Кто доказал теорему ферма в 1995. Нерешаемые задачи: уравнения Навье-Стокса, гипотеза Ходжа, гипотеза Римана

Часто, беседуя со старшеклассниками об исследовательских работах по математике, слышу следующее: "Что можно нового открыть в математике?" А действительно: может быть все великие открытия сделаны, а теоремы доказаны?

8 августа 1900 года на международном математическом конгрессе в Париже математик Дэвид Гилберт (David Hilbert) изложил список проблем, которые, как он полагал, предстояло решить в ХХ веке. В списке было 23 пункта. Двадцать один из них на данный момент решены. Последней решенной проблемой из списка Гилберта была знаменитая теорема Ферма, с которой ученые не могли справиться в течение 358 лет. В 1994 году свое решение предложил британец Эндрю Уайлз. Оно и оказалось верным.

По примеру Гилберта в конце прошлого века многие математики пытались сформулировать подобные стратегические задачи на ХХI век. Один из таких списков приобрел широкую известность благодаря бостонскому миллиардеру Лэндону Клэю (Landon T. Clay). В 1998 году на его средства в Кембридже (Массачусетс, США) был основан Математический институт Клэя (Clay Mathematics Institute) и установлены премии за решение ряда важнейших проблем современной математики. 24 мая 2000 года эксперты института выбрали семь проблем - по числу миллионов долларов, выделенных на премии. Список получил название Millennium Prize Problems:

1. Проблема Кука (сформулирована в 1971 году)

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей. Это говорит о том, что решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения.

Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема также является одной из нерешенных задач из области логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

2. Гипотеза Римана (сформулирована в 1859 году)

Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например 2, 3, 5, 7 и так далее. Такие числа называются простыми и играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди ряда всех натуральных чисел не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

3. Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)

Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x2 + y2 = z2. Эвклид дал полное описание решений этого уравнения, но для более сложных уравнений поиск решений становится чрезвычайно трудным.

4. Гипотеза Ходжа (сформулирована в 1941 году)

В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые "кирпичики", которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких "кирпичиков" и объектов.

5. Уравнения Навье - Стокса (сформулированы в 1822 году)

Если плыть в лодке по озеру, то возникнут волны, а если лететь в самолете, в воздухе возникнут турбулентные потоки. Предполагается, что эти и другие явления описываются уравнениями, известными как уравнения Навье - Стокса. Решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Решение этой проблемы позволит существенно изменить способы проведения гидро- и аэродинамических расчетов.

6. Проблема Пуанкаре (сформулирована в 1904 году)

Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока односвязна, а поверхность бублика - нет. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики ищут правильный ответ до сих пор.

7. Уравнения Янга - Миллса (сформулированы в 1954 году)

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга - Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, поэтому теория Янга - Миллса принята большинством физиков несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.


Думаю, что этот материал, опубликованный в блоге интересен не только студентам, но и школьникам, серьёзно занимающимся математикой. Есть над чем подумать, выбирая темы и направления исследовательских работ.

Пьер Ферма, читая «Арифметику» Диофанта Александрийского и размышляя над её задачами, имел привычку записывать на полях книги результаты своих размышлений в виде кратких замечаний. Против восьмой задачи Диофанта на полях книги, Ферма записал: «Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата, и, вообще, никакую степень, большую квадрата на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки » /Э.Т.Белл «Творцы математики». М.,1979, стр.69 /. Предлагаю Вашему вниманию элементарное доказательство теоремы ферма, которое может понять любой старшеклассник, увлекающийся математикой.

Сравним комментарий Ферма к задаче Диофанта с современной формулировкой великой теоремы Ферма, имеющей вид уравнения.
«Уравнение

x n + y n = z n (где n – целое число большее двух)

не имеет решений в целых положительных числах »

Комментарий находится с задачей в логической связи, аналогичной логической связи сказуемого с подлежащим. То, что утверждается задачей Диофанта, наоборот утверждается комментарием Ферма.

Комментарий Ферма можно так трактовать: если квадратное уравнение с тремя неизвестными имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение с тремя неизвестными в степени, большей квадрата

В уравнении нет даже намека на его связь с задачей Диофанта. Его утверждение требует доказательства, но при нём нет условия, из которого следует, что оно не имеет решений в целых положительных числах.

Известные мне варианты доказательства уравнения сводятся к следующему алгоритму.

  1. Уравнение теоремы Ферма принимается за её заключение, в справедливости которого убеждаются при помощи доказательства.
  2. Это же уравнение называют исходным уравнением, из которого должно исходить его доказательство.

В результате образовалась тавтология: «Если уравнение не имеет решений в целых положительных числах, то оно не имеет решений в целых положительных числах ».Доказательство тавтологии заведомо является неправильным и лишенным всякого смысла. Но её доказывают методом от противного.

  • Принимается предположение, противоположное тому, что утверждается уравнением, которое требуется доказать. Оно не должно противоречить исходному уравнению, а оно ему противоречит. Доказывать то, что принято без доказательства, и принимать без доказательства то, что требуется доказать, не имеет смысла.
  • На основании принятого предположения выполняются абсолютно правильные математические операции и действия, чтобы доказать, что оно противоречит исходному уравнению и является ложным.

Поэтому вот уже 370 лет доказательство уравнения великой теоремы Ферма остаётся неосуществимой мечтой специалистов и любителей математики.

Я принял уравнение за заключение теоремы, а восьмую задачу Диофанта и её уравнение — за условие теоремы.


«Если уравнение x 2 + y 2 = z 2 (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение x n + y n = z n , где n > 2 (2) не имеет решений на множестве целых положительных чисел.»

Доказательство.

А) Всем известно, что уравнение (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел. Докажем, что ни одна тройка пифагоровых чисел, являющаяся решением уравнения (1), не является решением уравнения (2).

На основании закона обратимости равенства, стороны уравнения (1) поменяем местами. Пифагоровы числа (z, х, у ) могут быть истолкованы как длины сторон прямоугольного треугольника, а квадраты ( x 2 , y 2 , z 2 ) могут быть истолкованы как площади квадратов, построенных на его гипотенузе и катетах.

Площади квадратов уравнения (1) умножим на произвольную высоту h :

z 2 h = x 2 h + y 2 h (3)

Уравнение (3) можно трактовать как равенство объема параллелепипеда сумме объёмов двух параллелепипедов.

Пусть высота трех параллелепипедов h = z :

z 3 = x 2 z + y 2 z (4)

Объем куба разложился на два объема двух параллелепипедов. Объём куба оставим без изменений, а высоту первого параллелепипед уменьшим до x и высоту второго параллелепипеда уменьшим до y . Объём куба больше суммы объёмов двух кубов:

z 3 > x 3 + y 3 (5)

На множестве троек пифагоровых чисел (х, у, z ) при n = 3 не может быть ни одного решения уравнения (2). Следовательно, на множестве всех троек пифагоровых чисел невозможно куб разложить на два куба.

