указывает на значимое расхождение между наблюдаемой и ожидаемой частотами.

В рассматриваемом нами примере формула Пирсона дает максимально значимую величину критерия хи-квадрат (р<0.001). Если рассмотреть стандартизованные остатки в отдельных полях таблицы сопряженности, то на основе вышеприведенного правила можно сделать вывод, что эта значимость в основном определяется полями, в которых переменная psyche имеет значение "крайне неустойчивое". У женщин это значение сильно повышено, а у мужчин - понижено.

Корректность проведения теста хи-квадрат определяется двумя условиями: во-первых, ожидаемые частоты < 5 должны встречаться не более чем в 20% полей таблицы; во-вторых, суммы по строкам и столбцам всегда должны быть больше нуля.

Однако в рассматриваемом примере это условие выполняется не полностью. Как указывает примечание после таблицы теста хи-квадрат, 25% полей имеют ожидаемую частоту менее 5. Однако, так как допустимый предел4в 20% превышен лишь ненамного и эти поля, вследствие своего очень малого стандартизованного остатка, вносят весьма незначительную долю в величину критерия хи-квадрат, это нарушение можно считать несущественным.

Критерий хи-квадрат с поправкой на правдоподобие

Альтернативой формуле Пирсона для вычисления критерия хи-квадрат является поправка на правдоподобие:

При большом объеме выборки формула Пирсона и подправленная формула дают очень близкие результаты. В нашем примере критерий хи-квадрат с поправкой на правдоподобие составляет 23.688.

Тест Мантеля-Хэнзеля

Дополнительно в таблице сопряженности под обозначением linear-by-linear ("линейный-по-линейному") выводится значение теста Мантеля-Хэнзеля (20.391). Эта форма критерия хи-квадрат с поправкой Мантеля-Хэнзеля - еще одна мера линейной зависимости между строками и столбцами таблицы сопряженности. Она определяется как произведение коэффициента корреляции Пирсона на количество наблюдений, уменьшенное на единицу:

Полученный таким образом критерий имеет одну степень свободы. Метод Мантеля-Хэнзеля используется всегда, когда в диалоговом окне Crosstabs: Statistics установлен флажок Chi-square . Однако для данных, относящихся к с номинальной шкале, этот критерий неприменим.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию города Иркутска

Байкальский государственный университет экономики и права

Кафедра Информатики и Кибернетики

Распределение "хи-квадрат" и его применение

Колмыкова Анна Андреевна

студентка 2 курса

группы ИС-09-1

Иркутск 2010

Введение

1. Распределение "хи-квадрат"

Приложение

Заключение

Список используемой литературы

Введение

Как подходы, идеи и результаты теории вероятностей используются в нашей жизни?

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются, прежде всего, для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду, как нежелательные возможности (риски), так и привлекательные ("счастливый случай"). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя.

Вероятностная модель явления или процесса является фундаментом математической статистики. Используются два параллельных ряда понятий – относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, "находятся в головах исследователей", относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин "генеральная совокупность" используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют "анализ данных". По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик – вот суть вероятностно-статистических методов принятия решений.

Распределение "хи-квадрат"

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных. Это распределения Пирсона ("хи – квадрат"), Стьюдента и Фишера.

Мы остановимся на распределении

("хи – квадрат"). Впервые это распределение было исследовано астрономом Ф.Хельмертом в 1876 году. В связи с гауссовской теорией ошибок он исследовал суммы квадратов n независимых стандартно нормально распределенных случайных величин. Позднее Карл Пирсон (Karl Pearson) дал имя данной функции распределения "хи – квадрат". И сейчас распределение носит его имя.

Благодаря тесной связи с нормальным распределением, χ2-распределение играет важную роль в теории вероятностей и математической статистике. χ2-распределение, и многие другие распределения, которые определяются посредством χ2-распределения (например - распределение Стьюдента), описывают выборочные распределения различных функций от нормально распределенных результатов наблюдений и используются для построения доверительных интервалов и статистических критериев.

Распределение Пирсона

(хи - квадрат) – распределение случайной величиныгде X1, X2,…, Xn - нормальные независимые случайные величины, причем математическое ожидание каждой из них равно нулю, а среднее квадратическое отклонение - единице.

Сумма квадратов


распределена по закону

("хи – квадрат").

При этом число слагаемых, т.е. n, называется "числом степеней свободы" распределения хи – квадрат. C увеличением числа степеней свободы распределение медленно приближается к нормальному.

