Локальная и интегральная теоремы лапласа. Давление под изогнутой поверхностью жидкости

Соприкасающаяся с другой средой, находится в особых условиях по сравнению с остальной массой жидкости. Силы, действующие на каждую молекулу поверхностного слоя жидкости, граничащей с паром, направлены в сторону объёма жидкости, то есть внутрь жидкости. Вследствие этого для перемещения молекулы из глубины жидкости на поверхность требуется совершить работу. Если при постоянной температуре увеличить площадь поверхности на бесконечно малую величину dS , то необходимая для этого работа будет равна . Работа по увеличению площади поверхности совершается против сил поверхностного натяжения, которые стремятся сократить, уменьшить поверхность. Поэтому работа самих сил поверхностного натяжения по увеличению площади поверхности жидкости будет равна:

Здесь коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и определяется величиной работы сил поверхностного натяжения по изменению площади поверхности на единицу. В СИ коэффициент поверхностного натяжения измеряется в Дж/м 2 .

Молекулы поверхностного слоя жидкости обладают избыточной по сравнению с глубинными молекулами, потенциальной энергией, которая прямо пропорциональна площади поверхности жидкости:

Приращение потенциальной энергии поверхностного слоя связано только с приращением площади поверхности: . Силы поверхностного натяжения - консервативные силы , поэтому выполняется равенство: . Силы поверхностного натяжения стремятся уменьшить потенциальную энергию поверхности жидкости. Обычно та энергия, которая может быть преобразована в работу, называется свободной энергией U S . Поэтому можно записать. Используя понятие свободной энергии, можно записать формулу (6.36) так: . Используя последнее равенство можно определить коэффициент поверхностного натяжения как физическую величину, численно равную свободной энергии единицы площади поверхности жидкости.

Действие сил поверхностного натяжения можно наблюдать с помощью простого эксперимента над тонкой плёнкой жидкости (например, мыльного раствора), которая обволакивает проволочный прямоугольный каркас, у которого одна сторона может перемешаться (рис.6.11). Предположим, что на подвижную сторону, длиной l, действует внешняя сила F B , перемещающая подвижную сторону рамки равномерно на очень малое расстояние dh. Элементарная работа этой силы будет равна , так как сила и перемещение сонаправлены. Поскольку плёнка имеет две поверхности и, то вдоль каждой из них направлены силы поверхностного натяжения F, векторная сумма которых равна внешней силе. Модуль внешней силы равен удвоенному модулю одной из сил поверхностного натяжения: . Минимальная работа, совершаемая внешней силой, равна по величине сумме работ сил поверхностного натяжения: . Величина работы силы поверхностного натяжения будет определяться так:


, где . Отсюда . То есть коэффициент поверхностногонатяжения может быть определён как величина, равная силе поверхностного натяжения, действующей по касательной к поверхности жидкости, приходящейся на единицу длины линии раздела. Силы поверхностного натяжения стремятся сократить площадь поверхности жидкости. Это заметно для малых объёмов жидкости, когда она принимает форму капель-шариков. Как известно, именно сферическая поверхность имеет минимальную площадь при данном объёме. Жидкость, взятая в большом количестве, под действием силы тяжести растекается по поверхности, на которой она находится. Как известно, сила тяжести зависит от массы тела, поэтому её величина по мере уменьшения массы тоже уменьшается и при определённой массе становится сравнимой или даже много меньше величины силы поверхностного натяжения. В этом случае силой тяжести можно пренебречь. Если жидкость находится в состоянии невесомости, то даже при большом объёме её поверхность стремится к сферической. Подтверждение тому - знаменитый опыт Плато. Если подобрать две жидкости с одинаковой плотностью, то действие силы тяжести на одну из них (взятую в меньшем количестве) будет скомпенсировано архимедовой силой и она примет форму шара. При этом условии она будет плавать внутри другой жидкости.

Рассмотрим, что происходит с каплей жидкости 1, граничащей с одной стороны с паром 3, с другой стороны с жидкостью 2 (рис.6.12). Выберем очень малый элемент границы раздела всех трёх веществ dl. Тогда силы поверхностного натяжения на границах раздела сред будут направлены по касательным к контуру границ раздела и равны:

Действием силы тяжести пренебрежём. Капля жидкости 1 находится в равновесии, если выполняются условия:

(6.38)

Подставив (6.37) в (6.38), сократив на dl обе части равенств (6.38), возведя в квадрат обе части равенств (6.38) и сложив их, получим:

где - угол между касательными к линиям раздела сред, называется краевым углом.