Пусть в уравнении (3) высота трёх параллелепипедов h = z 2 :

z 2 z 2 = x 2 z 2 + y 2 z 2 (6)

Объем параллелепипеда разложился на сумму объёмов двух параллелепипедов.
Левую сторону уравнения (6) оставим без изменения. На правой его стороне высоту z 2 уменьшим до х в первом слагаемом и до у 2 во втором слагаемом.

Уравнение (6) обратилось в неравенство:

Объем параллелепипеда разложился на два объема двух параллелепипедов.

Левую сторону уравнения (8) оставим без изменения.
На правой стороне высоту z n-2 уменьшим до x n-2 в первом слагаемом и уменьшим до y n-2 во втором слагаемом. Уравнение (8) обращается в неравенство:

z n > x n + y n (9)

На множестве троек пифагоровых чисел не может быть ни одного решения уравнения (2).

Следовательно, на множестве всех троек пифагоровых чисел при всех n > 2 уравнение (2) не имеет решений.

Получено «постине чудесное доказательство», но только для троек пифагоровых чисел . В этом заключается недостаток доказательства и причина отказа П. Ферма от него.

B) Докажем, что уравнение (2) не имеет решений на множестве троек непифагоровых чисел, представляющем сбой семейство произвольно взятой тройки пифагоровых чисел z = 13, x = 12, y = 5 и семейство произвольно взятой тройки целых положительных чисел z = 21, x = 19, y = 16

Обе тройки чисел являются членами своих семейств:

(13, 12, 12); (13, 12,11);…; (13, 12, 5) ;…; (13,7, 1);…; (13,1, 1) (10)
(21, 20, 20); (21, 20, 19);…;(21, 19, 16);…;(21, 1, 1) (11)

Число членов семейства (10) и (11) равно половине произведения 13 на 12 и 21 на 20, т. е. 78 и 210.

В каждом члене семейства (10) присутствует z = 13 и переменные х и у 13 > x > 0 , 13 > y > 0 1

В каждом члене семейства (11) присутствует z = 21 и переменные х и у , которые принимают значения целых чисел 21 > x >0 , 21 > y > 0 . Переменные последовательно убывают на 1 .

Тройки чисел последовательности (10) и (11) можно представить в виде последовательности неравенств третьей степени:

13 3 < 12 3 + 12 3 ;13 3 < 12 3 + 11 3 ;…; 13 3 < 12 3 + 8 3 ; 13 3 > 12 3 + 7 3 ;…; 13 3 > 1 3 + 1 3
21 3 < 20 3 + 20 3 ; 21 3 < 20 3 + 19 3 ; …; 21 3 < 19 3 + 14 3 ; 21 3 > 19 3 + 13 3 ;…; 21 3 > 1 3 + 1 3

и в виде неравенств четвертой степени:

13 4 < 12 4 + 12 4 ;…; 13 4 < 12 4 + 10 4 ; 13 4 > 12 4 + 9 4 ;…; 13 4 > 1 4 + 1 4
21 4 < 20 4 + 20 4 ; 21 4 < 20 4 + 19 4 ; …; 21 4 < 19 4 + 16 4 ;…; 21 4 > 1 4 + 1 4

Правильность каждого неравенства удостоверяется возвышением чисел в третью и в четвертую степень.

Куб большего числа невозможно разложить на два куба меньших чисел. Он или меньше, или больше, суммы кубов двух меньших чисел.

Биквадрат большего числа невозможно разложить на два биквадрата меньших чисел. Он или меньше, или больше, суммы биквадратов меньших чисел.

С возрастанием показателя степени все неравенства, кроме левого крайнего неравенства, имеют одинаковый смысл:

Неравенств они все имеют одинаковый смысл: степень большего числа больше суммы степеней меньших двух чисел с тем же показателем:

13 n > 12 n + 12 n ; 13 n > 12 n + 11 n ;…; 13 n > 7 n + 4 n ;…; 13 n > 1 n + 1 n (12)
21 n > 20 n + 20 n ; 21 n > 20 n + 19 n ;…; ;…; 21 n > 1 n + 1 n (13)

Левый крайний член последовательностей (12) (13) представляет собой наиболее слабое неравенство. Его правильность определяет правильность всех последующих неравенств последовательности (12) при n > 8 и последовательности (13) при n > 14 .

Среди них не может быт ни одного равенства. Произвольно взятая тройка целых положительных чисел (21,19,16) не является решением уравнения (2) великой теоремы Ферма. Если произвольно взятая тройка целых положительных чисел не является решением уравнения, то уравнение не имеет решений на множестве целых положительных чисел, что и требовалось доказать.

С) В комментарии Ферма к задаче Диофанта утверждается, что невозможно разложить «вообще, никакую степень, большую квадрата, на две степени с тем же показателем ».

Целую степень, большую квадрата, действительно невозможно разложить на две степени с тем же показателем. Нецелую степень, большую квадрата можно разложить на две степени с тем же показателем.

Любая произвольно взятая тройка целых положительных чисел (z, x, y) может принадлежать семейству, каждый член которого состоит из постоянного числа z и двух чисел, меньших z . Каждый член семейства может быть представлен в форме неравенства, а все полученные неравенства — в виде последовательности неравенств:

z n < (z — 1) n + (z — 1) n ; z n < (z — 1) n + (z — 2) n ; …; z n > 1 n + 1 n (14)

Последовательность неравенств (14) начинается неравенствами, у которых левая сторона меньше правой стороны, а оканчивается неравенствами, у которых правая сторона меньше левой стороны. С возрастанием показателя степени n > 2 число неравенств правой стороны последовательности (14) увеличивается. При показателе степени n = k все неравенства левой стороны последовательности изменяют свой смысл и принимают смысл неравенств правой стороны неравенств последовательности (14). В результате возрастания показателя степени у всех неравенств левая сторона оказывается больше правой стороны:

z k > (z-1) k + (z-1) k ; z k > (z-1) k + (z-2) k ;…; z k > 2 k + 1 k ; z k > 1 k + 1 k (15)

При дальнейшем возрастании показателя степени n > k ни одно из неравенств не изменяет своего смысла и не обращается в равенство. На этом основании можно утверждать, что любая произвольно взятая тройка целых положительных чисел (z, x, y) при n > 2 , z > x , z > y

В произвольно взятой тройке целых положительных чисел z может быть сколь угодно большим натуральным числом. Для всех натуральных чисел, которые не больше z , большая теорема Ферма доказана.

D) Каким бы ни было большим число z , в натуральном ряду чисел до него имеется большое, но конечное множество целых чисел, а после него – бесконечное множество целых чисел.

Докажем, что все бесконечное множество натуральных чисел, больших z , образуют тройки чисел, которые не являются решениями уравнения большой теоремы Ферма, например, произвольно взятая тройка целых положительных чисел (z + 1, x ,y) , в которой z + 1 > x и z + 1 > y при всех значениях показателя степени n > 2 не является решением уравнения большой теоремы Ферма.

