Линейная регрессия прогнозирование. Отбор факторов при построении множественной регрессии

В прогнозных расчетах по уравнению регрессии определяется предсказываемое значение как точечный прогнозпри
то есть путем подстановки в линейное уравнение регрессии
соответствующего значенияx. Однако точечный прогноз явно нереален, поэтому он дополняется расчетом стандартной ошибкито есть
, и соответственно мы получаем интервальную оценку прогнозного значения:

(2.29)

Для того чтобы понять, как строится формула для определения величин стандартной ошибки
тогда уравнение регрессии примет вид:

Отсюда следует, что стандартная ошибка
зависит от ошибкии ошибки коэффициента регрессииb, то есть:

(2.31)

Из теории выборки известно, что

Используя в качестве оценки остаточную дисперсию на одну степень свободы, получим формулу расчета ошибки среднего значения переменнойy:

(2.32)

Ошибки коэффициента регрессии, как уже было показано, определяется формулой

(2.33)

Считая, что прогнозное значение фактора
, получим следующую формулу расчета стандартной ошибки предсказываемого по линии регрессии значения, то есть

. (2.34)

Соответственно
имеет выражение:

(2.35)

Рассмотренная формула стандартной ошибки предсказываемого среднего значения yпри заданном значениихарактеризует ошибку положения линии регрессии. Величина стандартной ошибки
достигает минимума при
и возрастает по мере того, как «удаляется» отв любом направлении. Иными словами, чем больше разность междуи, тем больше ошибки
, с которой предсказывается среднее значениеyдля заданного значения. Можно ожидать наилучшие результаты прогноза, если признак-фактор х находится в центре области наблюдений х, и нельзя ожидать хороших результатов прогноза при удаленииот. Если же значениеоказывается за пределами наблюдаемых значений х, используемых при построении линейной регрессии, то результаты прогноза ухудшаются в зависимости от того, насколькоотклоняется от области наблюдаемых значений фактора х. [И. И. Елисеева с. 72]

2.6 Нелинейная регрессия

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: например, равносторонней гиперболы
параболы второй степени
и др.

Различают два класса нелинейных регрессий:

    регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;

    регрессии, нелинейные по оцениваемым параметрам;

Примером нелинейной регрессии по включенным в нее объясняющим переменным могут служить следующие функции:


К нелинейным регрессиям по оцениваемым параметрам относятся функции:


Нелинейная регрессия по включенным переменным не имеет никаких сложностей для оценки ее параметров. Они определяются, как и в линейной регрессии, методом наименьших квадратов, ибо эти функции линейны по параметрам. Так, в параболе второй степени
заменив переменные
получим двухфакторное уравнение линейной регрессии:

Для оценки параметров которого используется МНК.

Полином любого порядка сводится к линейной регрессии с ее способами оценивания характеристик и проверки гипотез. Как показывает опыт большинства исследователей, между нелинейной полиномиальной регрессии наиболее часто употребляется парабола второй степени; в отдельных вариантах – полином третьего порядка. Ограничения в использовании полиномов наиболее высоких степеней связаны с требованием односторонности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и в соответствии с этим меньше односторонность совокупности по результативному признаку.

Парабола второй степени целесообразна к использованию, если для конкретного промежутка значений фактора изменяется характер взаимосвязи рассматриваемых показателей: прямая взаимосвязь меняется на обратную или обратная на прямую. В такой ситуации определяется значение фактора, при котором достигается максимальное (или минимальное) значение результативного признака: приравниваем к нулю первую производную параболы второй степени:
b+2cx=0

Если же исходные данные не обнаруживают изменения направленности связи, то параметры параболы второго порядка становятся трудно интерпретируемыми, а форма связи часто заменяется другими нелинейными моделями.

Применение МНК для оценки параметров параболы второй степени приводит к следующей системе нормальных уравнений:

(2.36)

Решить ее относительно параметров a,b,cможно методом определителей:

где - определитель системы;

a,b,c– частные определители для каждого из параметров.

При b>0 иc>0 кривая симметрична относительно высшей точки, то есть точки перелома кривой, изменяющей направление взаимосвязи, а конкретно подъем на падение. Такого рода функцию можно наблюдать в экономике труда при исследовании зависимости заработной платы работников физического труда от возраста – с повышением возраста увеличивается заработная плата ввиду одновременного роста опыта и повышения квалификации работника. Приb<0 иc>0 парабола второго порядка симметрична относительно своего минимума, что позволяет определять минимум функции в точке, меняющей направление связи, то есть снижение на рост.

Ввиду симметричности кривой параболу второй степени не всегда возможно применить в конкретных случаях. Параметры параболической взаимосвязи не всегда могут быть логически объяснены. Таким образом, график зависимости не показывает четко выраженной параболы второго порядка, то она может быть заменена другой нелинейной функцией.

В группе нелинейных функций, параметры которых будут оценены МНК, в эконометрике хорошо известна равносторонняя гипербола
Она может быть использована для объяснения взаимосвязи удельных расходов. Стандартным примером является кривая Филлипса, объясняющая нелинейное соотношение между нормой безработицыxи процентом прироста заработной платыy.

Британский экономист А. В. Филлипс установил обратную взаимозависимость процента прироста заработной платы от уровня безработицы.

Если в уравнении равносторонней гиперболы
заменитьнаz, получим линейное уравнение регрессииy=a+bz+e, параметры будут оценены с помощью МНК. Система нормальных уравнений имеет вид:

(2.37)

При b>0 имеем обратную зависимость, которая при х стремящемуся к бесконечности объясняется нижней асимптотой, то есть минимальным предельным значениемy, оценкой которого служит параметрa.

При b<0 имеем медленно повышающуюся функцию с верхней асимптотой при х стремящемуся к бесконечности, то есть с максимальным предельным уровнемy, оценку которого в уравнении дает параметр а.

Среди нелинейных функций в эконометрических исследованиях глубоко используется степенная функция
Это связано с тем, что параметрbв функции имеет четкое экономическое объяснение, то есть являетсякоэффициентом эластичности . Это говорит о том, что величина коэффициентаbпоказывает, на сколько процентов изменится в средним итог, если фактор изменится на 1%.Формула расчета коэффициента эластичности:

(2.38)

где f’(x) – первая производная, характеризующая соотношение приростов результата для соответствующей формы связи.

В связи с тем, что коэффициент эластичности для линейной функции не является величиной постоянной обычно рассчитывается средний показатель эластичности по формуле:

(2.39)

Для оценки параметров степенной функции применяется МНК к линеаризованному уравнению и решается система нормальных уравнений. Параметр bопределяется из системы, а параметр а – после потенцирования величиныlna.