Плотность этого распределения


Итак, распределение χ2 зависит от одного параметра n – числа степеней свободы.

Функция распределения χ2 имеет вид:


если χ2≥0. (2.7.)

На Рисунок 1 изображен график плотности вероятности и функции χ2 – распределения для разных степеней свободы.

Рисунок 1 Зависимость плотности вероятности φ (x) в распределении χ2 (хи – квадрат) при разном числе степеней свободы.

Моменты распределения "хи-квадрат":

Распределение "хи-квадрат" используют при оценивании дисперсии (с помощью доверительного интервала), при проверке гипотез согласия, однородности, независимости, прежде всего для качественных (категоризованных) переменных, принимающих конечное число значений, и во многих других задачах статистического анализа данных.

2. "Хи-квадрат" в задачах статистического анализа данных

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Современный этап развития статистических методов можно отсчитывать с 1900 г., когда англичанин К. Пирсон основал журнал "Biometrika". Первая треть ХХ в. прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.

Распределение "хи-квадрат" является одним из наиболее широко используемых в статистике для проверки статистических гипотез. На основе распределения "хи-квадрат" построен один из наиболее мощных критериев согласия – критерий "хи-квадрата" Пирсона.

Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Критерий χ2 ("хи-квадрат") используется для проверки гипотезы различных распределений. В этом заключается его достоинство.

Расчетная формула критерия равна

где m и m’ - соответственно эмпирические и теоретические частоты

рассматриваемого распределения;

n - число степеней свободы.

Для проверки нам необходимо сравнивать эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормального распределения) частоты.

При полном совпадении эмпирических частот с частотами, вычисленными или ожидаемыми S (Э – Т) = 0 и критерий χ2 тоже будет равен нулю. Если же S (Э – Т) не равно нулю это укажет на несоответствие вычисленных частот эмпирическим частотам ряда. В таких случаях необходимо оценить значимость критерия χ2, который теоретически может изменяться от нуля до бесконечности. Это производится путем сравнения фактически полученной величины χ2ф с его критическим значением (χ2st).Нулевая гипотеза, т. е. предположение, что расхождение между эмпирическими и теоретическими или ожидаемыми частотами носит случайный характер, опровергается, если χ2ф больше или равно χ2st для принятого уровня значимости (a) и числа степеней свободы (n).

Количественное изучение биологических явлений обязательно требует создания гипотез, с по­мощью которых можно объяснить эти явления. Чтобы проверить ту или иную гипотезу ставят се­рию специальных опытов и полученные фактические данные сопоставляют с теоретически ожи­даемыми согласно данной гипотезе. Если есть совпадениеэто может быть достаточным ос­но­ванием для принятия гипотезы. Если же опытные данные плохо согласуются с теоретически ожи­даемыми, возникает большое сомнение в правильности предложенной гипотезы.

Степень соответствия фактических данных ожидаемым (гипотетическим) измеряется критерием со­от­ветствия хи-квадрат:

 фактически наблюдаемое значение признака вi- той;теоретически ожидаемое число или признак (показатель) для данной группы,k число групп данных.

Критерий был предложен К.Пирсоном в 1900 г. и иногда его называют критерием Пирсона.

Задача. Среди 164 детей, наследовавших от одного из родителей фактор, а от другогофактор, оказалось 46 детей с фактором, 50с фактором, 68с тем и другим,. Рассчитать ожидаемые частоты при отношении 1:2:1 между группами и определить степень соответствия эмпирических данных с помощью критерия Пирсона.

Решение: Отношение наблюдаемых частот 46:68:50, теоретически ожидаемых 41:82:41.

Зададимся уровнем значимости равным 0,05. Табличное значение критерия Пирсона для этого уровня значимости при числе степеней свободы, равном оказалось равным 5,99. Следовательно гипотезу о соответствии экспериментальных данных теоретическим можно принять, так как, .

Отметим, что при вычислении критерия хи-квадрат мы уже не ставим условия о непременной нор­маль­ности распределения. Критерий хи-квадрат может использоваться для любых распределений, ко­­то­рые мы вольны сами выбирать в своих предположениях. В этом есть некоторая уни­вер­саль­ность этого критерия.

Еще одно приложение критерия Пирсона это сравнение эмпирического распределения с нор­мальным распределением Гаусса. При этом он может быть отнесен к группе критериев про­вер­ки нормальности распределения. Единственным ограничением является тот факт, что общее число зна­чений (вариант) при пользовании этим критерием должно быть достаточно велико (не менее 40), и число значений в отдельных классах (интервалах) должно быть не менее 5. В противном случае следует объединять соседние интервалы. Число степенй свободы при проверке нор­маль­нос­ти распределения должно вычисляться как:.

