Кто открыл торий. Путь наименьшего сопротивления

Содержание статьи

ТОРИЙ – Th (Thorium), химический элемент III группы периодической системы элементов, металл, относится к актиноидам, атомный номер 90, атомная масса 232,0381. Торий радиоактивен, стабильных изотопов не имеет, наиболее долгоживущие изотопы 230 Th (период полураспада 7,5·10 4 лет) и 232 Th (период полураспада 1,4·10 10 лет). В природе наиболее распространен изотоп 232 Th, его содержание в земной коре 8·10 -4 %.

Интерес к соединениям тория возник после того, как в 1885 венский химик Ауэр фон Вельсбах (первооткрыватель химического элемента неодима) обнаружил, что если ввести в пламя газовой горелки оксид тория, то он очень быстро нагревается до состояния белого каления и испускает яркий белый свет. Обнаруженное явление позволяло простым способом превращать часть тепловой энергии газовой горелки в световую. В результате поиска минералов, содержащих торий в заметном количестве, на берегу Атлантического океана в Бразилии был обнаружен минерал монацит, представлявший собой смесь фосфатов церия, лантана и тория, содержание тория в нем достигало 10%. Добыча не составляла труда, монацитовый песок лежал прямо на берегу. Тысячи тонн этого минерала стали отправлять на океанских кораблях из Бразилии в Европу на переработку. Позже залежи моноцита были найдены США, Индии и на островах Цейлон и Мадагаскар.

Одновременно с этим была разработана своеобразная технология, позволяющая помещать соединения тория в горелку: из легкой ткани изготавливали тонкие колпачки, которые пропитывали солями тория, затем волокна ткани осторожно выжигали и получали легкую скорлупку, которую помещали в пламя газовой горелки. Такие колпачки по имени их создателя стали называть ауэровскими. Тусклое газовое освещение городов Европы изменилось коренным образом, вместо желтоватого неровного пламени газового рожка появился источник яркого белого света. Ауэровские колпачки почти в 20 раз увеличили яркость газового освещения и втрое снизили его стоимость. Производство таких колпачков в отдельные годы достигало 300 миллионов штук (в 1910-ые газовое освещение стало вытесняться электрическим). Фактически торий был первым радиоактивным элементом, появившимся почти в каждом доме, но из-за слабой радиоактивности угрозы для здоровья он не представлял.

Физические свойства.

Серебристо-белый пластичный металл, образует сплавы со многими металлами. Температура плавления – 1750° С, температура кипения – 4200° С, плотность – 7,24 г/см 3 , при температуре ниже 1,4 К становится сверхпроводником.

Химические свойства.

Торий весьма реакционноспособен – быстро тускнеет на воздухе, в кипящей воде покрывается пленкой ThO 2 . Мелкодисперсный металлический торий вспыхивает на воздухе из-за энергичного окисления. Торий растворим в разбавленных минеральных кислотах: соляной, азотной, серной; концентрированной азотной кислотой он пассивируется, не реагирует со щелочами. Наиболее устойчивая степень окисления у Th(IV), есть и соединения с более низкой степенью окисления: Th (II) I 2 и Th (III) I 3 . При участии ионов щелочных металлов соединения тория легко образуют двойные соли K 2 , Na 2 , а также смешанные оксиды К 2 ТhO 3 . В водных растворах ионы тория образуют гидроксо-ионы + , 6+ , 4+

Получение.

Содержащие торий минералы, например, монацитовый песок, подвергают сернокислотному расщеплению, полученную пасту нейтрализуют и затем обрабатывают соляной кислотой. Отделение сопутствующих элементов основано на различной растворимости полученных хлоридов. Иногда используют экстракцию трибутилфосфатом, позволяющую более тонко отделить примеси. Металлический торий получают из ThCl 4 восстановлением с помощью Na, Са или Mg при 900–1000° С.

Соединения тория.

При нагревании тория в атмосфере водорода при 400–600 °С образуется гидрид ThH 2 Темно-серые кристаллы, быстро разлагающиеся при действии влаги воздуха с образованием диоксида.