В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям. Поскольку в линейной модели и моделях, нелинейных по переменным, при оценке параметров появляются из критерия
то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным данным результативного признака, а их преобразованным величинам. Это поясняется тем, что оценка параметров основывается на минимизации суммы квадратов отклонений в логарифмах.

При использовании связей среди функций, применяющих lny, в эконометрике преобладают степенные зависимости – это и кривые спроса и предложения, и кривые Энгеля, и производственные функции, и критерии освоения для характеристики связи между трудоемкостью продукции и размерами производства в период освоения выпуска нового вида изделий, и зависимость валового национального дохода от уровня занятости.

При применении линеаризуемых функций, затрагивающих преобразования зависимой переменной y, следует проверить присутствие предпосылок МНК, что бы они не нарушались при преобразовании. При нелинейных отношениях рассматриваемых признаков, приводимых к линейному виду, возможно интервальное оценивание параметров нелинейной функции.

Для внутренне нелинейных моделей, которые путем несложных преобразований не приводятся к линейному виду, оценка параметров не может быть дана привычным МНК. Здесь используются иные подходы. [И. И. Елисеева с. 77]

В прогнозных расчетах по уравнению регрессии определяется предсказываемое (y p ) значение как точечный прогноз при x p = x k , т.е. путем подстановки в уравнение регрессии соответствующего значения x . Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки , т.е. и соответственно, интервальной оценкой прогнозного значения:

Чтобы понять, как строится формула для определения величин стандартной ошибки , обратимся к уравнению линейной регрессии: . Подставим в это уравнение выражение параметра a :

тогда уравнение регрессии примет вид:

Отсюда вытекает, что стандартная ошибка зависит от ошибки y и ошибки коэффициента регрессии b , т.е.

Из теории выборки известно, что . Используя в качестве оценки s 2 остаточную дисперсию на одну степень свободы S 2 , получим формулу расчета ошибки среднего значения переменной y :

Ошибка коэффициента регрессии, как уже было показано, определяется формулой:

.

Считая, что прогнозное значение фактора x p = x k , получим следующую формулу расчета стандартной ошибки предсказываемого по линии регрессии значения, т.е. :

Соответственно имеет выражение:

. (1.26)

Рассмотренная формула стандартной ошибки предсказываемого среднего значения y при заданном значении x k характеризует ошибку положения линии регрессии. Величина стандартной ошибки , как видно из формулы, достигает минимума при , и возрастает по мере того, как "удаляется" от в любом направлении. Иными словами, чем больше разность между x k и x , тем больше ошибка , с которой предсказывается среднее значение y для заданного значения x k . Можно ожидать наилучшие результаты прогноза, если признак-фактор x находится в центре области наблюдений x и нельзя ожидать хороших результатов прогноза при удалении x k от . Если же значение x k оказывается за пределами наблюдаемых значений x , используемых при построении линейной регрессии, то результаты прогноза ухудшаются в зависимости от того, насколько x k отклоняется от области наблюдаемых значений фактора x .

На графике доверительные границы для представляют собой гиперболы, расположенные по обе стороны от линии регрессии (рис. 1.5).



Рис. 1.5 показывает, как изменяются пределы в зависимости от изменения x k : две гиперболы по обе стороны от линии регрессии определяют 95% -ые доверительные интервалы для среднего значения y при заданном значении x .

Однако фактические значения y варьируют около среднего значения . Индивидуальные значения y могут отклоняться от на величину случайной ошибки e , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы S 2 . Поэтому ошибка предсказываемого индивидуального значения y должна включать не только стандартную ошибку , но и случайную ошибку S .



Средняя ошибка прогнозируемого индивидуального значения y составит:

. (1.27)

При прогнозировании на основе уравнения регрессии следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения y , но и от точности прогноза значения фактора x . Его величина может задаваться на основе анализа других моделей, исходя из конкретной ситуации, а также анализа динамики данного фактора.

Рассмотренная формула средней ошибки индивидуального значения признака y () может быть использована также для оценки существенности различия предсказываемого значения, исходя из регрессионной модели и выдвинутой гипотезы развития событий.

Линейная регрессия является наиболее часто используемым видом регрессионно­го анализа. Ниже перечислены три основные задачи, решаемые в маркетинговых исследованиях при помощи линейного регрессионного анализа.

1. Определение того, какие частные параметры продукта оказывают влияние на общее впечатление потребителей от данного продукта. Установление направ­ления и силы данного влияния. Расчет, каким будет значение результирующе­го параметра при тех или иных значениях частных параметров. Например, тре­буется установить, как влияет возраст респондента и его среднемесячный доход на частоту покупок глазированных сырков.

2. Выявление того, какие частные характеристики продукта влияют на общее впе­чатление потребителей от данного продукта (построение схемы выбора продук­та потребителями). Установление соотношения между различными частными па­раметрами по силе и направлению влияния на общее впечатление. Например, имеются оценки респондентами двух характеристик мебели производителя X - цены и качества, - а также общая оценка мебели данного производителя. Требу­ется установить, какой из двух параметров является наиболее значимым для покупате­лей при выборе производителя мебели и в каком конкретном соотношении находится значимость для покупателей данных двух факторов (параметр Цена в х раз более значим для покупателей при выборе мебели, чем параметр Качество).

3. Графическое прогнозирование поведения одной переменной в зависимости от изменения другой (используется только для двух переменных). Как правило, целью проведения регрессионного анализа в данном случае является не столько расчет уравнения, сколько построение тренда (то есть аппроксимирующей кри­вой, графически показывающей зависимость между переменными). По полу­ченному уравнению можно предсказать, каким будет значение одной перемен­ной при изменении (увеличении или уменьшении) другой. Например, требуется установить характер зависимости между долей респондентов, осведомленных о раз­личных марках глазированных сырков, и долей респондентов, покупающих данные марки. Также требуется рассчитать, насколько возрастет доля покупателей сырков марки х при увеличении потребительской осведомленности на 10 % (в результате про­ведения рекламной кампании).