Произвольно взятая тройка целых положительных чисел (z + 1, x, y) может принадлежать семейству троек чисел, каждый член которого состоят из постоянного числа z + 1 и двух чисел х и у , принимающих различные значения, меньшие z + 1 . Члены семейства могут быть представлены в форме неравенств, у которых постоянная левая сторона меньше, или больше, правой стороны. Неравенства можно упорядоченно расположить в виде последовательности неравенств:

При дальнейшем возрастании показателя степени n > k до бесконечности ни одно из неравенств последовательности (17) не изменяет своего смысла и не обращается в равенство. В последовательности (16) неравенство, образованное из произвольно взятой тройки целых положительных чисел (z + 1, x, y) , может находиться в её правой части в виде (z + 1) n > x n + y n или находиться в её левой части в виде (z + 1) n < x n + y n .

В любом случае тройка целых положительных чисел (z + 1, x, y) при n > 2 , z + 1 > x , z + 1 > y в последовательности (16) представляет собой неравенство и не может представлять собой равенства, т. е. не может представлять собой решения уравнения большой теоремы Ферма.

Легко и просто понять происхождение последовательности степенных неравенств (16), в которой последнее неравенство левой стороны и первое неравенство правой стороны являются неравенствами противоположного смысла. Наоборот, нелегко и непросто школьникам, старшекласснику и старшекласснице, понять, каким образом из последовательности неравенств (16) образуется последовательность неравенств (17), в которой все неравенства одинакового смысла.

В последовательности (16) увеличение целой степени неравенств на 1 единицу обращает последнее неравенство левой стороны в первое неравенство противоположного смысла правой стороны. Таким образом, количество неравенств девой стороны последовательности уменьшается, а количество неравенств правой стороны увеличивается. Между последним и первым степенными неравенствами противоположного смысла в обязательном порядке находится степенное равенство. Его степень не может быть целым числом, так как между двумя последовательными натуральными числами находятся только нецелые числа. Степенное равенство нецелой степени, по условию теоремы, не может считаться решением уравнения (1).

Если в последовательности (16) продолжать увеличение степени на 1 единицу, то последнее неравенство её левой стороны обратится в первое неравенство противоположного смысла правой стороны. В результате не останется ни одного неравенства левой стороны и останутся только неравенства правой стороны, которые представят собой последовательность усиливающихся степенных неравенств (17). Дальнейшее увеличение их целой степени на 1 единицу лишь усиливает её степенные неравенства и категорически исключает возможность появления равенства в целой степени.

Следовательно, вообще, никакую целую степень натурального числа (z+1) последовательности степенных неравенств (17) невозможно разложить на две целых степени с тем же показателем. Поэтому уравнение (1) не имеет решений на бесконечном множестве натуральных чисел, что и требовалось доказать.

Следовательно, большая теорема Ферма доказана во всей всеобщности:

  • в разделе А) для всех троек (z, x, y) пифагоровых чисел (открытое Ферма поистине чудесное доказательство),
  • в разделе В) для всех членов семейства любой тройки (z, x, y) пифагоровых чисел,
  • в разделе С) для всех троек чисел (z, x, y) , не больших числа z
  • в разделе D) для всех троек чисел (z, x, y) натурального ряда чисел.

Изменения внесены 05.09.2010 г.

Какие теоремы можно и какие нельзя доказать от противного

В толковом словаре математических терминов дано определение доказательству от противного теоремы, противоположной обратной теореме.

«Доказательство от противного – метод доказательства теоремы (предложения), состоящий в том, что доказывают не саму теорему, а ей равносильную (эквивалентную), противоположную обратной (обратную противоположной) теорему. Доказательство от противного используют всякий раз, когда прямую теорему доказать трудно, а противоположную обратной легче. При доказательстве от противного заключение теоремы заменяется её отрицанием, и путём рассуждения приходят к отрицанию условия, т.е. к противоречию, к противному (противоположному тому, что дано; это приведение к абсурду и доказывает теорему».

Доказательство от противного очень часто применяется в математике. Доказательство от противного основано на законе исключённого третьего, заключающегося в том, что из двух высказываний (утверждений) А и А (отрицание А) одно из них истинно, а другое ложно». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.112/.

Не лучше было бы открыто заявить о том, что метод доказательства от противного не является математическим методом, хотя и используется в математике, что он является логическим методом и принадлежит логике. Допустимо ли утверждать, что доказательство от противного «используют всякий раз, когда прямую теорему доказать трудно», когда на самом деле его используют тогда, и только тогда, когда ему нет замены.

Заслуживает особого внимания и характеристика отношения друг к другу прямой и обратной ей теорем. «Обратная теорема для данной теоремы (или к данной теореме) — теорема, в которой условием является заключение, а заключением – условие данной теоремы. Данная теорема по отношению к обратной теореме называется прямой теоремой (исходной). В то же время обратная теорема к обратной теореме будет данной теоремой; поэтому прямая и обратная теоремы называются взаимно обратными. Если прямая (данная) теорема верна, то обратная теорема не всегда верна. Например, если четырёхугольник – ромб, то его диагонали взаимно перпендикулярны (прямая теорема). Если в четырёхугольнике диагонали взаимно перпендикулярны, то четырёхугольник есть ромб – это неверно, т. е. обратная теорема неверна». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.261 /.

Данная характеристика отношения прямой и обратной теорем не учитывает того, что условие прямой теоремы принимается как данное, без доказательства, так что его правильность не имеет гарантии. Условие обратной теоремы не принимается как данное, так как оно является заключением доказанной прямой теоремы. Его правильность засвидетельствована доказательством прямой теоремы. Это существенное логическое различие условий прямой и обратной теорем оказывается решающим в вопросе какие теоремы можно и какие нельзя доказать логическим методом от противного.

Допустим, что на примете имеется прямая теорема, которую доказать обычным математическим методом можно, но трудно. Сформулируем её в общем виде в краткой форме так: из А следует Е . Символ А имеет значение данного условия теоремы, принятого без доказательства. Символ Е имеет значение заключения теоремы, которое требуется доказать.

Доказывать прямую теорему будем от противного, логическим методом. Логическим методом доказывается теорема, которая имеет не математическое условие, а логическое условие. Его можно получить, если математическое условие теоремы из А следует Е , дополнить прямо противоположным условием из А не следует Е .

В результате получилось логическое противоречивое условие новой теоремы, заключающее в себе две части: из А следует Е и из А не следует Е . Полученное условие новой теоремы соответствует логическому закону исключённого третьего и соответствует доказательству теоремы методом от противного.

Согласно закону, одна часть противоречивого условия является ложной, другая его часть является истинной, а третье – исключено. Доказательство от противного имеет совей задачей и целью установить, именно какая часть из двух частей условия теоремы является ложной. Как только будет определена ложная часть условия, так будет установлено, что другая часть является истинной частью, а третье — исключено.

Согласно толковому словарю математических терминов, «доказательство есть рассуждение, в ходе которого устанавливается истинность или ложность какого-либо утверждения (суждения, высказывания, теоремы)» . Доказательство от противного есть рассуждение, в ходе которого устанавливается ложность (абсурдность) заключения, вытекающего из ложного условия доказываемой теоремы.