Диоксид ТhO 2 образуется при сгорании металла на воздухе, при прокаливании гидроксида, а также некоторых солей – нитрата, карбоната. Это исключительно высокоплавкое соединение – т. пл. 3350° С, т. кип. 4400° С; реагирует с оксидами металлов при 600–800° С, образуя двойные оксиды (тораты), например, К 2 ТhO 3 , BaThO 3 , ThTi 2 O 6 . ТhO 2 устойчив к действию кислот и восстановителей;

Гидроксид Th(ОН) 4 получают взаимодействием солей тория с растворами щелочей. Аморфное вещество; устойчиво при 260–450° С, выше 470° С превращается в ThO 2.

Монокарбид ThC получают взаимодействием металлического тория со стехиометрическим количеством углерода, его т. пл. 2625° С. Дикарбид ThC 2 получают взаимодействием металлического тория с избытком углерода или восстановлением ТhО 2 углеродом при 1500° С. Его т. пл. 2655° С, т. кип. 5000° С, разлагается водой и разбавленными кислотами с образованием углеводородов, на воздухе окисляется при 600–700° С до ThO 2 .

Тетрагалогениды ТhНа1 4 (Hal = F, Cl, Br, I) получают при нагревании металлического тория или ThO 2 при 300–400° С с соответствующим галогенидами или галогенводородами. Тетрафторид ThF 4 имеет т. пл. 1100° С, т. кип. 1650° С, растворим в воде, образует кристаллогидраты. Тетрахлорид ThCl 4 имеет т. пл. 770° С, т. кип. 921° С, растворим в воде, низших спиртах, эфирах, ацетоне, бензоле. Образует гидраты с 2, 4, 7 и 12 молекулами воды.

Тетрабромид ThBr 4 имеет т. пл. 679° С, т. кип. 857° С, образует гидраты с 7, 8, 10 и 12 молекулами воды, а также сольваты с аммиаком и аминами. Тетраиодид ThI 4 имеет т. пл. 566° С, т. кип. 837° С, хорошо растворим в воде с образованием гидратов, при нагревании и действии света разлагается с выделением I 2 .

Применение.

Торий используется в качестве легирующей добавки, упрочняющей магниевые сплавы, введение тория в состав вольфрамовых нитей для электроламп накаливания увеличивает срок их службы.

Оксид тория применяется как огнеупорный материал, в качестве компонента катализаторов, его также добавляют в состав дуговых углей для увеличения яркости электрической дуги, используемой в прожекторах. Фактически, это продолжение идеи «ауэровских колпачков».

В последние годы Ауэровские колпачки вновь «вернулись к жизни». Для тех, кто длительно работает в полевых условиях, в экспедициях, а также для туристов выпускают газовые баллончики с прикрепленной горелкой, поверх которой располагают Ауэровский колпачок, прикрытый стеклянным плафоном.

Подобные источники света намного экономичнее электрических светильников такой же яркости, использующих батареи или аккумуляторы. В настоящее время торий рассматривают как перспективное ядерное топливо. При облучении нейтронами в уран-ториевых реакторах изотоп 232Тh превращается в делящийся изотоп урана 233U, пригодный для использования в ядерных реакторах. Запасы тория в земной коре (3,3 × 106 т) соизмеримы с запасами урана (3,5 × 106 т).