В зависимости от типа решаемой задачи выбирается вид линейного регрессионно­го анализа. В большинстве случаев (1 и 2) применяется множественная линейная регрессия, в которой исследуется влияние нескольких независимых переменных на одну зависимую. В случае 3 применима только простая линейная регрессия, в которой участвуют только одна независимая и одна зависимая переменные. Это связано с тем, что основным результатом анализа в случае 3 является линия трен­да, которая может быть логически интерпретирована только в двухмерном про­странстве. В общем случае результатом проведения регрессионного анализа явля­ется построение уравнения регрессии вида: у = а + Ь, х, + Ь2х2 + ... + Ь„хп, позволяющего рассчитать значение зависимой переменной при различных значе­ниях независимых переменных.

В табл. 4.6 представлены основные характеристики переменных, участвующих в анализе.

Таблица 4.6. Основные характеристики переменных, участвующих в линейном регрессионном анализе

В связи с тем что и множественная и простая регрессии строятся в SPSS одинако­вым способом, рассмотрим общий случай множественной линейной регрессии как наиболее полно раскрывающий суть описываемого статистического метода. Да­вайте рассмотрим, как построить линию тренда с целью статистического прогно­зирования.

Исходные данные:

В ходе опроса респондентов, летающих одним из трех классов (первым, бизнес - или эко­ном-классом), просили оценить по пятибалльной шкале - от 1 (очень плохо) до 5 (отлич­но) - следующие характеристики сервиса на борту самолетов авиакомпании X: комфор­табельность салона, работа бортпроводников, питание во время полета, цена билетов, спиртные напитки, дорожные наборы, аудиопрограммы, видеопрограммы и пресса. Также респондентам предлагалось поставить общую (итоговую) оценку обслуживания на борту самолетов данной авиакомпании.

Для каждого класса полета требуется:

1) Выявить наиболее значимые для респондентов параметры обслуживания на борту.

2) Установить, какое влияние оказывают оценки частных параметров обслуживания на борту на общее впечатление авиапассажиров от полета.

Откройте диалоговое окно Linear Regression при помощи меню Analyze Regres­sion Linear. Из левого списка выберите зависимую переменную для анализа. Это будет Общая оценка сервиса на борту. Поместите ее в область Dependent. Далее в ле­вом списке выберите независимые переменные для анализа: частные параметры сервиса на борту - и поместите их в область Independent(s).

Существует несколько методов проведения регрессионного анализа: enter, stepwise, forward и backward. He вдаваясь в статистические тонкости, проведем регрессион­ный анализ посредством пошагового метода backward как наиболее универсально­го и релевантного для всех примеров из маркетинговых исследований.

Так как задача анализа содержит требование провести регрессионный анализ в раз­резе трех классов полета, выберите в левом списке переменную, обозначающую класс (q5) и перенесите ее в область Selection Variable. Затем щелкните на кнопке Rule, чтобы задать конкретное значение данной переменной для регрессионного анализа. Следует отметить, что за одну итерацию можно построить регрессию толь­ко в разрезе какого-то одного класса полета. В дальнейшем следует повторить все этапы сначала по количеству классов (3), каждый раз выбирая следующий класс.

Если нет необходимости проводить регрессионный анализ в каком-либо разрезе, оставьте поле Selection Variable пустым.

Итак, на экране открылось диалоговое окно Set Rule, в котором вы должны указать, для какого именно класса полета вы хотите построить регрессионную модель. Выберите экономический класс, закодированный как 3 (рис. 4.26).

В более сложных случаях, когда требуется построить регрессионную модель в раз­резе трех и более переменных, следует воспользоваться условным отбором дан­ных (см. раздел 1.5.1). Например, если кроме класса полета есть еще и необходи­мость раздельного построения регрессионной модели для респондентов (мужчин и женщин), необходимо перед открытием диалогового окна Linear Regression про­извести условный отбор анкет респондентов, являющихся мужчинами. Далее про­водится регрессионный анализ по описываемой схеме. Для построения регрес­сии для женщин следует повторить все этапы сначала: вначале выбрать только анкеты респондентов-женщин и затем уже для них построить регрессионную модель.

Щелкните на кнопке Continue в диалоговом окне Set Rule - вы вновь вернетесь к основному диалоговому окну Linear Regression. Последним шагом перед запуском процедуры построения регрессионной модели является выбор пункта Collinearity Diagnostics в диалоговом окне, появляющемся при щелчке на кнопке Statistics (рис. 4.27). Установление требования провести диагностику наличия коллинеар­ности между независимыми переменными позволяет избежать эффекта мульти-коллинеарности, при котором несколько независимых переменных могут иметь настолько сильную корреляцию, что в регрессионной модели обозначают, в прин­ципе, одно и то же (это неприемлемо).


Рассмотрим основные элементы отчета о построении регрессионной модели (окно SPSS Viewer), содержащие наиболее значимые для исследователя данные. Не­обходимо отметить, что все таблицы, представленные в отчете Output, содержат несколько блоков, соответствующих количеству шагов SPSS при построении модели. На каждом шаге при используемом методе backward из полного списка независимых переменных, введенных в модель изначально, при помощи наимень­ших частных коэффициентов корреляции последовательно исключаются пере­менные - до тех пор, пока соответствующий коэффициент регрессии не оказы­вается незначимым (Sig > 0,05). В нашем примере таблицы состоят из трех блоков (регрессия строилась в три шага). При интерпретации результатов регрессион­ного анализа следует обращать внимание только на последний блок (в нашем случае 3).

Первое, на что следует обратить внимание, - это таблица ANOVA (рис. 4.29). На третьем шаге статистическая значимость (столбец Sig) должна быть меньше или равна 0,05.

Затем следует рассмотреть таблицу Model Summary, содержащую важные сведения о построенной модели (рис. 4.30). Коэффициент детерминации R является харак­теристикой силы общей линейной связи между переменными в регрессионной модели. Он показывает, насколько хорошо выбранные независимые переменные способны определять поведение зависимой переменной. Чем выше коэффициент детерминации (изменяющийся в пределах от 0 до 1), тем лучше выбранные неза­висимые переменные подходят для определения поведения зависимой перемен­ной. Требования к коэффициенту R такие же, как к коэффициенту корреляции (см. табл. 4.4): в общем случае он должен превышать хотя бы 0,5. В нашем примере R = 0,66, что является приемлемым показателем.



Также важной характеристикой регрессионной модели является коэффициент R2, показывающий, какая доля совокупной вариации в зависимой переменной описывается выбранным набором независимых переменных. Величина R2 из­меняется от 0 до 1. Как правило, данный показатель должен превышать 0,5 (чем он выше, тем показательнее построенная регрессионная модель). В нашем при­мере R2 =■ 0,43 - это значит, что регрессионной моделью описано только 43 % случаев (дисперсии в итоговой оценке полета). Таким образом, при интерпре­тации результатов регрессионного анализа следует постоянно иметь в виду су­щественное ограничение: построенная модель справедлива только для 43 % случаев.