Дано: из А следует Е и из А не следует Е .

Доказать: из А следует Е .

Доказательство : Логическое условие теоремы заключает в себе противоречие, которое требует своего разрешения. Противоречие условия должно найти своё разрешение в доказательстве и его результате. Результат оказывается ложным при безупречном и безошибочном рассуждении. Причиной ложного заключения при логически правильном рассуждении может быть только противоречивое условие: из А следует Е и из А не следует Е .

Нет и тени сомнения в том, что одна часть условия является ложной, а другая в этом случае является истинной. Обе части условия имеют одинаковое происхождение, приняты как данные, предположенные, одинаково возможные, одинаково допустимые и т. д. В ходе логического рассуждения не обнаружено ни одного логического признака, который отличал бы одну часть условия от другой. Поэтому в одной и той же мере может быть из А следует Е и может быть из А не следует Е . Утверждение из А следует Е может быть ложным , тогда утверждение из А не следует Е будет истинным. Утверждение из А не следует Е может быть ложным, тогда утверждение из А следует Е будет истинным.

Следовательно, прямую теорему методом от противного доказать невозможно.

Теперь эту же прямую теорему докажем обычным математическим методом.

Дано: А .

Доказать: из А следует Е .

Доказательство.

1. Из А следует Б

2. Из Б следует В (по ранее доказанной теореме)).

3. Из В следует Г (по ранее доказанной теореме).

4. Из Г следует Д (по ранее доказанной теореме).

5. Из Д следует Е (по ранее доказанной теореме).

На основании закона транзитивности, из А следует Е . Прямая теорема доказана обычным методом.

Пусть доказанная прямая теорема имеет правильную обратную теорему: из Е следует А .

Докажем её обычным математическим методом. Доказательство обратной теоремы можно выразить в символической форме в виде алгоритма математических операций.

Дано: Е

Доказать: из Е следует А .

Доказательство.

1. Из Е следует Д

2. Из Д следует Г (по ранее доказанной обратной теореме).

3. Из Г следует В (по ранее доказанной обратной теореме).

4. Из В не следует Б (обратная теорема неверна). Поэтому и из Б не следует А .

В данной ситуации продолжать математическое доказательство обратной теоремы не имеет смысла. Причина возникновения ситуации – логическая. Неверную обратную теорему ничем заменить невозможно. Следовательно, данную обратную теорему доказать обычным математическим методом невозможно. Вся надежда – на доказательство данной обратной теоремы методом от противного.

Чтобы её доказать методом от противного, требуется заменить её математическое условие логическим противоречивым условием, заключающим в себе по смыслу две части – ложную и истинную.

Обратная теорема утверждает: из Е не следует А . Её условие Е , из которое следует заключение А , является результатом доказательства прямой теоремы обычным математическим методом. Это условие необходимо сохранить и дополнить утверждением из Е следует А . В результате дополнения получается противоречивое условие новой обратной теоремы: из Е следует А и из Е не следует А . Исходя из этого логически противоречивого условия, обратную теорему можно доказать посредством правильного логического рассуждения только, и только, логическим методом от противного. В доказательстве от противного любые математические действия и операции подчинены логическим и поэтому в счёт не идут.

В первой части противоречивого утверждения из Е следует А условие Е было доказано доказательством прямой теоремы. Во второй его части из Е не следует А условие Е было предположено и принято без доказательства. Какое-то из них одно является ложным, а другое – истинным. Требуется доказать, какое из них является ложным.

Доказываем посредством правильного логического рассуждения и обнаруживаем, что его результатом является ложное, абсурдное заключение. Причиной ложного логического заключения является противоречивое логическое условие теоремы, заключающее в себе две части – ложную и истинную. Ложной частью может быть только утверждение из Е не следует А , в котором Е было принято без доказательства. Именно этим оно отличается от Е утверждения из Е следует А , которое доказано доказательством прямой теоремы.

Следовательно, истинным является утверждение: из Е следует А , что и требовалось доказать.

Вывод : логическим методом от противного доказывается только та обратная теорема, которая имеет доказанную математическим методом прямую теорему и которую математическим методом доказать невозможно.

Полученный вывод приобретает исключительное по важности значение в отношении к методу доказательства от противного великой теоремы Ферма. Подавляющее большинство попыток её доказать имеет в своей основе не обычный математический метод, а логический метод доказательства от противного. Доказательство большой теоремы Ферма Уайлса не является исключением.

Дмитрий Абраров в статье «Теорема Ферма: феномен доказательств Уайлса» опубликовал комментарий к доказательству большой теоремы Ферма Уайлсом. По Абрарову, Уайлс доказывает большую теорему Ферма с помощью замечательной находки немецкого математика Герхарда Фрея (р. 1944), связавшего потенциальное решение уравнения Ферма x n + y n = z n , где n > 2 , с другим, совершенно непохожим на него, уравнением. Это новое уравнение задаётся специальной кривой (названной эллиптической кривой Фрея). Кривая Фрея задаётся уравнением совсем несложного вида:
.

«А именно Фрей сопоставил всякому решению (a, b, c) уравнение Ферма, то есть числам, удовлетворяющим соотношению a n + b n = c n , указанную выше кривую. В этом случае отсюда следовала бы великая теорема Ферма». (Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса»)

Другими словами, Герхард Фрей предположил, что уравнение большой теоремы Ферма x n + y n = z n , где n > 2 , имеет решения в целых положительных числах. Этими же решения являются, по предположению Фрея, решениями его уравнения
y 2 + x (x — a n) (y + b n) = 0 , которое задаётся его эллиптической кривой.

Эндрю Уайлс принял эту замечательную находку Фрея и с её помощью посредством математического метода доказал, что этой находки, то есть эллиптической кривой Фрея, не существует. Поэтому не существует уравнения и его решений, которые задаются несуществующей эллиптической кривой, Поэтому Уайлсу следовало бы принять вывод о том, что не существует уравнения большой теоремы Ферма и самой теоремы Ферма. Однако им принимается более скромное заключение том, что уравнение большой теоремы Ферма не имеет решений в целых положительных числах.

Неопровержимым фактом может являться то, что Уайлсом принято предположение, прямо противоположное по смыслу тому, что утверждается большой теоремой Ферма. Оно обязывает Уайлса доказывать большую теорему Ферма методом от противного. Последуем и мы его примеру и посмотрим, что из этого примера получается.

В большой теореме Ферма утверждается, что уравнение, x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

Согласно логическому методу доказательства от противного, это утверждение сохраняется, принимается как данное без доказательства, и затем дополняется противоположным по смыслу утверждением: уравнение x n + y n = z n , где n > 2 , имеет решения в целых положительных числах.

Предположенное утверждение так же принимается как данное, без доказательства. Оба утверждения, рассматриваемые с точки зрения основных законов логики, являются одинаково допустимыми, равноправными и одинаково возможными. Посредством правильного рассуждения требуется установить, именно какое из них является ложным, чтобы затем установить, что другое утверждение является истинным.