Михаил Левицкий

Торий получил название за 15 лет до того, как был открыт. В 1815 г. Берцелиус, анализируя один редкий минерал из округа Фалюн в Швеции, пришел к заключению, что в нем содержится новый металл, который Берцелиус поспешил наименовать торием. И хотя это заключение было совершенно ошибочным, в те времена мало кто мог оспаривать результаты анализа, сделанного столь авторитетным ученым. Ошибку обнаружил 10 лет спустя сам Берцелиус. Оказалось то, что он принял за окисел нового металла, было основным фосфатом иттрия. Однако название торий оказалось весьма живучим. В 1828 г. Берцелиус получил из Норвегии образец минерала, найденного в сиенитах на острове Левен. Черный тяжелый мягкий минерал (он легко резался ножом) был похож на гадолинит и в нем можно было подозревать присутствие тантала. По просьбе норвежских ученых отца и сына Эсмарк Берцелиус сделал анализ минерала и обнаружил, что он состоит из кремнезема и окисла неизвестного металла, который вновь получил название торий (Thorium) от имени древнескандинавского божества Тора. Эсмарки предложили назвать новый минерал в честь Берцелиуса берцелитом, но сам Берцелиус дал ему общепринятое название торит (силикат тория). Попытки Берцелиуса выделить торий в металлическом виде не увенчались успехом. Это сделал Нильсон в 1882 г. Долгое время торий не привлекал к себе особого внимания химиков и лишь после открытия радиоактивности началась новая страница истории тория. После 1898 г., когда Кюри-Склодовская и Шмидт (Мюнстер) обнаружили независимо друг от друга радиоактивность тория, начались многочисленные исследования, приведшие к открытию ряда продуктов радиоактивного распада тория. В 1902 г. Резерфорд и Содди выделили из раствора ториевой соли продукт, названный ими торием-Х; в 1905 г. Ган, работавший у Рамзая, открыл радиоторий в минерале торините из Цейлона; в 1907 г. он же открыл один из продуктов распада тория - мезоторий (мезоторий-I и мезоторий-П); позже были открыты и другие члены ториевого ряда. В русской литературе первых десятилетий XIX в. название торий встречается еще до открытия зтого металла. Так, у Двигубского (1822) говорится о ториновой земле, у Соловьева (1824) - о торинии, у Страхова (1825) - о торине, встречаются также названия тор, торинум. Начиная с Щеглова (1830) в русской химической литературе обычно употребляется название торий.

Элемент торий был открыт в 1828 г. Берцелиусом в минерале, найденном в Норвегии и позже названном торитом (ThSi04). Элемент назван по имени бога грома в скандинавской мифологии - Тора.

Чистый торий был получен только в 1934 г. ван Аркелем термической диссо­циацией иодида тория. Радиоактивность тория была обнаружена в 1896 г. Кюри.

Уран открыт в 1789 г. Клапротом в урановой смолке (U3Og). Более 40 лет после открытия за металлический уран принимали его "диоксид. Только в 1841 г. Пелиго был получен металлический уран восстановлением его хлорида калием. Радиоактивность минералов ураиа была открыта в 1896 г. Беккерелем. В 1898 г. Мария и Пьер Кюри открыли радий в урановых рудах.

До 1900 г. урановые руды перерабатывали в небольших количествах с целью получения соедииевий ураиа, применявшихся в живописи (урановая желтая), для окраски стекла и керамики. С 1900 по 1942 г. урановые руды перерабатывали главным образом для извлечения радия. С 1942 г. и по настоящее время основ­ная цель переработки руд - ураиа для ядерных реакторов.

Свойства тория и урана

В 1946 г. Г. Сиборг выдвинул гипотезу, согласно которой в Периодической системе после актииия начинается новая переходная группа элементов актини­ды (или актиноиды), подобная лантаноидам, в которой заполняется оболочка 5/. Эта точка зрения в настоящее время общепринята. К ряду актиноидов отно­сят торий, протактиний, ураи и заураиовые элементы (нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобе­лий). Первые члены этого ряда - торий, протактиний и ураи, обычно включав­шиеся соответственно в IV, V и VI побочные группы Периодической системы, ие могут по основным химическим свойствам рассматриваться как аналоги актииия и лантаноидов. Кроме того, спектральные исследования указывают иа отсутст­вие 5/-электроиов у тория и протактиния, а возможно и у ураиа. Следует, од­нако, учитыватать близость энергий электронов иа уровнях Sf и 6d у атомов тяжелых элементов, что обусловливает легкость перехода электронов с одного уровня ва другой. Имеется ряд доводов в пользу отнесения тория и урана к группе актиноидов. Так, в металлическом состоянии торий и уран (так же, как и траисураииды) близки по свойствам лантаноидам и резко отличаются от цир­кония, тантала и вольфрама. Свойства химических соединений ураиа значитель­но отличаются от свойств соединений вольфрама.