Третьим практически значимым показателем, определяющим качество регресси­онной модели, является величина стандартной ошибки расчетов (столбец Std. Error of the Estimate). Данный показатель варьируется в пределах от 0 до 1. Чем он мень­ше, тем надежнее модель (в общем случае показатель должен быть меньше 0,5). В нашем примере ошибка составляет 0,42, что является завышенным, но в целом приемлемым результатом.

На основании таблиц AN OVA и Model Summary можно судить о практической пригод­ности построенной регрессионной модели. Учитывая, что AN OVA показывает весь­ма высокую значимость (менее 0,001), коэффициент детерминации превышает 0,6, а стандартная ошибка расчетов меньше 0,5, можно сделать вывод о том, что с уче­том ограничения модель описывает 43 % совокупной дисперсии, то есть построен­ная регрессионная модель является статистически значимой и практически при­емлемой.


После того как мы констатировали приемлемый уровень качества регрессионной модели, можно приступать к интерпретации ее результатов. Основные практиче­ские результаты регрессии содержатся в таблице Coefficients (рис. 4.31). Под таб­лицей вы можете видеть, какая переменная была зависимой (общая оценка серви­са на борту) и для какого класса полета происходило построение регрессионной модели (эконом-класс). В таблице Coefficients практически значимыми являются четыре показателя: VIF, Beta, В и Std. Error. Рассмотрим последовательно, как их сле­дует интерпретировать.

Прежде всего необходимо исключить возможность возникновения ситуации мультиколлинеарности (см. выше), при которой несколько переменных могут обозна­чать почти одно и то же. Для этого необходимо посмотреть на значение VIF возле каждой независимой переменной. Если величина данного показателя меньше 10 - значит, эффекта мультиколлинеарности не наблюдается и регрессионная модель приемлема для дальнейшей интерпретации. Чем выше этот показатель, тем более связаны между собой переменные. Если какая-либо переменная превышает значение в 10 VIF, следует пересчитать регрессию без этой независимой переменной. В данном примере автоматически уменьшится величина R2 и возрастет величина свободного члена (константы), однако, несмотря на это, новая регрессионная мо­дель будет более практически приемлема, чем первая.

В первом столбце таблицы Coefficients содержатся независимые переменные, со­ставляющие регрессионное уравнение (удовлетворяющие требованию статисти­ческой значимости). В нашем случае в регрессионную модель входят все частные характеристики сервиса на борту самолета, кроме аудиопрограмм. Исключенные переменные содержатся в таблице Excluded Variables (здесь не приводится). Итак, мы можем сделать первый вывод о том, что на общее впечатление авиапассажиров от полета оказывают влияние семь параметров: комфортабельность салона, работа бортпроводников, питание во время полета, спиртные напитки, дорожные наборы, видеопрограммы и пресса.

После того, как мы определили состав параметров, формирующих итоговое впе­чатление от полета, можно определить направление и силу влияния на него каж­дого частного параметра. Это позволяет сделать столбец Beta, содержащий стан­дартизированные - коэффициенты регрессии. Данные коэффициенты также дают возможность сравнить силу влияния параметров между собой. Знак (+ или -) пе­ред -коэффициентом показывает направление связи между независимой и зави­симой переменными. Положительные -коэффициенты свидетельствуют о том, что возрастание величины данного частного параметра увеличивает зависимую пере­менную (в нашем случае все независимые переменные ведут себя подобным обра­зом). Отрицательные коэффициенты означают, что при возрастании данного част­ного параметра общая оценка снижается. Как правило, при определении связи между оценками параметров это свидетельствует об ошибке и означает, например, что выборка слишком мала.

Например, если бы перед - коэффициентом параметра работы бортпроводников стоял знак -, его следовало бы интерпретировать следующим образом: чем хуже работают бортпроводники, тем лучше становится общее впечатление пассажиров от полета. Такая интерпретация является бессмысленной и не отражающей реаль­ного положения вещей, то есть ложной. В таком случае лучше пересчитать регрес­сию без данного параметра; тогда доля вариации в итоговой оценке, описываемой исключенным параметром, будет отнесена на счет константы (увеличивая ее). Соответственно уменьшится и процент совокупной дисперсии, описываемой рег­рессионной моделью (величина R2). Однако это позволит восстановить семанти­ческую релевантность.

Еще раз подчеркнем, что сделанное замечание справедливо для нашего случая (оценки параметров). Отрицательные - коэффициенты могут быть верными и от­ражать семантические реалии в других случаях. Например, когда уменьшение до­хода респондентов приводит к увеличению частоты покупок дешевых товаров. В таблице вы видите, что в наибольшей степени на общее впечатление пассажи­ров от полета влияют два параметра: работа бортпроводников и комфортабель­ность салона (- коэффициенты по 0,21). Напротив, в наименьшей степени форми­рование итоговой оценки сервиса на борту происходит за счет впечатления от обслуживания спиртными напитками (0,08). При этом два первых параметра ока­зывают почти в три раза более сильное влияние на итоговую оценку полета, чем

Спиртные напитки. На основании стандартизированных (3-коэффициентов регрес­сии можно построить рейтинг влияния частных параметров сервиса на борту на общее впечатление авиапассажиров от полета, разделив их на три группы по силе влияния:

■ наиболее значимые параметры;

■ параметры, имеющие среднюю значимость;

■ параметры, имеющие низкую значимость для респондентов (рис. 4.32).

В крайнем правом столбце содержатся - коэффициенты, умноженные на 100, - для облегчения сравнения параметров между собой.



Данный рейтинг также можно интерпретировать и как рейтинг значимости для респондентов различных параметров сервиса на борту (в общем случае - схема выбора). Так, наиболее важными факторами являются первые два (1-2); среднюю значимость для пассажиров имеют следующие три параметра (3-5); относительно малое значение имеют последние два фактора (6-7).

Регрессионный анализ позволяет выявить истинные, глубинные мотивы респон­дентов при формировании общего впечатления о каком-либо продукте. Как пока­зывает практика, такого уровня приближения нельзя достичь обычными метода­ми - например, просто спросив респондентов: Какие факторы из нижеперечисленных оказывают наибольшее влияние на Ваше общее впечатление от полета самолетами нашей авиакомпании?. Кроме того, регрессионный анализ позволяет достаточно точно оце­нить, насколько один параметр более-менее значим для респондентов, чем другой, и на этом основании классифицировать параметры на критические, имеющие сред­нюю значимость и малозначимые.