Правильное рассуждение завершается ложным, абсурдным заключением, логической причиной которого может быть только противоречивое условие доказываемой теоремы, заключающее в себе две части прямо противоположного смысла. Они и явились логической причиной абсурдного заключения, результата доказательства от противного.

Однако в ходе логически правильного рассуждения не было обнаружено ни одного признака, по которому можно было бы установить, какое именно утверждение является ложным. Им может быть утверждение: уравнение x n + y n = z n , где n > 2 , имеет решений в целых положительных числах. На этом же основании им может быть утверждение: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

В итоге рассуждения вывод может быть только один: большую теорему Ферма методом от противного доказать невозможно .

Было бы совсем другое дело, если бы большая теорема Ферма была обратной теоремой, которая имеет прямую теорему, доказанную обычным математическим методом. В этом случае её можно было доказать от противного. А так как она является прямой теоремой, то её доказательство должно иметь в своей основе не логический метод доказательства от противного, а обычный математический метод.

По словам Д. Абрарова, самый известный из современных российских математиков академик В. И. Арнольд на доказательство Уайлса отреагировал «активно скептически». Академик заявил: «это не настоящая математика – настоящая математика геометрична и сильна связями с физикой».(Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса». Заявление академика выражает самую сущность нематематического доказательства Уайлса большой теоремы Ферма.

Методом от противного невозможно доказать ни того, что уравнение большой теоремы Ферма не имеет решений, ни того, что оно имеет решения. Ошибка Уайлса не математическая, а логическая — использование доказательства от противного там, где его использование не имеет смысла и большой теоремы Ферма не доказывает.

Не доказывается большая теорема Ферма и с помощью обычного математического метода, если в ней дано: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах, и если в ней требуется доказать: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах. В такой форме имеется не теорема, а тавтология, лишённая смысла.

Примечание. Моё доказательство БТФ обсуждалось на одном из форумов. Один из участников Trotil, специалист в теории чисел, сделал следующее авторитетное заявление под названием: «Краткий пересказ того, что сделал Миргородский». Привожу его дословно:

«А. Он доказал, что если z 2 = x 2 + y , то z n > x n + y n . Это хорошо известный и вполне очевидный факт.

В. Он взял две тройки — пифагорову и не пифагорову и показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него).

С. А затем автором опущен тот факт, что из < в последующей степени может оказаться = , а не только > . Простой контрпример — переход n = 1 в n = 2 в пифагоровой тройке.

D. Этот пункт ничего существенного в доказательство БТФ не вносит. Вывод: БТФ не доказана».

Рассмотрю его заключение по пунктам.

А. В нём доказана БТФ для всего бесконечного множества троек пифагоровых чисел. Доказана геометрическим методом, который, как я полагаю, мной не открыт, а переоткрыт. А открыт он был, как я полагаю, самим П. Ферма. Именно его мог иметь в виду Ферма, когда писал:

«Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки». Данное моё предположение основано на том, что в задаче Диофанта, против которой, на полях книги, писал Ферма, речь идёт о решениях диофантова уравнения, которыми являются тройки пифагоровых чисел.

Бесконечное множество троек пифагоровых чисел является решениями диофатова уравнения, а в теореме Ферма, наоборот, ни одно из решений не может быть решением уравнения теоремы Ферма. И к этому факту поистине чудесное доказательство Ферма имеет непосредственное отношение. Позже Ферма мог распространить свою теорему на множество всех натуральных чисел. На множестве всех натуральных чисел БТФ не относится к «множеству исключительно красивых теорем». Это — моё предположение, которое ни доказать, ни опровергнуть невозможно. Его можно и принимать и отвергать.

В. В данном пункте мной доказывается, что как семейство произвольно взятой пифагоровой тройки чисел, так и семейство произвольно взятой не пифагоровой тройки чисел БТФ выполняется, Это — необходимое, но недостаточное и промежуточное звено в моём доказательстве БТФ. Взятые мной примеры семейства тройки пифагоровых чисел и семейства тройки не пифагоровых чисел имеют значение конкретных примеров, предполагающих и не исключающих существование аналогичных других примеров.

Утверждение Trotil, что я «показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него) лишено основания. Он не может опровергнуть того факта, что я с таким же успехом могу взять другие примеры пифагоровой и не пифагоровой тройки для получения конкретного определённого семейства одной и другой тройки.

Какую пару троек я ни взял бы, проверка их пригодности для решения задачи может быть осуществлена, на мой взгляд, только методом «простого перебора». Какой-то другой метод мне не известен и не требуется. Если он пришёлся не по вкусу Trotil, то ему следовало бы предложить другой метод, чего он не делает. Не предлагая ничего взамен, осуждать «простой перебор», который в данном случае незаменим, некорректно.

С. Мною опущено = между < и < на основании того, что в доказательстве БТФ рассматривается уравнение z 2 = x 2 + y (1), в котором степень n > 2 целое положительное число. Из равенства, находящегося между неравенствами следует обязательное рассмотрение уравнения (1) при нецелом значении степени n > 2 . Trotil, считая обязательным рассмотрение равенства между неравенствами, фактически считает необходимым в доказательстве БТФ рассмотрение уравнения (1) при нецелом значении степени n > 2 . Я это сделал для себя и обнаружил, что уравнение (1) при нецелом значении степени n > 2 имеет решением тройку чисел: z, (z-1), (z-1) при нецелом показателе степени.

"Я знаю только то, что ничего не знаю, но другие не знают и этого"
(Сократ, древнегреческий философ)

НИКОМУ не дано владеть вселенским разумом и знать ВСЁ. Тем не менее, у большинства ученых, да и тех, кто просто любит размышлять и исследовать, всегда есть стремление узнать больше, разгадать загадки. Но остались ли еще неразгаданные темы у человечества? Ведь, кажется, все уже ясно и нужно только применять полученные веками знания?

НЕ стоит отчаиваться! Еще остались нерешенные проблемы из области математики, логики, которые в 2000 году эксперты Математического института Клэя в Кембридже (Массачусетс, США) объединили в список, так называемые, 7 загадок тысячелетия (Millennium Prize Problems). Эти проблемы волнуют ученых всей планеты. С тех пор и по сей день любой человек может заявить, что нашел решение одной из задач, доказать гипотезу и получить от бостонского миллиардера Лэндона Клэя (в честь которого и назван институт) премию. Он уже выделил на эти цели 7 миллионов долларов. К слову сказать, на сегодняшний день одна из проблем уже решена.

Итак, вы готовы узнать о математических загадках?
Уравнения Навье - Стокса (сформулированы в 1822 году)
Область: гидроаэродинамика

Уравнения о турбулентных, воздушных потоках, а также течении жидкостей известны как уравнения Навье - Стокса. Если, к примеру, плыть по озеру на чем-либо, то неизбежно вокруг возникнут волны. Это касается и воздушного пространства: при полете на самолете в воздухе также будут образовываться турбулентные потоки.
Данные уравнения как раз производят описание процессов движения вязкой жидкости и являются стержневой задачей всей гидродинамики. Для некоторых частных случаев уже найдены решения, в которых части уравнений отбрасываются, как не влияющие на конечный результат, но в общем виде решения этих уравнений не найдены.
Необходимо найти решение уравнениям и выявить гладкие функции.