Анализ уравнения (6.39) показывает, что при получим и жидкость 1 полностью смачивает поверхность жидкости 2, растекаясь по ней тонким слоем (явление полного смачивания ).

Аналогичное явление можно наблюдать и при растекании тонким слоем жидкости 1 по поверхности твёрдого тела 2. Иногда жидкость наоборот не растекается по поверхности твёрдого тела. Если , то и жидкость 1 полностью не смачивает твёрдое тело 2 (явление полного несмачивания ). В этом случае есть только одна точка касания жидкости 1 и твёрдого тела 2. Полное смачивание или несмачивание являются предельными случаями. Реально можно наблюдать частичное смачивание , когда краевой угол острый () и частичное несмачивание , когда краевой угол тупой ().

На рисунке 6.13 а приведены случаи частичного смачивания, а на рис.6.13 б приведены примеры частичного несмачивания. Рассмотренные случаи показывают, что наличие сил поверхностного натяжения граничащих жидкостей или жидкости на поверхности твёрдого тела приводит к искривлению поверхностей жидкостей.

Рассмотрим силы, действующие на кривую поверхность. Кривизна поверхности жидкости приводит к появлению сил, действующих на жидкость под этой поверхностью. Если поверхность сферическая, то к любому элементу длины окружности (см. рис.6.14) приложены силы поверхностного натяжения, направленные по касательной к поверхности и стремящиеся её сократить. Результирующая этих сил направлена к центру сферы.

Отнесённая к единице площади поверхности эта результирующая сила оказывает дополнительное давление, которое испытывает жидкость под искривлённой поверхностью. Это дополнительное давление называется давлением Лапласа . Оно всегда направлено к центру кривизны поверхности. На рисунке 6.15 приведены примеры вогнутой и выпуклой сферических поверхностей и показаны давления Лапласа, соответственно.

Определим величину давления Лапласа для сферической, цилиндрической и любой поверхности.

Сферическая поверхность . Капля жидкости . При уменьшении радиуса сферы (рис.6.16) поверхностная энергия уменьшается, а работа производится силами, действующими в капле. Следовательно, объём жидкости под сферической поверхностью всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления шар уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой:

Уменьшение поверхностной энергии произошло на величину, определяемую формулой: (6.41)

Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что и , получим давление Лапласа: (6.42)

Объём жидкости под цилиндрической поверхностью также как и под сферической всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления цилиндр уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой (6.40), только величина давления Лапласа и приращение объёма будут другими. Уменьшение поверхностной энергии произошло на величину, определяемую формулой(6.41). Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что для цилиндрической поверхности и , получим давление Лапласа:

Используя формулу (6.45), можно перейти к формулам (6.42) и (6.44). Так для сферической поверхности, следовательно, формула (6.45) упростится до формулы (6.42); для цилиндрической поверхности r 1 = r , а , тогда формула (6.45) упростится до формулы (6.44). Чтобы отличить выпуклую поверхность от вогнутой, принято считать давление Лапласа положительным для выпуклой поверхности, а соответственно и радиус кривизны выпуклой поверхности будет тоже положительным. Для вогнутой поверхности радиус кривизны и давление Лапласа считают отрицательными.

Решим следующую задачу (задача Банаха). Некто носит в кармане две коробки спичек (по 60 спичек каждая) и всякий раз, когда нужна спичка, наугад берет коробку и вынимает спичку. Какова вероятность того, что когда первая коробка будет пуста, во второй все еще останется 20 спичек? Выбор коробки можно рассматривать как независимое испытание, в котором с вероятностью выбирается первая коробка. Всего опытов производитсяn = 60+40=100, и в этих ста опытах первая коробка должна быть выбрана 60 раз. Вероятность этого равна:

.

Из записи видно, что при больших n пользоваться формулой Бернулли затруднительно из-за громоздких вычислений. Существуют специальные приближенные формулы, которые позволяют находить вероятности
, еслиn велико. Одну из таких формул дает следующая теорема.