Столбец В таблицы Coefficients содержит коэффициенты регрессии (нестандарти-зированные). Они служат для формирования собственно регрессионного уравне­ния, по которому можно рассчитать величину зависимой переменной при разных значениях независимых.

Особая строка Constant содержит важную информацию о полученной регрессион­ной модели: значение зависимой переменной при нулевых значениях независимых переменных. Чем выше значение константы, тем хуже подходит выбранный перечень независимых переменных для описания поведения зависимой перемен­ной. В общем случае считается, что константа не должна быть наибольшим коэффи­циентом в регрессионном уравнении (коэффициент хотя бы при одной переменой должен быть больше константы). Однако в практике маркетинговых исследова­ний часто свободный член оказывается больше всех коэффициентов вместе взя­тых. Это связано в основном с относительно малыми размерами выборок, с кото­рыми приходится работать маркетологам, а также с неаккуратным заполнением анкет (некоторые респонденты могут не поставить оценку каким-либо парамет­рам). В нашем случае величина константы меньше 1, что является весьма хоро­шим результатом.

Итак, в результате построения регрессионной модели можно сформировать сле­дующее регрессионное уравнение:

СБ = 0,78 + 0,20К + 0.20Б + 0,08ПП + 0.07С + 0Д0Н + 0,08В + 0Д2П, где

■ СБ - общая оценка сервиса на борту;

■ К - комфортабельность салона;

■ Б - работа бортпроводников;

■ ПП - питание во время полета;

■ С - спиртные напитки;

■ Н - дорожные наборы;

■ В - видеопрограмма;

■ П - пресса.

Последний показатель, на который целесообразно обращать внимание при интер­претации результатов регрессионного анализа, - это стандартная ошибка, рассчи­тываемая для каждого коэффициента в регрессионном уравнении (столбец Std. Error). При 95%-ном доверительном уровне каждый коэффициент может отклоняться от величины В на ±2 х Std. Error. Это означает, что, например, коэффициент при пара­метре Комфортабельность салона (равный 0,202) в 95 % случаев может отклоняться от данного значения на ±2 х 0,016 или на ±0,032. Минимальное значение коэффициен­та будет равно 0,202 - 0,032 = 0,17; а максимальное - 0,202 + 0,032 = 0,234. Таким образом, в 95 % случаев коэффициент при параметре «комфортабельность салона» варьируется в пределах от 0,17 до 0,234 (при среднем значении 0,202). На этом интерпретация результатов регрессионного анализа может считаться за­вершенной. В нашем случае следует повторить все шаги еще раз: сначала для биз­нес -, потом для эконом-класса.

Теперь давайте рассмотрим другой случай, когда необходимо графически пред­ставить зависимость между двумя переменными (одной зависимой и одной неза­висимой) при помощи регрессионного анализа. Например, если мы примем итого­вую оценку полета авиакомпанией X в 2001 г. за зависимую переменную S, а тот же показатель в 2000 г. - за независимую переменную So, то для построения урав­нения тренда (или регрессионного уравнения) нужно будет определить парамет­ры соотношения S, = а + b x So. Построив данное уравнение, также можно построить регрессионную прямую и, зная исходную итоговую оценку полета, спрогнози­ровать величину данного параметра на следующий год.

Эту операцию следует начать с построения регрессионного уравнения. Для этого повторите все вышеописанные шаги для двух переменных: зависимой Итоговая оценка 2001 и независимой Итоговая оценка 2000. Вы получите коэффициенты, при помощи которых можно в дальнейшем строить линию тренда (как в SPSS, так и любыми другими средствами). В нашем случае полученное регрессионное уравне­ние имеет вид: S{ = 0,18 + 0,81 х So. Теперь построим уравнение линии тренда в SPSS.


Диалоговое окно Linear Regression имеет встроенное средство для построения гра­фиков - кнопку Plots. Однако это средство, к сожалению, не позволяет на одном графике построить две переменные: S, и So - Для того чтобы построить тренд, необ­ходимо использовать меню Graphs Scatter. На экране появится диалоговое окно Scatterplot (рис. 4.32), которое служит для выбора типа диаграммы. Выберите вид Simple. Максимально возможное число независимых переменных, которое можно изобразить графически, - 2. Поэтому при необходимости графического построе­ния зависимости одной переменной (зависимой) от двух независимых (например, если бы в нашем распоряжении были данные не по двум, а по трем годам), в окне Scatterplot следует выбрать 3-D. Схема построения трехмерной диаграммы рассея­ния не имеет существенных отличий от описываемого способа построения двух­мерной диаграммы.

После щелчка на кнопке Define на экране появится новое диалоговое окно, пред­ставленное на рис. 4.34. Поместите в поле Y Axis зависимую переменную (Итоговая оценка 2001), а в поле X Axis - независимую (Итоговая оценка 2000). Щелкните на кнопке 0 К, что приведет к построению диаграммы рассеяния.

Для того чтобы построить линию тренда, дважды щелкните мышью на получен­ной диаграмме; откроется окно SPSS Chart Editor. В этом окне выберите пункт меню Chart Options; далее пункт Total в области Fit Line; щелкните на кнопке Fit Options. Откроется диалоговое окно Fit Line, выберите в нем тип аппроксимирующей ли­нии (в нашем случае Linear regression) и пункт Display R-square in legend. После за­крытия окна SPSS Chart Editor в окне SPSS Viewer появится линейный тренд, ап­проксимирующий наши наблюдения по методу наименьших квадратов. Также на диаграмме будет отражаться величина R2, которая, как было сказано выше, обо­значает долю совокупной вариации, описываемой данной моделью (рис. 4.35). В на­шем примере она равна 53 %.

Этот коэффициент вводится в маркетинговых исследованиях для удобства сравне­ния привлекательности для респондентов анализируемых продуктов/марок. В анке­те должны присутствовать вопросы типа Оцените представленные параметры продукта/ марки X, в которых респондентам предлагается дать свои оценки частным параметрам продукта или марки X, скажем, по пятибалльной шкале (от 1 - очень плохо до 5 - отлично). В конце списка оцениваемых частных параметров респонденты должны поставить итоговую оценку продукту/марке X. При анализе полученных в ходе опро­са ответов респондентов на основании оценок респондентов формируются:

2 при высоком уровне оценки (средневзвешенный балл ≥ 4,5)

1 при среднем уровне оценки (средневзвешенный балл ≥4,0 и < 4,5)

1 при низком уровне оценки (средневзвешенный балл ≥3,0 и < 4,0)

2 при неудовлетворительной оценке (средневзвешенный балл < 3,0)

Рассчитанный для каждого конкурирующего продукта/марки коэффициент СА показывает его/ее относительную позицию в структуре потребительских предпоч­тений. Данный интегральный показатель учитывает уровень оценок по каждому параметру, скорректированный на их значимость. При этом он может изменяться в пределах от -1 (наихудшая относительная позиция среди всех рассматриваемых продуктов/марок) до 1 (наилучшее положение); 0 означает, что данный продукт/ марка ничем особенным не выделяется в глазах респондентов.