Гипотеза Римана (сформулирована в 1859 году)
Область: теория чисел

Известно, что распределение простых чисел (Которые делятся только на себя и на единицу: 2,3,5,7,11…) среди всех натуральных чисел не подчиняется никакой закономерности.
Над этой проблемой задумался немецкий математик Риман, который сделал свое предположение, теоретически касающееся свойств имеющейся последовательности простых чисел. Уже давно известны так называемые парные простые числа - простые числа-близнецы, разность между которыми равна 2, например 11 и 13, 29 и 31, 59 и 61. Иногда они образуют целые скопления, например, 101, 103, 107, 109 и 113.
Если такие скопления будут найдены и выведен определенный алгоритм, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

Проблема Пуанкаре (сформулирована в 1904 году. Решена в 2002 году.)
Область: топология или геометрия многомерных пространств

Суть проблемы заключается в топологии и состоит в том, что если натягивать резиновую ленту, к примеру, на яблоко (сферу), то будет теоретически возможным сжать ее до точки, медленно перемещая без отрыва от поверхности ленту. Однако если эту же ленту натянуть вокруг бублика (тора), то сжать ленту без разрыва ленты или разлома самого бублика не представляется возможным. Т.е. вся поверхность сферы односвязна, в то время как тора – нет . Задача состояла в том, чтобы доказать, что односвязной является только сфера.

Представитель ленинградской геометрической школы Григорий Яковлевич Перельман является лауреатом премии тысячелетия математического института Клэя (2010 г.) за решение проблемы Пуанкаре. От знаменитой Фильдсовской премии он отказался.

Гипотеза Ходжа (сформулирована в 1941 году)
Область: алгебраическая геометрия

В реальности существуют множество как простых, так и куда более сложных геометрических объектов. Чем сложнее объект, тем труднее его изучать. Сейчас учеными придуман и вовсю применяется подход, основанный на использовании частей одного целого ("кирпичики") для изучения этого объекта, как пример - конструктор. Зная свойства «кирпичиков», становится возможным подступиться и к свойствам самого объекта. Гипотеза Ходжа в данном случае связана с некоторыми свойствами как «кирпичиков», так и объектов.
Это очень серьезная проблема алгебраической геометрии: найти точные пути и методы анализа сложных объектов с помощью простых "кирпичиков".

Уравнения Янга - Миллса (сформулированы в 1954 году)
Область: геометрия и квантовая физика

Физики Янг и Миллс описывают мир элементарных частиц. Они, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения в области квантовой физики. Тем самым был найден путь к объединению теорий электромагнитного, слабого и сильного взаимодействий.
На уровне микрочастиц возникает «неприятный» эффект: если на частицу действуют несколько полей сразу, их совокупный эффект уже нельзя разложить на действие каждого из них поодиночке. Это происходит по причине того, что в этой теории друг к другу притягиваются не только частицы материи, но и сами силовые линии поля.
Хотя и уравнения Янга - Миллса приняты всеми физиками мира, экспериментально теория, касающаяся предсказывания массы элементарных частиц, не доказана.

Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)
Область: алгебра и теория чисел

Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений . В доказательстве теоремы Ферма эллиптические кривые заняли одно из важнейших мест. А в криптографии они образуют целый раздел имени себя, и на них основаны некоторые российские стандарты цифровой подписи.
Задача в том, что нужно описать ВСЕ решения в целых числах x, y, z алгебраических уравнений, то есть уравнений от нескольких переменных с целыми коэффициентами.

Проблема Кука (сформулирована в 1971 году)
Область: математическая логика и кибернетика

Ее еще называют "Равенство классов P и NP", и она является одной из наиболее важных задач теории алгоритмов, логики и информатики.
Может ли процесс проверки правильности решения какой-либо задачи длиться дольше, чем время, затраченное на само решение этой задачи (независимо от алгоритма проверки)?
На решение одной и той же задачи, порой, нужно разное количество времени, если изменить условия и алгоритмы. К примеру: в большой компании вы ищете знакомого. Если вы знаете, что он сидит в углу или за столиком - то вам понадобится доли секунд, чтобы его увидеть. Но если вы не будете знать точно, где находится объект, то затратите больше времени на его поиски, обходя всех гостей.
Основным вопросом является: все или не все задачи, которые можно легко и быстро проверить, можно также легко и быстро решить?

Математика, как может показаться многим, не так далека от реальности. Она является тем механизмом, с помощью которого можно описать наш мир и многие явления. Математика всюду. И прав был В.О. Ключевский, который изрек: «Не цветы виноваты, что слепой их не видит» .

И в заключение….
Одну из самых популярных теорем математики - Великую (Последнюю) теорему Ферма: аn + bn = cn - не могли доказать 358 лет! И только в 1994 году британец Эндрю Уайлз смог дать ей решение.

Нерешаемые задачи — это 7 интереснейших математических проблем. Каждая из них была предложена в свое время известными учеными, как правило, в виде гипотез. Вот уже много десятилетий над их решением ломают головы математики во всем мире. Тех, кто добьется успеха, ждет вознаграждение в миллион американских долларов, предложенное институтом Клэйя.

Институт Клэйя

Под таким названием известна частная некоммерческая организация, штаб-квартира которой находится в Кембридже, штат Массачусетс. Она была основана в 1998 году гарвардским математиком А. Джеффи и бизнесменом Л. Клэйем. Целью деятельности института является популяризация и развитие математических знаний. Для ее достижения организация выдает премии ученым и спонсирует многообещающие исследования.

В начале 21 столетия Математический институт Клэйя предложил премию тем, кто решит проблемы, которые известны, как самые сложные нерешаемые задачи, назвав свой список Millennium Prize Problems. Из «Списка Гильберта» в него вошла только гипотеза Римана.

Задачи тысячелетия

В список института Клэйя изначально входили:

  • гипотеза о циклах Ходжа;
  • уравнения квантовой теории Янга — Миллса;
  • гипотеза Пуанкаре;
  • проблема равенства классов Р и NP;
  • гипотеза Римана;
  • о существовании и гладкости его решений;
  • проблема Берча — Свиннертон-Дайера.

Эти открытые математические проблемы представляют огромный интерес, так как могут иметь множество практических реализаций.

Что доказал Григорий Перельман

В 1900 году известный ученый-философ Анри Пуанкаре предположил, что всякое односвязное компактное 3-мерное многообразие без края гомеоморфно 3-мерной сфере. Ее доказательство в общем случае не находилось в течение века. Лишь в 2002-2003 годах петербургский математик Г. Перельман опубликовал ряд статей с решением проблемы Пуанкаре. Они произвели эффект разорвавшейся бомбы. В 2010 году гипотеза Пуанкаре была исключена из списка «Нерешенные задачи» института Клэйя, а самому Перельману было предложено получить полагающееся ему немалое вознаграждение, от которого последний отказался, не объяснив причин своего решения.