Теорема 2.1. (Лапласа локальная). Если в схеме Бернулли
, то вероятность того, что событиеA наступит ровноk раз, удовлетворяет при большихn соотношению

где
.

Для удобства вводится в рассмотрение функция
– локальная функция Лапласа, с помощью которой теорему Лапласа можно записать так:

Существуют специальные таблицы функции
, по которым для любого значения:
можно найти соответствующее значение функции. Получены эти таблицы путем разложения функции
в ряд.

Геометрически этот результат означает, что для больших n многоугольник распределения хорошо вписывается в график функции, стоящей в формуле справа (рис. 2.3) и вместо истинного значения вероятности
можно для каждогоk брать значение функции в точкеk .

Рис. 2.3. Локальная функция Лапласа

Вернемся теперь к задаче. Используя формулу (2.1) находим:

,

где значение
определено по таблице .

2.2.2. Интегральная теорема Лапласа

Теорема 2.2 (Лапласа интегральная). Вероятность того, что в схемеn независимых испытаний событие наступит отk 1 доk 2 раз, приближенно равна

P n (k 1
k
2 )
,

– интегральная функция Лапласа, для которой составлены таблицы. ФункцияФ(х) нечетная:Ф(-х)=-Ф(х) иФ (х4)=0,5.

Рассмотрим пока без доказательства еще одно утверждение.

Отклонение относительной частоты от вероятностиp вn независимых испытаниях равно

(

.

Замечание. Обоснование этих фактов будет рассмотрено далее в разделе 7 (подразд. 7.2, 7.3). Теоремы Лапласа иногда называют теоремами Муавра–Лапласа.

Пример 2.3.

Вероятность появления события в каждом из 900 независимых испытаний равна 0.5. 1) найти вероятность того, что событие произойдет от 400 до 500 раз, 2) найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,02.

Решение

1) Р 900 (400<k <500)=
=

2)

=

2.3. Формула Пуассона

Если зафиксировать число опытов n , а вероятность появления события в одном опытер изменять, то многоугольник распределения будет иметь различный вид в зависимости от величиныр (рис.2.4). При значенияхp , близких к 1/2, многоугольник почти симметричен и хорошо вписывается в симметричный график функции Лапласа. Поэтому приближенная формула Лапласа дает хорошую точность.

Для малых р (на практике меньших) приближение плохое из-за несимметричности многоугольника распределения. Поэтому возникает задача найти приближенную формулу для вычисления вероятностей
в случае большихn и малых р . Ответ на этот вопрос дает формула Пуассона.

Итак, рассмотрим схему независимых испытаний, в которой n велико (чем больше, тем лучше), ар мало (чем меньше, тем лучше). Обозначимn р =λ . Тогда по формуле Бернулли имеем

.

Последнее равенство верно в силу того, что
(второй замечательный предел). При получении формулы наивероятнейшего числа появления событияk 0 было рассмотрено отношение вероятностей. Из него следует, что

Таким образом, при k много меньшихn имеем рекуррентное соотношение

.

Для k =0 учтем полученный ранее результат:
, тогда

………………

Итак, если в схеме независимых испытаний nвелико, ар мало, то имеет местоформула Пуассона

Р n (к)
, где λ= n р.

Закон Пуассона еще называют законом редких явлений.

Пример 2.4.

Вероятность выпуска бракованной детали равна 0,02. Детали упаковываются в коробки по 100 штук. Какова вероятность того, что а) в коробке нет бракованных деталей, б) в коробке больше двух бракованных деталей?

Решение

a ) Так какn велико, ар мало, имеем ; Р 100 (0)
;

б )Р 100 (k >2)= 1-Р 1-

Таким образом, в схеме независимых испытаний для вычисления вероятности Р n (k ) следует пользоваться формулой Бернулли, еслиn невелико, а еслиn велико, то в зависимости от величиныр используется одна из приближенных формул Лапласа или формула Пуассона.

При достаточно большом формула Бернулли дает громоздкие вычисления. Поэтому в таких случаях применяют локальную теорему Лапласа.

Теорема (локальная теорема Лапласа). Если вероятностьpпоявления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность
того, что событие А появится вnнезависимых испытаниях ровноkраз, приближенно равна значению функции:

,

.