Мы завершаем рассмотрение ассоциативного анализа. Данная группа статисти­ческих методов применяется в отечественных компаниях в настоящее время дос­таточно широко (особенно это касается перекрестных распределений). Вместе с тем хотелось бы подчеркнуть, что только лишь перекрестными распределениями ассоциативные методы не ограничиваются. Для проведения действительно глубо­кого анализа следует расширить спектр применяемых методик за счет методов, описанных в настоящей главе.


В прогнозных расчётах по уравнению регрессии определяется то, что уравнение не является реальным , для есть ещё стандартная ошибка . Поэтому интервальная оценка прогнозного значения

Выразим из уравнения

То есть стандартная ошибка зависит и ошибки коэффициента регрессии b,

Из теории выборки известно, что . Используя в качестве оценки остаточную дисперсию на одну степень свободы , получим формулу расчёта ошибки среднего значения переменной y: .

Ошибка коэффициента регрессии: .

В прогнозных расчетах по уравнению регрессии определяется уравнение как точечный прогноз при , то есть путём подстановки в уравнение регрессии . Однако точечный прогноз явно нереален.

- формула стандартной ошибки предсказываемого значения y при заданных , характеризует ошибку положения линии регрессии. Величина стандартной ошибки , достигает min при , и возрастает по мере того, как «удаляется» от в любом направлении. То есть чем больше разность между и x, тем больше ошибка , с которой предсказывается среднее значение y для заданного значения .

Можно ожидать наилучшие результаты прогноза, если признак - фактор x находится в центре области наблюдений х и нельзя ожидать хороших результатов прогноза при удалении от .

Если же значение оказывается за пределами наблюдаемых значений х, используемых при построении ЛР, то результаты прогноза ухудшаются в зависимости то того, насколько отклоняется от области наблюдаемых значений фактора х. Доверит. интервалы при .

На графике доверительной границы представляет собой гиперболы, расположенные по обе стороны от линии регрессии.


Две гиперболы по обе стороны от ЛР определяют 95%-ные доверительные интервалы для среднего значения y при заданном значении x.

Однако фактические значения y варьируют около среднего значения . Индивидуальные значения y могут отклоняться от на величину случайной ошибки , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы . Поэтому ошибка предсказываемого индивидуального значения y должна включать не только стандартную ошибку , но и случайную ошибку.

Средняя ошибка прогнозируемого индивидуального значения y составит:

.

При прогнозировании на основе УР следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения y, но и от точности прогноза значений фактора x.

Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.

Рассмотренная формула средней ошибки индивидуального значения признака y() может быть использована также для оценки существенности различия предсказываемого значения исходя из регрессионной модели и выдвинутой гипотезы развития событий.

Понятие о множественной регрессии. Классическая линейная модель множественной регрессии (КЛММР). Определение параметров уравнения множественной регрессии методом наименьших квадратов.

Парная регрессия используется при моделировании, если влияние других факторов, воздействующих на объект исследования можно пренебречь.

Например, при построении модели потребления того или иного товара от дохода исследователь предполагает, что в каждой группе дохода одинаково влияние на потребление таких факторов, как цена товара, размер семьи, ее состав. Однако, уверенности в справедливости данного утверждения нет.

Прямой путь решения такой задачи состоит в отборе единиц совокупности с одинаковыми значениями всех других факторов, кроме дохода. Он приводит к планированию эксперимента – метод, который используется в естественно-научных исследованиях. Экономист лишен возможности регулировать другие факторы. Поведение отдельных экономических переменных контролировать нельзя, т.е. не удается обеспечить равенство прочих условий для оценки влияния одного исследуемого фактора.

Как поступить в этом случае? Надо выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии.

такого рода уравнения используется при изучении потребления.

Коэффициенты b j – частные производные у по факторами х i

при условии, что все остальные х i = const

Рассмотрим современную потребительскую функцию (впервые 30е годы предложил Кейнс Дж.М.) как модель вида С = f(y,P,M,Z)

c- потребление. у – доход

P – цена, индекс стоимости.

M – наличные деньги

Z – ликвидные активы

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функций издержек производства, в макроэкономических вопросах и других вопросах эконометрики.

В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого их них в отдельности, а также совокупное воздействие на моделируемый показатель.

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя 2 круга вопросов:

1. отбор факторов

2. выбор уравнения регрессии.

Включение в уравнение множественной регрессии того или иного набора факторов связано с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Требования к факторам, включаемым во множественную регрессию

1. они должны быть количественно измеримы, если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости: районы должны быть проранжированы).

2. факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, когда R у x 1

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются интерпретируемыми.

В уравнение предполагается, что факторы х 1 и х 2 независимы друг от друга, r х1х2 = 0, тогда параметр b1 измеряет силу влияния фактора х 1 на результат у при неизменном значении фактора х 2 . Если r х1х2 =1, то с изменением фактора х 1 фактор х 2 не может оставаться неизменным. Отсюда b 1 и b 2 нельзя интерпретировать как показатели раздельного влияния х 1 и х 2 и на у.

Пример, рассмотрим регрессию себестоимости единицы продукции у (руб.) от заработной платы работника х (руб.) и производительности труда z (ед. в час).

у = 22600 - 5x - 10z + e

коэффициент b 2 = -10, показывает, что с ростом производительности труда на 1 ед. себестоимость единицы продукции снижается на 10 руб. при постоянном уровне оплаты.

Вместе с тем параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии при переменной х обусловлено высокой корреляцией между х и z (r х z = 0,95). Поэтому роста заработной платы при неизменности производительности труда (не учитывая инфляции) быть не может.

Включенные во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строиться модель с набором р факторов, то для нее рассчитывается показатель детерминации R 2 , которая фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р факторов. Влияние других неучтенных в модели факторов оценивается как 1-R 2 c соответствующей остаточной дисперсией S 2 .