Самое понятное объяснение того, что удалось доказать российскому математику, можно дать, представив, что на бублик (тор), натягивают резиновый диск, а затем пытаются стянуть края его окружности в одну точку. Очевидно, что это невозможно. Другое дело, если произвести этот эксперимент с шаром. В таком случае вроде бы трехмерная сфера, получившаяся из диска, окружность которого стянули в точку гипотетическим шнуром, будет трехмерной в понимании обычного человека, но двумерной с точки зрения математики.

Пуанкаре предположил, что трехмерная сфера является единственным трехмерным «предметом», поверхность которой можно стянуть в одну точку, а Перельману удалось это доказать. Таким образом, список «Нерешаемые задачи» сегодня состоит из 6 проблем.

Теория Янга-Миллса

Эта математическая проблема была предложена ее авторами в 1954-м году. Научная формулировка теории имеет следующий вид: для любой простой компактной калибровочной группы квантовая пространственная теория, созданная Янгом и Милльсом, существует, и при этом имеет нулевой дефект массы.

Если говорить на языке, понятном для обычного человека, взаимодействия между природными объектами (частицами, телами, волнами и пр.) делятся на 4 типа: электромагнитное, гравитационное, слабое и сильное. Уже много лет физики пытаются создать общую теорию поля. Она должна стать инструментом для объяснения всех этих взаимодействий. Теория Янга-Миллса — это математический язык, с помощью которого стало возможно описать 3 из 4-х основных сил природы. Она не применима к гравитации. Поэтому нельзя считать, что Янгу и Миллсу удалось создать теорию поля.

Кроме того, нелинейность предложенных уравнений делает их крайне сложными для решения. При малых константах связи их удается приближенно решить в виде ряда теории возмущений. Однако пока непонятно, как можно решить эти уравнения при сильной связи.

Уравнения Навье-Стокса

С помощью этих выражений описываются такие процессы, как воздушные потоки, течение жидкостей и турбулентность. Для некоторых частных случаев аналитические решения уравнения Навье-Стокса уже были найдены, однако сделать это для общего пока никому не удалось. В то же время, численное моделирование для конкретных значений скорости, плотности, давления, времени и так далее позволяет добиться прекрасных результатов. Остается надеяться, что у кого-нибудь получится применить уравнения Навье-Стокса в обратном направлении, т. е. вычислить с их помощью параметры, либо доказать, что метода решения нет.

Задача Берча — Свиннертон-Дайера

К категории «Нерешенные задачи» относится и гипотеза, предложенная английскими учеными из Кембриджского университета. Еще 2300 лет назад древнегреческий ученый Эвклид дал полное описание решений уравнения x2 + y2 = z2.

Если для каждого из простых чисел посчитать количество точек на кривой по его модулю, получится бесконечный набор целых чисел. Если конкретным образом «склеить» его в 1 функцию комплексной переменной, тогда получится дзета-функция Хассе-Вейля для кривой третьего порядка, обозначаемая буквой L. Она содержит информацию о поведении по модулю всех простых чисел сразу.

Брайан Берч и Питер Свиннертон-Дайер выдвинули гипотезу относительно эллиптических кривых. Согласно ей, структура и количество множества ее рациональных решений связаны с поведением L-функции в единице. Недоказанная на данный момент гипотеза Берча — Свиннертон-Дайера зависит от описания алгебраических уравнений 3 степени и является единственным сравнительно простым общим способом расчета ранга эллиптических кривых.

Чтобы понять практическую важность этой задачи, достаточно сказать, что в современной криптографии на эллиптических кривых основан целый класс асимметричных систем, и на их применении основаны отечественные стандарты цифровой подписи.

Равенство классов p и np

Если остальные «Задачи тысячелетия» относятся к чисто математическим, то эта имеет отношение к актуальной теории алгоритмов. Проблема, касающаяся равенства классов р и np, известная также, как проблема Кука-Левина, понятным языком может быть сформулирована следующим образом. Предположим, что положительный ответ на некий вопрос можно проверить достаточно быстро, т. е. за полиномиальное время (ПВ). Тогда правильно ли утверждение, что ответ на него можно довольно быстро отыскать? Еще проще звучит так: действительно ли решение задачи проверить не труднее, чем его найти? Если равенство классов р и np будет когда-либо доказано, то все проблемы подбора можно будет решать за ПВ. На данный момент многие специалисты сомневаются в истинности этого утверждения, хотя не могут доказать обратное.

Гипотеза Римана

Вплоть до 1859 года не было выявлено какой-либо закономерности, которая описывала бы, как распределяются простые числа среди натуральных. Возможно, это было связано с тем, что наука занималась другими вопросами. Однако к середине 19 столетия ситуация изменилась, и они стали одними из наиболее актуальных, которыми начала заниматься математика.

Гипотеза Римана, появившаяся в этот период — это предположение о том, что в распределении простых чисел существует определенная закономерность.

Сегодня многие современные ученые считают, что если она будет доказана, то придется пересмотреть многие фундаментальные принципы современной криптографии, составляющие основу значительной части механизмов электронной коммерции.

Согласно гипотезе Римана, характер распределения простых чисел, возможно, существенно отличается от предполагаемого на данный момент. Дело в том, что до сих пока не было обнаружено какой-либо системы в распределения простых чисел. Например, существует проблема «близнецов», разность между которыми равна 2. Этими числами являются 11 и 13, 29. Другие простые числа образуют скопления. Это 101, 103, 107 и др. Ученые давно подозревали, что подобные скопления существуют и среди очень больших простых чисел. Если их найдут, то стойкость современных криптоключей окажется под вопросом.

Гипотеза о циклах Ходжа

Эта нерешенная до сих пор задача сформулирована в 1941 году. Гипотеза Ходжа предполагает возможность аппроксимации формы любого объекта путем «склеивания» вместе простых тел большей размерности. Этот способ был известен и успешно применяется достаточно давно. Однако не известно, до какой степени можно производить упрощение.

Теперь вы знаете, какие нерешаемые задачи существуют на данный момент. Они являются предметом исследования тысяч ученых во всем мире. Остается надеяться, что в ближайшее время они будут решены, а их практическое применение поможет человечеству выйти на новый виток технологического развития.