Имеются таблицы, в которых находятся значения функции
, для положительных значенийx.

Заметим, что функция
четна.

Итак, вероятность того, что событие А появится в nиспытаниях ровноkраз приближенно равна

, где
.

Пример. На опытном поле посеяли 1500 семян. Найти вероятность того, что всходы дадут 1200 семян, если вероятность того, что зерно взойдет, равна 0,9.

Решение.

Интегральная теорема Лапласа

Вероятность того, что в nнезависимых испытаниях событие А появится не менееk1 раз и не болееk2 раз вычисляется по интегральной теореме Лапласа.

Теорема (интегральная теорема Лапласа). Если вероятность р наступления события а в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что событие А вnиспытаниях появится не менееk 1 раз и не болееk 2 раз приближенно равна значению определенного интеграла:

.

Функция
называется интегральной функцией Лапласа, она нечетна и ее значение находятся по таблице для положительных значенийx.

Пример. В лаборатории из партии семян, имеющих всхожесть 90%, высеяно 600 семян, давших всходы, не менее 520 и не более 570.

Решение.

Формула Пуассона

Пусть производится nнезависимых испытаний, вероятность появления события А в каждом испытании постоянна и равна р. Как мы уже говорили, вероятность появления события А вnнезависимых испытаниях ровноkраз можно найти по формуле Бернулли. При достаточно большомnиспользуют локальную теорему Лапласа. Однако, эта формула непригодна, когда вероятность появления события в каждом испытании мала или близка к 1. А при р=0 или р=1 вообще не применима. В таких случаях пользуются теоремой Пуассона.

Теорема (теорема Пуассона). Если вероятность р наступления события А в каждом испытании постоянна и близка к 0 или 1, а число испытаний достаточно велико, то вероятность того, что вnнезависимых испытаниях событие А появится ровноkраз находится по формуле:

.

Пример. Рукопись объемом в тысячу страниц машинописного текста содержит тысячу опечаток. Найти вероятность того, что наудачу взятая страница содержит хотя бы одну опечатку.

Решение.

Вопросы для самопроверки

    Сформулируйте классическое определение вероятности события.

    Сформулируйте теоремы сложения и умножения вероятностей.

    Дайте определение полной группы событий.

    Запишите формулу полной вероятности.

    Запишите формулу Бейеса.

    Запишите формулу Бернулли.

    Запишите формулу Пуассона.

    Запишите локальную формулу Лапласа.

    Запишите интегральную формулу Лапласа.

Тема 13. Случайная величина и ее числовые характеристики

Литература: ,,,,,.

Одним из основных понятий в теории вероятностей является понятие случайной величины. Так принято называть переменную величину, которая принимает свои значения в зависимости от случая. Различают два вида случайных величин: дискретные и непрерывные. Случайные величины принято обозначать X,Y,Z.

Случайная величина Х называется непрерывной (дискретной), если она может принимать лишь конечное или счетное число значений. Дискретная случайная величина Х определена, если даны все ее возможные значения х 1 , х 2 , х 3 ,…х n (число которых может быть как конечным, так и бесконечным) и соответствующие вероятности р 1 , р 2 , р 3 ,…р n .

Закон распределения дискретной случайной величины Х обычно задается таблицей:

Первая строка состоит из возможных значений случайной величины Х, а во второй строке указаны вероятности этих значений. Сумма вероятностей, с которыми случайная величина Х принимает все свои значения, равна единице, то есть

р 1 +р 2 + р 3 +…+р n =1.

Закон распределения дискретной случайной величины Х можно изобразить графически. Для этого в прямоугольной системе координат строят точки М 1 (х 1 ,р 1), М 2 (х 2 ,р 2), М 3 (х 3 ,р 3),…М n (x n ,p n) и соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения случайной величины Х.

Пример. Дискретная величина Х задана следующим законом распределения:

Требуется вычислить: а) математическое ожидание М(Х), б) дисперсию D(X), в) среднее квадратическое отклонение σ.