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшается.

R 2 p +1 >= R 2 p и S 2 p +1 <= S 2 p

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включенный в анализ фактор x р+1 не улучшает модель и практически является лишним фактором.

Если для регрессии, включающей 5 факторов R 2 = 0,857, и включенный 6 дало R 2 = 0,858, то нецелесообразно включать в модель этот фактор.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической не значимости параметров регрессии по критерию t-Стьюдента.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости.

Отбор факторов производиться на основе теоретико-экономического анализа. Однако, он часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов осуществляется в две стадии:

на первой – подбирают факторы, исходя из сущности проблемы.

на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Коэффициенты интеркоррелиции (т.е. корреляция между объясняющими переменными) позволяют исключить из моделей дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если r х i х j >=0.7.

Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов, т.е. Rх i x j = 0, коллинеарность факторов нарушает это условие. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Рассмотрим матрицу парных коэффициентов корреляции при изучении зависимости у = f(x, z, v)

Очевидно, факторы x и z дублируют друг друга. В анализ целесообразно включит фактор z, а не х, так как корреляция z с у слабее чем корреляция фактора х с у (r у z < r ух), но зато слабее межфакторная корреляция (r zv < r х v)

Поэтому в данном случае в уравнение множественной регрессии включает факторы z и v

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Но наиболее трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарности факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК.

Если рассмотренная регрессия у = a + bx + cx + dv + e, то для расчета параметров, применяется МНК

S y = S факт +S e

общая сумма = факторная + остаточная

Прогнозирование по уравнению регрессии представляет собой подстановку в уравнение регрессии соответственного значения х . Такой прогноз называетсяточечным. Он не является точным, поэтому дополняется расчетом стандартной ошибки ; получаетсяинтервальная оценка прогнозного значения :

Преобразуем уравнение регрессии:

ошибка зависит от ошибки и ошибки коэффициента регрессии b , т.е. .

Из теории выборки известно, что .

Используем в качестве оценки s 2 остаточную дисперсию на одну степень свободы S 2 , получаем: .

Ошибка коэффициента регрессии из формулы (15):

Таким образом, при х=х k получаем:

(31)

Как видно из формулы, величина достигает минимума при и возрастает по мере удаления от в любом направлении.

Для нашего примера эта величина составит:

При , При х k = 4

Для прогнозируемого значения 95% - ные доверительные интервалы при заданном х k определены выражением:

т.е. при х k =4 ±2,57-3,34 или ±8,58. При х к =4 прогнозное значение составит

у p =-5,79+36,84·4=141,57 - это точечный прогноз.

Прогноз линии регрессии лежит в интервале: 132,99 150,15.

Мы рассмотрели доверительные интервалы длясреднего значения у при заданном х. Однако фактические значения у варьируются около среднего значения , они могут отклоняться на величину случайной ошибки e , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы S 2 . Поэтому ошибка прогноза отдельного значения у должна включать не только стандартную ошибку но и случайную ошибку S . Таким образом, средняя ошибка прогноза индивидуального значения y составит:

(33)

Для примера:

Доверительный интервал прогноза индивидуальных значений у при х к =4 с верностью 0,95 составит:. 141,57 ±2,57·8,01, или 120,98 ≤ у р ≤ 162,16.

Пусть в примере с функцией издержек выдвигается предположение, что в предстоящем году в связи со стабилизацией экономики затраты на производство 8 тыс. ед. продукции не превысят 250 млн. руб. Означает ли это изменение найденной закономерности или затраты соответствуют регрессионной модели?

Точечный прогноз: = -5,79 + 36,84 8 = 288,93. Предполагаемое значение - 250. Средняя ошибка прогнозного индивидуального значения:

Сравним ее с предполагаемым снижением издержек производства, т.е. 250-288,93= -38,93:

Поскольку оценивается только значимость уменьшения затрат, то используется односторонний t~ критерий Стьюдента. При ошибке в 5 % с n-2=5 t табл =2,015, поэтому предполагаемое уменьшение затрат значимо отличается от прогнозируемого значения при 95 % - ном уровне доверия. Однако, если увеличить вероятность до 99%, при ошибке 1 % фактическое значение t -критерия оказывается ниже табличного 3,365, и различие в затратах статистически не значимо, т.е. затраты соответствуют предложенной регрессионной модели.

Нелинейная регрессия

До сих пор мы рассматривали лишьлинейную модель регрессионной зависимости у от х (3). В то же время многие важные связи в экономике являютсянелинейными. Примерами такого рода регрессионных моделей являются производственные функции (зависимости между объемом произведенной продукции и основными факторами производства - трудом, капиталом и т.п.) и функции спроса (зависимости между спросом на какой-либо вид товаров или услуг, с одной стороны, и доходом и ценами на этот и другие товары - с другой).

При анализе нелинейных регрессионных зависимостей наиболее важным вопросом применения классического МНК является способ их линеаризации. В случае линеаризации нелинейной зависимости получаем линейное регрессионное уравнение типа (3), параметры которого оцениваются обычным МНК, после чего можно записать исходное нелинейное соотношение.

Несколько особняком в этом смысле стоит полиномиальная модель произвольной степени:

к которой обычный МНК можно применять без всякой предварительной линеаризации.

Рассмотрим указанную процедуру применительно к параболе второй степени:

(35)

Такая зависимость целесообразна в случае, если для некоторого интервала значений фактора возрастающая зависимость меняется на убывающую или наоборот. В этом случае можно определить значение фактора, при котором достигается максимальное или минимальное значение результативного признака. Если исходные данные не обнаруживают изменение направленности связи, параметры параболы становятся трудно интерпретируемыми, и форму связи лучше заменить другими нелинейными моделями.

Применение МНК для оценки параметров параболы второй степени сводится к дифференцированию суммы квадратов остатков регрессии по каждому из оцениваемых параметров и приравниванию полученных выражений нулю. Получается система нормальных уравнений, число которых равно числу оцениваемых параметров, т.е. трем:

(36)

Решать эту систему можно любым способом, в частности, методом определителей.

Экстремальное значение функции наблюдается при значении фактора, равном:

Если b>0, с<0, имеет место максимум, т.е. зависимость сначала растет, а затем падает. Такого рода зависимости наблюдаются в экономике труда при изучении заработной платы работников физического труда, когда в роли фактора выступает возраст. При b<0, с>0 парабола имеет минимум, что обычно проявляется в удельных затратах на производство в зависимости от объема выпускаемой продукции.