    1. Критерий Фишера.

Этот параметрический критерий служит для проверки нулевой гипотезы о равенстве дис­пер­сий нормально распределенных генеральных совокупностей.

Или.

При малых объемах выборок применение критерия Стьюдента может быть корректным только при условии равенства дисперсий. Поэтому прежде чем проводить проверку равенства выборочных средних значений, необходимо убедиться в правомочности использования критерия Стьюдента.

где N 1 , N 2 объемы выборок, 1 , 2 числа степеней свободы для этих выборок.

При пользовании таблицами следует обратить внимание, что число степеней свободы для выборки с большей по величине дисперсией выбирается как номер столбца таблицы, а для меньшей по величине дисперсии как номер строки таблицы.

Для уровня значимости по таблицам математической статистики находим табличное значение. Если, то гипотеза о равенстве дисперсий отклоняется для выбранного уровня значимости.

Пример. Изучали влияние кобальта на массу тела кроликов. Опыт проводился на двух группах животных: опытной и контрольной. Опытные получали добавку к рациону в виде водного раствора хлористого кобальта. За время опыта прибавки в весе составили в граммах:

Контроль

Критерий хи-квадрат.

Критерий хи-квадрат в отличие от критерия z применяется для сравнения любого количества групп.

Исходные данные: таблица сопряжённости.

Пример таблицы сопряженности минимальной размерности 2*2, приведен ниже. A,B,C,D – так называемые, реальные частоты.

Признак 1 Признак 2 Всего
Группа 1 A B A+B
Группа 2 C D C+D
Всего A+C B+D A+B+C+D

Расчёт критерия основан на сравнении реальных частот и ожидаемых частот, которые вычисляются в предположении отсутствия взаимного влияния сравниваемых признаков друг на друга. Таким образом, если реальные и ожидаемые частоты достаточно близки друг к другу, то влияния нет и значит признаки будут распределены примерно одинаково по группам.

Исходные данные для применения этого метода должны быть занесены в таблицу сопряженности, по столбцам и по строчкам которой указываются варианты значений изучаемых признаков. Числа в этой таблице будут называться реальными или экспериментальными частотами. Далее необходимо рассчитать ожидаемые частоты исходя из предположения, что сравниваемые группы абсолютно равны по распределению признаков. В этом случае пропорции по итоговой строчке или столбцу «всего» должны сохраняться в любой строчке и столбце. Исходя из этого, определяются ожидаемые частоты (см. пример).

Затем рассчитывают значение критерия как сумму по всем ячейкам таблицы сопряженности отношения квадрата разности между реальной частотой и ожидаемой частотой к ожидаемой частоте:

где - реальная частота в ячейке; - ожидаемая частота в ячейке.

, где N = A+ B + C + D .

При расчёте по основной формуле для таблицы 2*2 (только для такой таблицы ), также необходимо применить поправку Йейтса на непрерывность:

.

Критическое значение критерия определяется по таблице (см. приложение) с учетом числа степеней свободы и уровня значимости. Уровень значимости принимают стандартным: 0,05; 0,01 или 0,001. Число степеней свободы определяется как произведение числа строк и столбцов таблицы сопряженности уменьшенных каждое на единицу:

,

где r – число строк (число градаций одного признака), с – число столбцов (число градаций другого признака). Это критическое значение можно определить в электронной таблице Microsoft Excel используя функцию =хи2обр(a, f ), где вместо a надо ввести уровень значимости, а вместо f – число степеней свободы.

Если значение критерия хи-квадрат больше критического, то гипотезу о независимости признаков отвергают и их можно считать зависимыми на выбранном уровне значимости.

У этого метода есть ограничение по применимости: ожидаемые частоты должны быть 5 или более (для таблицы 2*2). Для произвольной таблицы это ограничение менее строгое: все ожидаемые частоты должны быть 1 или больше, а доля ячеек с ожидаемыми частотами меньше 5 не должна превышать 20%.

Из таблицы сопряженности большой размерности можно «вычленить» таблицы меньшей размерности и для них рассчитать значение критерия c 2 . Это фактически будут множественные сравнения, аналогичные описанным для критерия Стьюдента. В этом случае также надо применять поправку на множественные сравнения в зависимости от их количества.