Решение. а) Математическое ожидание М(Х), дискретной случайной величины Х называется сумма попарных произведений всех возможных значений случайной величины на соответствующие вероятности этих возможных значений. Если дискретная случайная величина Х задана с помощью таблицы (1), то математическое ожидание М(Х) вычисляется по формуле

М(Х)=х 1 ∙р 1 +х 2 ∙р 2 +х 3 ∙р 3 +…+х n ∙p n . (2)

Математическое ожидание М(Х) называют также средним значением случайной величины Х. Применяя (2), получим:

М(Х)=48∙0,2+53∙0,4+57∙0,3 +61∙0,1=54.

б) Если М(Х) есть математическое ожидание случайной величины Х, то разность Х-М(Х) называется отклонением случайной величины Х от среднего значения. Эта разность характеризует рассеяние случайной величины.

Дисперсией (рассеянием) дискретной случайной величины Х называется математическое ожидание (среднее значение) квадрата отклонения случайной величины от ее математического ожидания. Таким образом, по самому определению имеем:

D(X)=M 2 . (3)

Вычислим все возможные значения квадрата отклонения.

2 =(48-54) 2 =36

2 =(53-54) 2 =1

2 =(57-54) 2 =9

2 =(61-54) 2 =49

Чтобы вычислить дисперсию D(X), составим закон распределения квадрата отклонения и затем применим формулу (2).

D(X)= 36∙0,2+1∙0,4+9∙0,3 +49∙0,1=15,2.

Следует отметить, что для вычисления дисперсии часто используют следующее свойство: дисперсия D(X) равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания, то есть

D(X)-M(X 2)- 2 . (4)

Чтобы вычислить дисперсию по формуле (4), составим закон распределения случайной величины Х 2:

Теперь найдем математическое ожидание М(Х 2).

М(Х 2)= (48) 2 ∙0,2+(53) 2 ∙0,4+(57) 2 ∙0,3 +(61) 2 ∙0,1=

460,8+1123,6+974,7+372,1=2931,2.

Применяя (4), получим:

D(X)=2931,2-(54) 2 =2931,2-2916=15,2.

Как видно, мы получили такой же результат.

в) Размерность дисперсии равна квадрату размерности случайной величины. Поэтому для характеристики рассеяния возможных значений случайной величины вокруг ее среднего значения более удобно рассматривать величину, которая равна арифметическому значению корня квадратного из дисперсии, то есть
. Эту величину называют средним квадратическим отклонением случайной величины Х и обозначают через σ. Таким образом

σ=
. (5)

Применяя (5), имеем: σ=
.

Пример. Случайная величина Х распределена по нормальному закону. Математическое ожидание М(Х)=5; дисперсияD(X)=0,64. Найти вероятность того, что в результате испытания Х примет значение в интервале (4;7).

Решение .Известно, что если случайная величина Х задана дифференциальной функциейf(x), то вероятность того, что Х примет значение, принадлежащее интервалу (α,β), вычисляется по формуле

. (1)

Если величина Х распределена по нормальному закону, то дифференциальная функция

,

где а =М(Х) и σ=
. В этом случае получаем из (1)

. (2)

Формулу (2) можно преобразовать, используя функцию Лапласа.

Сделаем подстановку. Пусть
. Тогда
илиdx =σ∙ dt .

Следовательно
, гдеt 1 иt 2 соответствующие пределы для переменнойt.

Сократив на σ, будем иметь

Из введенной подстановки
следует, что
и
.

Таким образом,

(3)

По условию задачи имеем: а=5; σ=
=0,8; α=4; β=7. Подставив эти данные в (3), получим:

=Ф(2,5)-Ф(-1,25)=

=Ф(2,5)+Ф(1,25)=0,4938+0,3944=0,8882.

Пример. Считается, что отклонение длины изготавливаемых деталей от стандарта является случайной величиной, распределенной по нормальному закону. Стандартная длина (математическое ожидание) а=40 см, среднее квадратическое отклонение σ=0,4 см. Найти вероятность того, что отклонение длины от стандартной составит по абсолютной величине не более 0,6 см.

Решение .Если Х – длина детали, то по условию задачи эта величина должна быть в интервале (а-δ,а+δ), где а=40 и δ=0,6.

Положив в формулу (3) α= а-δ и β= а+δ, получим

. (4)

Подставив в (4) имеющиеся данные, получим:

Следовательно, вероятность того, что изготавливаемые детали по длине будут в пределах от 39,4 до 40,6 см, составляет 0,8664.