В нелинейных зависимостях, не являющихся классическими полиномами, обязательно проводится предварительная линеаризация, которая заключается в преобразовании или переменных, или параметров модели, или в комбинации этих преобразований. Рассмотрим некоторые классы таких зависимостей.

Зависимости гиперболического типа имеют вид:

(37)

Примером такой зависимости является кривая Филлипса, констатирующая обратную зависимость процента прироста заработной платы от уровня безработицы. В этом случае значение параметра b будет больше нуля. Другим примером зависимости (37) являются кривые Энгеля, формулирующие следующую закономерность: с ростом дохода доля доходов, расходуемых на продовольствие, уменьшается, а доля доходов, расходуемых на непродовольственные товары, будет возрастать. В этом случае b <0 , а результативный признак в (37) показывает долю расходов на непродовольственные товары.

Линеаризация уравнения (37) сводится к замене фактора z=1/х , и уравнение регрессии имеет вид (3), в котором вместо фактора х используем фактор z :

К такому же линейному уравнению сводится полулогарифмическая кривая:

(39)

которая может быть использована для описания кривых Энгеля. Здесь 1п(х) заменяется на z , и получается уравнение (38).

Достаточно широкий класс экономических показателей характеризуется приблизительно постоянным темпом относительного прироста во времени. Этому соответствуют зависимости показательного (экспоненциального) типа, которые записываются в виде:

или в виде

Возможна такая зависимость:

В регрессиях типа (40) - (42) применяется один и тот же способ линеаризации - логарифмирование. Уравнение (40) приводится к виду:

(43)

Замена переменной Y = ln у сводит его к линейному виду:

(44)

где . Если Е удовлетворяет условиям Гаусса-Маркова, параметры уравнения (40) оцениваются по МНК из уравнения (44). Уравнение (41) приводится к виду:

который отличается от (43) только видом свободного члена, и линейное уравнение выглядит так:

Y=A+bx+E (46)

где A= lna . Параметры А и b получаются обычным МНК, затем параметр а в зависимости (41) получается как антилогарифм А. При логарифмировании (42) получаем линейную зависимость:

Y=A+Bx+E (47)

где B =lnb , а остальные обозначения те же, что и выше. Здесь также применяется МНК к преобразованным данным, а параметр b для (42) получается как антилогарифм коэффициента В.

Широко распространены в практике социально-экономических исследований степенные зависимости. Они используются для построения и анализа производственных функций. В функциях вида:

особенно ценным является то обстоятельство, что параметр b равен коэффициенту эластичности результативного признака по фактору х . Преобразуя (48) путем логарифмирования, получаем линейную регрессию:

Y=A+bX+E (49)

где Y= lny , A= lna, X= lnx, E= lnε .

Еще одним видом нелинейности, приводимым к линейному виду, является обратная зависимость:

(50)

Проводя замену и =1/у , получим:

(51)

Наконец, следует отметить зависимость логистического типа:

(52)

Графиком функции (52) является так называемая «кривая насыщения», которая имеет две горизонтальные асимптоты у=0 и у=1/а и точку перегиба x= ln(b/a), у=1/(2а) , а также точку пересечения с осью ординат у=1/(а+b) :

Уравнение (52) приводится к линейному виду заменами переменных и=1/у, z=e - x .

Любое уравнение нелинейной регрессии, как и линейной зависимости, дополняется показателем корреляции, который в данном случае называется индексом корреляции:

(53)

Здесь - общая дисперсия результативного признака у , остаточная дисперсия, определяемая по уравнению нелинейной регрессии . Следует обратить внимание на то, что разности в соответствующих суммах и берутся не в преобразованных, а в исходных значениях результативного признака. Иначе говоря, при вычислении этих сумм следует использовать не преобразованные (линеаризованные) зависимости, а именно исходные нелинейные уравнения регрессии. По-другому (53) можно записать так:

(54)

Величина R находится в границах 0 ≤ R ≤ 1, и чем ближе она к единице, тем теснее связь рассматриваемых признаков, тем более надежно найденное уравнение регрессии. При этом индекс корреляции совпадает с линейным коэффициентом корреляции в случае, когда преобразование переменных с целью линеаризации уравнения регрессии не проводится с величинами результативного признака. Так обстоит дело с полулогарифмической и полиномиальной регрессией, а также с равносторонней гиперболой (37). Определив линейный коэффициент корреляции для линеаризованных уравнений, например, н пакете Excel с помощью функции ЛИНЕЙН, можно использовать его и для нелинейной зависимости.

Иначе обстоит дело в случае, когда преобразование проводится также с величиной у , например, взятие обратной величины или логарифмирование. Тогда значение R, вычисленное той же функцией ЛИНЕЙН, будет относиться к линеаризованному уравнению регрессии, а не к исходному нелинейному уравнению, и величины разностей под суммами в (54) будут относиться к преобразованным величинам, а не к исходным, что не одно и то же. При этом, как было сказано выше, для расчета R следует воспользоваться выражением (54), вычисленным по исходному нелинейному уравнению.

Поскольку в расчете индекса корреляции используется соотношение факторной и общей СКО, то R 2 имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину R 2 для нелинейных связей называют индексом детерминации.

Оценка существенности индекса корреляции проводится так же, как и оценка надежности коэффициента корреляции.

Индекс детерминации используется для проверки существенности в целом уравнения нелинейной регрессии по F- критерию Фишера:

(55)

где n -число наблюдений, m -число параметров при переменных х . Во всех рассмотренных нами случаях, кроме полиномиальной регрессии, m =1, для полиномов (34) m=k , т.е. степени полинома. Величина т характеризует число степеней свободы для факторной СКО, а (п-т-1) - число степеней свободы для остаточной СКО.

Индекс детерминации R 2 можно сравнивать с коэффициентом детерминации r 2 для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем больше разница между R 2 и r 2 . Близость этих показателей означает, что усложнять форму уравнения регрессии не следует и можно использовать линейную функцию. Практически, если величина (R 2 -r 2) не превышает 0,1, то линейная зависимость считается оправданной. В противном случае проводится оценка существенности различия показателей детерминации, вычисленных по одним и тем же данным, через t -критерий Стьюдента:

Здесь в знаменателе находится ошибка разности (R 2 -r 2), определяемая по формуле:

Если t >t табл (α;n-m-1), то различия между показателями корреляции существенны и замена нелинейной регрессии линейной нецелесообразна.

В заключение приведем формулы расчета коэффициентов эластичности для наиболее распространенных уравнений регрессии.