Хотя торий по химическим свойствам несомненно близок цирконию и гафнию, ио большее сходство прослеживается между торием и четырехвалентным церием. Активоиды подобно лантаноидам отличаются парамагнитными свойствами. Измене­ние магнитной восприимчивости катионов урана и траисуранидов в водных рас­творах аналогично и для ряда лантаноидов.

Природный торий содержит практически один изотоп 2^Th (Ti/Z = 1,39* * 1010 лет), являющийся родоначальником радиоактивного семейства, заканчива­ющегося изотопом свинца 2gfPb. Природный уран состоит, из трех ° изотопов с массовыми числами 238 (99,28 %)," 235 (0,71 %) и 234 (0,005 %). Изотопы 238U (Гi/2 = 4,5" 109 лет) и 235U (Т\/г - 7,1 10* лет) являются родоначальниками радиоактивных семейств ряда (4п + 2) и (4л + 3) соответственно.

Физические свойства

Торий мягкий, серебристо-белый металл ^в свежем срезе). Известны две крис­таллические модификации тория. До 1400 QC устойчива (Х-форма с гранецентри - рованной кубической решеткой, выше 1400 С ^-форма с объемноцентрированной кубической решеткой.

Уран-пластичный металл серо-стального цвета. Известны три его модифика­ции: а-уран устойчив до 662 С, кристаллизуется в орторомбической системе; /3-уран устойчив в интервале 662 - 769 С, структура тетрагональная; у-уран с кубической гранецентрированной структурой, устойчив выше 769 С. Ниже приведены некоторые физические свойства тория и урана:

Торий Уран

Атомный номер 90 92

Атомная масса "233,038 238,03

Плотность р 0 , г/см3 11,7 18,5-19

Температура, °С:

TOC \o "1-3" \h \z плавления 1750 ИЗО

Кипения 3500-4200 3700-4200

Удельное электросопротивление

Р о -106, Ом-см 13-18 30,0

Сечение захвата тепловых нейтронов

П-102", см2 . 7,31 7,68

(природная смесь изотопов)

Работа выхода электронов, эВ.... 3,51 3,27

Временное сопротивление, МПа.... 200-220 400-800*

Твердость НВ, МПа 530-700 1500 *

Модуль упругости Е 0 , ГПа 70 190

В зависимости от режима отжига деформированного металла. После отжига деформированного металла при 770 °С. Механические свойства урана сильно зависят (учитывая анизотропию крис­таллов металла) от режима механической и термической обработки. Нагрев ура­на при температурах устойчивости /3- и ^-модификаций с последующей закалкой не приводит к фиксированию /3- или у-форм, но вызывает измельчение зериа и ликвидирует текстуру, возникающую при механической обработке.

Химические свойства

На воздухе торий и уран при обычной температуре медленно окисляются, по­крываясь черной пленкой оксида, тормозящей, но не приостанавливающей корро­зию. Уран при температуре выше 150 С, а торий выше 400 С быстро окисля­ются.

В системе торий - кислород известен только один устойчивый оксид ThOj. Диоксид тория плавится при 3200 С и обладает высокой химической проч­ностью.

В системе ураи-кислород установлено шесть оксидов, среди них важнейшие U02, U308 и U03. Растворимость кислорода в тории и уране незначительна. Ургн и торий активно реагируют с водородом при 250 - 300 и 400 - 600 С со­ответственно с образованием гидридов (UH3, ThH2 и ThH375). При этом перво­начальная заготовка превращается в порошок. Гибрид урана разлагается выше 430 С, гидрид тория - в вакууме при 700 - 800 С.

Металлы при температурах 600 - 800 С реагируют с азотом, образуя нитри­ды (U2N3, Th2N3, UN, ThN). Нитриды урана труднорастворимы в кислотах и инертны к растворам щелочей. Нитриды тория разлагаются водой с выделением аммиака. С углеродом уран и торий образуют карбиды (UC, U2C3, UC2, ThC, ThC2). Карбиды разлагаются водой с выделением углеводородов.