Для проверки гипотезы с помощью критерия c 2 в электронных таблицах Microsoft Excel можно применить следующую функцию:

ХИ2ТЕСТ(фактический_интервал; ожидаемый_интервал).

Здесь фактический_интервал – исходная таблица сопряженности с реальными частотами (указываются только ячейки с самими частотами без заголовков и «всего»); ожидаемый_интервал – массив ожидаемых частот. Следовательно, ожидаемые частоты должны быть вычислены самостоятельно.

Пример:

В некотором городе произошла вспышка инфекционного заболевания. Есть предположение, что источником заражения явилась питьевая вода. Проверить это предположение решили с помощью выборочного опроса городского населения, по которому необходимо установить влияет ли количество выпиваемой воды на количество заболевших.

Исходные данные приведены в следующей таблице:

Рассчитаем ожидаемые частоты. Пропорция по всего должна сохраниться и внутри таблицы. Поэтому вычислим, например, какую долю составляют всего по строчкам в общей численности, получим для каждой строчки коэффициент. Такая же доля должна оказаться в каждой ячейке соответствующей строчки, поэтому для вычисления ожидаемой частоты в ячейке умножаем коэффициент на всего по соответствующему столбцу.

Число степеней свободы равно (3-1)*(2-1)=2. Критическое значение критерия .

Экспериментальное значение больше критического (61,5>13,816), т.е. гипотеза об отсутствия влияния количества выпиваемой воды на заболеваемость отвергается с вероятностью ошибки менее 0,001. Таким образом, можно утверждать, что именно вода стала источником заболевания.

У обоих описанных критериев существуют ограничения, которые обычно не выполняются, если число наблюдений невелико или отдельные градации признаков редко встречаются. В этом случае используют точный критерий Фишера . Он основан на переборе всех возможных вариантов заполнения таблицы сопряженности при данной численности групп. Поэтому ручной расчет его довольно сложен. Для его расчёта можно воспользоваться статистическими пакетами прикладных программ.

Критерий z является аналогом критерия Стьюдента, но применяется для сравнения качественных признаков. Экспериментальное значение критерия рассчитывается как отношение разности долей к средней ошибке разности долей.

Критические значение критерия z равны соответствующим точкам нормированного нормального распределения: , , .



Критерий хи-квадрат применяется для сравнения любого количества групп по значениям качественных признаков. Исходные данные должны быть представлены в виде таблицы сопряжённости. Экспериментальное значение критерия рассчитывают как сумму по всем ячейкам таблицы сопряженности отношения квадрата разности между реальной частотой и ожидаемой частотой к ожидаемой частоте. Ожидаемые частоты вычисляются в предположении равенства сравниваемых признаков во всех группах. Критические значения определяются по таблицам распределения хи-квадрат.

ЛИТЕРАТУРА.

Гланц С. – Глава 5.

Реброва О.Ю. – Глава 10,11.

Лакин Г.Ф. – с. 120-123

Вопросы для самопроверки студентов.

1. В каких случаях можно применять критерий z?

2. На чём основано вычисление экспериментального значения критерия z?

3. Как найти критическое значение критерия z?

4. В каких случаях можно применять критерий c 2 ?

5. На чём основано вычисление экспериментального значения критерия c 2 ?

6. Как найти критическое значение критерия c 2 ?

7. Что ещё можно применить для сравнения качественных признаков, если нельзя применить по ограничениям критерии z и c 2 ?

Задачи.

). Конкретная формулировка проверяемой гипотезы от случая к случаю будет варьировать.

В этом сообщении я опишу принцип работы критерия \(\chi^2\) на (гипотетическом) примере из иммунологии . Представим, что мы выполнили эксперимент по установлению эффективности подавления развития микробного заболевания при введении в организм соответствующих антител . Всего в эксперименте было задействовано 111 мышей, которых мы разделили на две группы, включающие 57 и 54 животных соответственно. Первой группе мышей сделали инъекции патогенных бактерий с последующим введением сыворотки крови, содержащей антитела против этих бактерий. Животные из второй группы служили контролем – им сделали только бактериальные инъекции. После некоторого времени инкубации оказалось, что 38 мышей погибли, а 73 выжили. Из погибших 13 принадлежали первой группе, а 25 – ко второй (контрольной). Проверяемую в этом эксперименте нулевую гипотезу можно сформулировать так: введение сыворотки с антителами не оказывает никакого влияния на выживаемость мышей. Иными словами, мы утверждаем, что наблюдаемые различия в выживаемости мышей (77.2% в первой группе против 53.7% во второй группе) совершенно случайны и не связаны с действием антител.