Пример. Диаметр деталей, изготавливаемых заводом, является случайной величиной, распределенной по нормальному закону. Стандартная длина диаметраа=2,5 см, среднее квадратическое отклонение σ=0,01. В каких границах можно практически гарантировать длину диаметра этой детали, если за достоверное принимается событие, вероятность которого равна 0,9973?

Решение. По условию задачи имеем:

а=2,5; σ=0,01; .

Применяя формулу (4), получаем равенство:

или
.

По таблице 2 находим, что такое значение функция Лапласа имеет при х=3. Следовательно,
; откуда σ=0,03.

Таким образом, можно гарантировать, что длина диаметра будет изменяться в пределах от 2,47 до 2,53 см.

Свойства жидкостей.

Особенности жидкого состояния вещества. Молекулы вещества в жидком состоянии расположены вплотную друг к другу, как и в твердом состоянии. Поэтому объем жидкости мало зависит от давления. Постоянство занимаемого объема является свойством, общим для жидких и твердых тел и отличающим их от газов, способных занимать любой предоставленный им объем.

Возможность свободного перемещения молекул относительно друг друга обусловливает свойство текучести жидкости. Тело в жидком состоянии, как и в газообразном, не имеет постоянной формы. Форма жидкого тела определяется формой сосуда, в котором находится жидкость, действием внешних сил и сил поверхностного натяжения. Большая свобода движения молекул в жидкости приводит к большей скорости диффузии в жидкостях по сравнению с твердыми телами, обеспечивает возможность растворения твердых веществ в жидкостях.


Поверхностное натяжение.

Поверхностное натяжение. С силами притяжения между молекулами и подвижностью молекул в жидкостях связано проявление сил поверхностного натяжения.

Внутри жидкости силы притяжения, действующие на одну молекулу со стороны соседних с ней молекул, взаимно компенсируются. Любая молекула, находящаяся у поверхности жидкости, притягивается молекулами, находящимися внутри жидкости. Под действием этих сил молекулы с поверхности жидкости уходят внутрь жидкости и число молекул, находящихся на поверхности, уменьшается до тех пор, пока свободная поверхность жидкости не достигнет минимального из возможных в данных условиях значения. Минимальную поверхность среди тел данного объема имеет шар, поэтому при отсутствии или пренебрежимо малом действии других сил жидкость под действием сил поверхностного натяжения принимает форму шара.

Свойство сокращения свободной поверхности жидкости во многих явлениях выглядит таким образом, будто жидкость покрыта тонкой растянутой упругой пленкой, стремящейся к сокращению.

Силой поверхностного натяжения называют силу, которая действует вдоль поверхности жидкости перпендикулярно к линии, ограничивающей эту поверхность, и стремится сократить ее до минимума.

Подвесим на крючок пружинного динамометра П-образную проволоку. Длина стороны АВ равна l . Начальное растяжение пружины динамометра под действием силы тяжести проволоки можно исключить из рассмотрения установкой нулевого деления шкалы против указателя действующей силы.

Опустим проволоку в воду, затем будем медленно опускать вниз сосуд с водой (рис. 92). Опыт показывает, что при этом вдоль проволоки образуется пленка жидкости и пружина динамометра растягивается. По показаниям динамометра можно определить силу поверхностного натяжения. При этом следует учесть, что пленка жидкости имеет две поверхности (рис. 93) и сила упругости равна по модулю удвоенному значению силы поверхностного натяжения :

Если взять проволоку со стороной АВ, вдвое большей длины, то значение силы поверхностного натяжения оказывается вдвое большим. Опыты с проволоками разной длины показывают, что отношение модуля силы поверхностного натяжения, действующей на границу поверхностного слоя длиной l , к этой длине есть величина постоянная, не зависящая от длины l . Эту величину называют коэффициентом поверхностного натяжения и обозначают греческой буквой «сигма»:

. (27.1)

Коэффициент поверхностного натяжения выражается в ньютонах на метр (Н/м). Поверхностное натяжение различно у разных жидкостей.

Если силы притяжения молекул жидкостей между собой меньше сил притяжения молекул жидкости к поверхности твердого тела, то жидкость смачивает поверхность твердого тела. Если же силы взаимодействия молекул жидкости и молекул твердого тела меньше сил взаимодействия между молекулами жидкости, то жидкость не смачивает поверхность твердого тела.