  1. 1 Murad :

    Мы равенство Zn = Xn + Yn считали Диофанта уравнение или великой теоремой Ферма, а это есть решение уравнения (Zn- Xn) Xn = (Zn – Yn) Yn. Тогда Zn =-(Xn + Yn) есть решение уравнения (Zn + Xn) Xn = (Zn + Yn) Yn. Эти уравнения и решения связаны со свойствами целых чисел и действия над ними. Значит, не знаем свойства целых чисел?! Обладая такими ограниченными знаниями не раскроем истину.
    Рассмотрим решения Zn = +(Xn + Yn) и Zn =-(Xn + Yn), когда n = 1. Целые числа + Z образуются с помощью 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Они делиться на 2 целые числа +X – четные, последние правые цифры: 0, 2, 4, 6, 8 и +Y – нечетные, последние правые цифры: 1, 3, 5, 7, 9, т.е. + X = + Y. Количество Y = 5 – нечетных и X = 5 – четных чисел равно: Z = 10. Удовлетворяет уравнению: (Z – X) X = (Z – Y) Y, а решение +Z = +X + Y= +(X + Y).
    Целые числа -Z состоят из объединения -X – четные и -Y – нечетные, и удовлетворяет уравнению:
    (Z + X) X = (Z + Y) Y, а решение -Z = – X – Y = – (X + Y).
    Если Z/X = Y или Z / Y = X, то Z = XY; Z / -X = -Y или Z / -Y = -X, то Z = (-X)(-Y). Деление проверяется умножением.
    Однозначные положительные и отрицательные числа состоят из 5 нечетных и 5 нечетных чисел.
    Рассмотрим случай n = 2. Тогда Z2 = X2 + Y2 является решения уравнения (Z2 – X2) X2 = (Z2 – Y2) Y2 и Z2 = -(X2 + Y2) есть решение уравнения (Z2 + X2) X2 = (Z2 + Y2) Y2. Мы Z2 = X2 + Y2 считали теоремой Пифагора и тогда решение Z2 = -(X2 + Y2) является этой же теоремой. Знаем, что диагональ квадрата делить его на 2 части, где диагональ является гипотенузой. Тогда справедливы равенства: Z2 = X2 + Y2, и Z2 = -(X2 + Y2) где X и Y катеты. И еще решения R2 = X2 + Y2 и R2 =- (X2 + Y2) являются круги, центры являются началом квадратной системы координат и с радиусом R. Их можно записать в виде (5n)2 = (3n)2 + (4n)2 , где n – целые положительные и отрицательные, и являются 3 последовательные числа. Также решениями являются 2-разрядные числа XY, которые начинается с 00 и заканчивается 99 и есть 102 =10х10 и считать 1 век = 100 годов.
    Рассмотрим решения, когда n = 3. Тогда Z3 = X3 + Y3 решения уравнения (Z3 – X3) X3 = (Z3 – Y3) Y3.
    3 -разрядные числа XYZ начинается с 000 и заканчивается 999 и есть 103 =10х10х10 =1000 годов=10веков
    Из 1000 кубиков одинакового размера и цвета можно составить рубик порядка 10. Рассмотрим рубик порядка +103=+1000 – красный и -103=-1000 – синий. Они состоят из 103= 1000 кубиков. Если разложим, и кубики поставить в один ряд или друг на друга, без промежутков, то получим горизонтальный или вертикальный отрезок длины 2000. Рубик – большой куб, покрыто маленькими кубами, начиная с размера 1бутто = 10ст.-21, и в него нельзя добавить или убавить одного куба.
    - (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9+10); + (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9+10);
    - (12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92+102); + (12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92+102);
    - (13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93+103); + (13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93+103).
    Каждое целое число 1. Сложить 1(единицы) 9 + 9 =18, 10 + 9 =19, 10 +10 =20, 11 +10 =21, а произведения:
    111111111 х 111111111= 12345678987654321; 1111111111 х 111111111= 123456789987654321.
    0111111111х1111111110= 0123456789876543210; 01111111111х1111111110= 01234567899876543210.
    Эти операции можно выполнить 20-разрядных калькуляторах.
    Известно, что +(n3 – n) всегда делится на +6, а – (n3 – n) делится на -6. Знаем, что n3 – n = (n-1)n(n+1). Это есть 3 последовательные числа (n-1)n(n+1), где n – четное, то делится на 2, (n-1) и (n+1) нечетные, делятся на 3. Тогда (n-1)n(n+1) всегда делится на 6. Если n=0, то (n-1)n(n+1)=(-1)0(+1), n=20, то(n-1)n(n+1)=(19)(20)(21).
    Знаем, что 19 х 19 = 361. Это означает, что одного квадрата окружают 360 квадратов и тогда одного куба окружают 360 кубов. Выполняется равенство: 6 n – 1 + 6n. Если n=60, то 360 – 1 + 360, а n=61, то 366 – 1 + 366.
    Из вышеуказанных утверждений вытекают обобщения:
    n5 – 4n = (n2-4) n (n2+4); n7 – 9n = (n3-9) n (n3+9); n9 –16 n= (n4-16) n (n4+16);
    0… (n-9) (n-8) (n-7) (n-6) (n-5) (n-4) (n-3) (n-2) (n-1)n(n+1) (n+2) (n+3) (n+4) (n+5) (n+6) (n+7) (n+8) (n+9)…2n
    (n+1) х (n+1) = 0123… (n-3) (n-2) (n-1) n (n+1) n (n-1) (n-2) (n-3)…3210
    n! = 0123… (n-3) (n-2) (n-1) n; n! = n (n-1) (n-2) (n-3)…3210; (n+1)! = n! (n +1).
    0 +1 +2+3+…+ (n-3) + (n-2) + (n-1) +n=n (n+1)/2; n + (n-1) + (n-2) + (n-3) +…+3+2+1+0=n (n+1)/2;
    n (n+1)/2 + (n+1) + n (n+1)/2 = n (n+1) + (n+1) = (n+1) (n+1) = (n+1)2.
    Если 0123… (n-3) (n-2) (n-1) n (n+1) n (n-1) (n-2) (n-3)…3210 х 11=
    = 013… (2n-5) (2n-3) (2n-1) (2n+1) (2n+1) (2n-1) (2n-3) (2n-5)…310.
    Любое целое число n есть степени 10, имеет: – n и +n, +1/ n и -1/ n, нечетное и четное:
    - (n + n +…+ n) =-n2; – (n x n x…x n) = -nn; – (1/n + 1/n +…+ 1/n) = – 1; – (1/n x 1/n x…x1/n) = -n-n;
    + (n + n +…+ n) =+n2; + (n x n x…x n) = + nn; + (1/n +…+1/n) = + 1; + (1/n x 1/n x…x1/n) = + n-n.
    Ясно, что если любое целое число сложить само себя, то увеличиться в 2 раза, а произведение будет квадратом: X = a, Y = a, X+Y = a +a = 2a; XY = a x a =a2. Это считали теоремой Виета – ошибка!
    Если в данное число добавить и отнять число b, то сумма не меняется, а произведение меняется, например:
    X = a + b, Y =a – b, X+Y = a + b + a – b = 2a; XY = (a + b) x (a –b) = a2- b2.
    X = a +√b , Y = a -√b , X+Y = a +√b + a – √b = 2a; XY = (a +√b) x (a -√b) = a2- b.
    X = a + bi, Y =a – bi, X+Y = a + bi + a – bi = 2a; XY = (a + bi) x (a –bi) = a2+ b2.
    X = a +√b i, Y = a – √bi, X+Y = a +√bi+ a – √bi =2a, XY = (a -√bi) x (a -√bi) = a2+b.
    Если вместо букв a и b поставить целые числа, то получим парадоксы, абсурды, и недоверия математике.