Полученные в эксперименте данные можно представить в виде таблицы:

Всего

Бактерии + сыворотка

Только бактерии

Всего

Таблицы, подобные приведенной, называют таблицами сопряженности . В рассматриваемом примере таблица имеет размерность 2х2: есть два класса объектов («Бактерии + сыворотка» и «Только бактерии»), которые исследуются по двум признакам ("Погибло" и "Выжило"). Это простейший случай таблицы сопряженности: безусловно, и количество исследуемых классов, и количество признаков может быть бóльшим.

Для проверки сформулированной выше нулевой гипотезы нам необходимо знать, какова была бы ситуация, если бы антитела действительно не оказывали никакого действия на выживаемость мышей. Другими словами, нужно рассчитать ожидаемые частоты для соответствующих ячеек таблицы сопряженности. Как это сделать? В эксперименте всего погибло 38 мышей, что составляет 34.2% от общего числа задействованных животных. Если введение антител не влияет на выживаемость мышей, в обеих экспериментальных группах должен наблюдаться одинаковый процент смертности, а именно 34.2%. Рассчитав, сколько составляет 34.2% от 57 и 54, получим 19.5 и 18.5. Это и есть ожидаемые величины смертности в наших экспериментальных группах. Аналогичным образом рассчитываются и ожидаемые величины выживаемости: поскольку всего выжили 73 мыши, или 65.8% от общего их числа, то ожидаемые частоты выживаемости составят 37.5 и 35.5. Составим новую таблицу сопряженности, теперь уже с ожидаемыми частотами:

Погибшие

Выжившие

Всего

Бактерии + сыворотка

Только бактерии

Всего

Как видим, ожидаемые частоты довольно сильно отличаются от наблюдаемых, т.е. введение антител, похоже, все-таки оказывает влияние на выживаемость мышей, зараженных патогенным микроорганизмом. Это впечатление мы можем выразить количественно при помощи критерия согласия Пирсона \(\chi^2\):

\[\chi^2 = \sum_{}\frac{(f_o - f_e)^2}{f_e},\]


где \(f_o\) и \(f_e\) - наблюдаемые и ожидаемые частоты соответственно. Суммирование производится по всем ячейкам таблицы. Так, для рассматриваемого примера имеем

\[\chi^2 = (13 – 19.5)^2/19.5 + (44 – 37.5)^2/37.5 + (25 – 18.5)^2/18.5 + (29 – 35.5)^2/35.5 = \]

Достаточно ли велико полученное значение \(\chi^2\), чтобы отклонить нулевую гипотезу? Для ответа на этот вопрос необходимо найти соответствующее критическое значение критерия. Число степеней свободы для \(\chi^2\) рассчитывается как \(df = (R - 1)(C - 1)\), где \(R\) и \(C\) - количество строк и столбцов в таблице сопряженности. В нашем случае \(df = (2 -1)(2 - 1) = 1\). Зная число степеней свободы, мы теперь легко можем узнать критическое значение \(\chi^2\) при помощи стандартной R-функции qchisq() :


Таким образом, при одной степени свободы только в 5% случаев величина критерия \(\chi^2\) превышает 3.841. Полученное нами значение 6.79 значительно превышает это критического значение, что дает нам право отвергнуть нулевую гипотезу об отсутствии связи между введением антител и выживаемостью зараженных мышей. Отвергая эту гипотезу, мы рискуем ошибиться с вероятностью менее 5%.

Следует отметить, что приведенная выше формула для критерия \(\chi^2\) дает несколько завышенные значения при работе с таблицами сопряженности размером 2х2. Причина заключается в том, что распределение самого критерия \(\chi^2\) является непрерывным, тогда как частоты бинарных признаков ("погибло" / "выжило") по определению дискретны. В связи с этим при расчете критерия принято вводить т.н. поправку на непрерывность , или поправку Йетса :

\[\chi^2_Y = \sum_{}\frac{(|f_o - f_e| - 0.5)^2}{f_e}.\]

"s Chi-squared test with Yates" continuity correction data : mice X-squared = 5.7923 , df = 1 , p-value = 0.0161


Как видим, R автоматически применяет поправку Йетса на непрерывность (Pearson"s Chi-squared test with Yates" continuity correction ). Рассчитанное программой значение \(\chi^2\) составило 5.79213. Мы можем отклонить нулевую гипотезу об отсутствии эффекта антител, рискуя ошибиться с вероятностью чуть более 1% (p-value = 0.0161 ).