Капиллярные явления.

Капиллярные явления. Особенности взаимодействия жидкостей со смачиваемыми и несмачиваемыми поверхностями твердых тел являются причиной капиллярных явлений.

Капилляром называется трубка с малым внутренним диаметром. Возьмем капиллярную стеклянную трубку и погрузим один ее конец в воду. Опыт показывает, что внутри капиллярной трубки уровень воды оказывается выше уровня открытой поверхности воды.

При полном смачивании жидкостью поверхности твердого тела силу поверхностного натяжения можно считать направленной вдоль поверхности твердого тела перпендикулярно к границе соприкосновения твердого тела и жидкости. В этом случае подъем жидкости вдоль смачиваемой поверхности продолжается до тех пор, пока сила тяжести , действующая на столб жидкости в капилляре и направленная вниз, не станет равной по модулю силе поверхностного натяжения , действующей вдоль границы соприкосновения жидкости с поверхностью капилляра (рис. 94):

,

.

Отсюда получаем, что высота подъема столба жидкости в капилляре обратно пропорциональна радиусу капилляра:

(27.2)

Формула Лапласа.

Известно, что поверхность жидкости около стенок сосуда искривляется. Свободная поверхность жидкости, искривлённая около стенок сосуда, называется мениском (рис. 145).

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает добавочное давление (плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки ).

Рис. 146.

Рассмотрим поверхность жидкости, опирающуюся на некоторый плоский контур (рис.146, а ). Если поверхность жидкости не плоская, то стремление ее к сокращению и приведет к возникновению давления , дополнительного к тому, которое испытывает жидкость с плоской поверхностью. В случае выпуклой поверхности это дополнительное давление положительно (рис. 146, б ), в случае вогнутой поверхности – отрицательно (рис. 146, в ). В последнем случае поверхностный слой, стремясь сократиться, растягивает жидкость.

Величина добавочного давления, очевидно, должна возрастать с увеличением коэффициента поверхностного натяжения и кривизны поверхности .

Рис. 147.
Вычислим добавочное давление для сферической поверхности жидкости. Для этого рассечем мысленно сферическую каплю жидкости диаметральной плоскостью на два полушария (рис. 147). Из-за поверхностного натяжения оба полушария притягиваются друг к другу с силой, равной:

.

Эта сила прижимает друг к другу оба полушария по поверхности и, следовательно, обусловливает дополнительное давление:

Кривизна сферической поверхности всюду одинакова и определяется радиусом сферы . Очевидно, что чем меньше , тем больше кривизна сферической поверхности.

Избыточное давление внутри мыльного пузыря в два раза больше, так как пленка имеет две поверхности:

Добавочное давление обусловливает изменение уровня жидкости в узких трубках (капиллярах), вследствие чего называется иногда капиллярным давлением .

Кривизну произвольной поверхности принято характеризовать так называемой средней кривизной , которая может оказаться различной для разных точек поверхности.

Величина дает кривизну сферы. В геометрии доказывается, что полусумма обратных радиусов кривизны для любой пары взаимно перпендикулярных нормальных сечений имеет одно и то же значение:

. (1)

Эта величина и есть средняя кривизна поверхности в данной точке. В этой формуле радиусы – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен (рис.148).

Рис. 148.
Таким образом, неплоская поверхность может иметь среднюю кривизну, равную нулю. Для этого нужно, чтобы радиусы кривизны были одинаковы по величине и противоположны по знаку.

Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому и . Для случая поверхности кругового цилиндра радиуса имеем: , и .

Можно доказать, что для поверхности любой формы справедливо соотношение:

Подставив в формулу (2) выражение (1), получим формулу добавочного давления под произвольной поверхностью, называемую формулой Лапласа (рис. 148):

. (3)

Радиусы и в формуле (3) – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен.

Пример. Если в жидкости имеется пузырек газа, то поверхность пузырька, стремясь сократиться, будет оказывать на газ дополнительное давление . Найдем радиус пузырька в воде, при котором добавочное давление равно1 aтм . .Коэффициент поверхностного натяжения воды при равен . Следовательно, для получается следующее значение: .