С фтором уран и торий реагируют на холоду, с другими галогенами - при нагревании. Среди фторидов урана важнейшие UF6 (используют для разделения изотопов урана) и UF4 -^служит исходным соединением для производства урана.

^ба металла до 100 С медленно корродируют в воде, водяной пар выше 200 С активно окисляет уран и торий с образованием U02 пар выше 200 °С ак­тивно окисляет уран и торий с образованием U02 и Th02. Торий на холоду мед­ленно корродирует в азотной, серной и плавиковой кислотах, легко растворя­ется в соляной кислоте. Растворы щелочей слабо действуют на торий.

Плавиковая кислота слабо действует на уран (образуется защитная пленка UF4). Металл на холоду не реагирует с разбавленной серной кислотой, при на­гревании скорость коррозии примерно та же, что в воде. Соляная кислота ак­тивно растворяет уран, в азотной кислоте растворение протекает с умеренной скоростью.

Химические соединения тория

Наиболее устойчивы производные высшей степени окисления тория +4. Соеди­нения низшей степени окисления в водных растворах не обнаружены. Для иоиов Th4+ в водных растворах характерна способность к образованию комплексных соединений. К наиболее важным соединениям тория, которые выделяются из вод­ных растворов, относятся:

Гидроксид тория Th(OH)4 - осаждается при рН = 3,5+3,6 в виде аморфного осадка. Произведение растворимости ~1040;

Нитрат тория - хорошо растворимая соль, выделяется в составе кристалло­гидрата Th(NOj)4 лН20(л = 5 или 6). Выше 160 С разлагается с образовани­ем ТЮ2;

Сульфат тория Th(SOj2 пН20 - умеренно растворим в воде, образует ма­лорастворимые двойные сульфаты с сульфатами щелочных металлов Ме2S04 " Thfcoj, /»Н,0;

Фторид тория ThF4 - осаждается с различным числом молекул воды, раство­римость в воде 1,7 " Ю-4 г/л. Соль малорастворима в минеральных кислотах;

Оксалат тория ThfCflJ " 6Н20 - практически нерастворим в воде и 3 - 4 н. растворах кислот. Соль растворяется в растворах оксалатов щелочных ме­таллов и аммония с образованием комплексных солей типа Afe4;

Основной карбонат ТНОСОЪ - 8НгО - малорастворим в воде, растворяется в растворах карбонатов щелочных металлов и аммония с образованием комплексов MejThfcO^j];

Фосфаты тория ТН3(Р04)4 4НгО и ThP207 2НгО - малорастворимые соли, вы­деляются из слабокислых растворов.

Химические соединения урана

В нейтральных и кислых растворах шестивалентный уран существует в виде иона уранила VO§+, окрашенного в желтый цвет. Из растворов в интервале рН = = 3,8+6,0 (в зависимости от концентрации урана) выделяется малорастворимый гидроксид уранила Ш2(ОН)2. К хорошо растворимым солям уранила относятся. нитрат U02(N0j)2, сульфат U02S04, хлорид Ш2С12, фторид U02F2, ацетат U02(CH3C00)2. Эти соли выделяются из растворов в виде кристаллогидратов с различным числом молекул воды.

Среди малорастворимых солей уранила, используемых в технологии, следует назвать оксалат ураиила UOjCjO^ фосфаты ураиила U02HP04 и (U02)2P207, ура - нилфосфат аммония NH4U02P04, уранилванадат натрия NaU02U04, ферроциаиид (U02)2.

Для иона уранила характерна склонность к образованию комплексных соеди­нений. Так, известны комплексы с ионами фтора типа ~, 3- и 4- нитратные комплексы 2~ сернокислые ком­плексы 4-, карбонатные комплексы {^{1}n}}\ ^{233}Th{\xrightarrow[{}]{\beta ^{-}}}\ ^{233}Pa{\xrightarrow[{}]{\beta ^{-}}}\ ^{233}U}}}

Уран-233 способен к делению подобно урану-235 и плутонию-239 , что открывает более чем серьёзные перспективы для развития атомной энергетики (