Магнитная жидкость. Магнитная жидкость: вода, текущая вверх

Ферромагнитная жидкость, её получение

и перспективы использования

Аннотация

Феррофлюид – она же ферромагнитная жидкость, необычайно интересная, необычная и полезная вещь. Казалось бы, ничего особенного, обычная безделушка. Но на самом деле все не так просто. Ферромагнитная жидкость способна помочь разогнаться машине до огромной скорости, добыть золото, предотвратить экологическую катастрофу, помочь раскрутить космический корабль в космосе и даже вылечить рак!

Ферромагнитная жидкость – это уникальный технологический искусственно синтезированный материал, обладающий жидкотекучими и магнитоуправляемыми свойствами с широкими перспективами применения в технике, медицине, экологии.

Ферромагнитная жидкость обладает всеми преимуществами жидкого материала – малым коэффициентом трения в контакте с твердым телом, возможностью проникать в микрообъемы, способностью смачивать практически любые поверхности и др.

В то же время, магнитоуправляемость магнитной жидкости позволяет удерживать её в нужном месте устройства под действием магнитного поля.

Мне стало интересно узнать, как же все это происходит. И я решил написать исследовательскую работу, а так же провести несколько увлекательных и наглядных опытов посвященных этой очень интересной теме.

Введение

Ферромагнитная жидкость (от латинского ferrum – железо) – жидкость, сильно поляризующаяся в присутствии магнитного поля.

Ферромагнитные жидкости состоят из частиц нанометровых размеров (обычный размер 10 нм и меньше) материала, содержащего железо, взвешенных в несущей жидкости. Они достаточно малы, чтобы тепловое движение распределило их равномерно по несущей жидкости, чтобы они давали вклад в реакцию жидкости в целом на магнитное поле.

Феррофлюид – она же ферромагнитная жидкость, необычайно интересная, необычная и полезная вещь. Казалось бы, ничего особенного, обычная безделушка. Но на самом деле все не так просто. Ферромагнитная жидкость способна помочь разогнаться машине до огромной скорости, добыть золото, защитить от радиации, помочь раскрутить космический корабль в космосе и даже вылечить рак! Мне стало интересно узнать, как же все это происходит. И я решил написать исследовательскую работу на эту очень интересную тему.

Ферромагнитные жидкости – это коллоидные растворы - вещества, обладающие свойствами более чем одного состояния материи. В данном случае два состояния – это твёрдый металл и жидкость, в которой он содержится. Эта способность изменять состояние под воздействием магнитного поля позволяет использовать ферромагнитные жидкости в качестве уплотнителей, смазки, а также может открыть другие применения в будущих наноэлектромеханических системах.

Ферромагнитная жидкость имеет широкое применение в электронных устройствах, машиностроении, оборонной промышленности, медицине, горнорудной промышленно­сти, аналитических приборах и даже в авиакосмической промышленности.

Самым интересным мне показался тот факт, что в настоящее время ведётся много экспериментов по использованию ферромагнитной жидкости для удаления и диагностики раковых опухолей. Ферромагнитная жидкость вводится в опухоль и подвергается воздействию быстро изменяющегося магнитного поля, и выделяющееся от трения тепло может разрушить опухоль.

Подумав о предстоящей работе, я смог сформулировать цель работы и задачи, которые мне предстоит выполнить.

Цель работы:

Получить ферромагнитную жидкость и изучить её свойства.

Задачи:

    Изучить научную литературу по выбранной теме.

    Ознакомиться с областью применения ферромагнитной жидкости.

    Из подручных материалов изготовить ферромагнитную жидкость.

    Изготовить электромагнит для манипулирования жидкостью.

    Провести эксперимент и проанализировать поведение ферромагнитной жидкости.

Гипотеза:

Если самому изготовить ферромагнитную жидкость, то можно убедиться в её необычных свойствах нано материала и рассмотреть её с помощью электронного микроскопа.

Методы исследования:

    Работа с источниками.

    Эксперименты и наблюдения.

    Анализ экспериментов.

I. Аннотация…………………………………………………………………………………………....……….2

II. Введение………………………………………………………………………………………….……… 3-4

III. Теоретическая часть

    Что такое нанотехнологии?....……………………………………………...…………………………..6

    Описание ферромагнитной жидкости………………………………..……... ……………………..6-7

    Описание магнитного поля и электромагнита………….…………………………………………..7-8

    Области применения ферромагнитной жидкости………………………………….…………..…8-10

    Выводы…………………………………………………………………………………………………10

IV . Практическая часть

    Подготовка к эксперименту………………………………………………………………………….11

    Изготовление электромагнита……………………………………………………………………….11

    Приготовление ферромагнитной жидкости……………………………………………………..11-12

    Проведение эксперимента………………………………………………………..…………………..12

V. Заключение…………………………………………………………………………………..……………..13

VI Список использованной литературы……………………………………………………………………..14

VII Приложения……………………………………………………………………………………………….15

Основное содержание

Теоретическая часть

Популярный сегодня термин «нанотехнология» означает совокупность методов и приёмов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами от 1 до 100 нанометров.

Нанотехнологии – это технологии работы с веществом на уровне отдельных атомов. Традиционные методы производства работают с порциями вещества, состоящими из миллиардов и более атомов. Это значит, что даже самые точные приборы, произведённые человеком до сих пор, на атомарном уровне выглядят как беспорядочная мешанина. Переход от манипуляции с веществом к манипуляции отдельными атомами – это качественный скачок, обеспечивающий беспрецедентную точность и эффективность.

В 1959 году нобелевский лауреат Ричард Фейнман в своём выступлении предсказал, что в будущем, научившись манипулировать отдельными атомами, человечество сможет синтезировать всё, что угодно. В 1981 году появился первый инструмент для манипуляции атомами – туннельный микроскоп, изобретённый учеными из IBM. Оказалось, что с помощью этого микроскопа можно не только «видеть» отдельные атомы, но и поднимать и перемещать их. Этим была продемонстрирована принципиальная возможность манипулировать атомами, а, значит, непосредственно собирать из них, словно из кирпичиков, всё, что угодно: любой предмет, любое вещество.

Изучением свойств наноматериалов в рамках проведения фундаментально-поисковых и прикладных научно-исследовательских работ занимаются почти во всем мире. Наибольшие успехи получены в США, Японии, Франции. В нашей стране исследованиями в области нанотехнологий занимаются несколько десятков лет. По отдельным направлениям российские учёные занимают приоритетные позиции в мире. В частности, в области метрологии российское предприятие НТ МДТ имеет уникальный опыт создания сканирующих зондовых микроскопов, имеющих атомарное разрешение. Объекты нанотехнологий, с одной стороны, могут иметь характеристические размеры указанного диапазона.

Ферромагнитные жидкость (от латинского ferrum - железо) - жидкость, сильно поляризующаяся в присутствии магнитного поля. Ферромагнитные жидкости состоят из частиц нанометровых размеров (обычный размер 10 нм и меньше) материала, содержащего железо, взвешенных в несущей жидкости. Они достаточно малы, чтобы тепловое движение распределило их равномерно по несущей жидкости, чтобы они давали вклад в реакцию жидкости в целом на магнитное поле.

Ферромагнитные жидкости – это коллоидные растворы – вещества, обладающие свойствами более чем одного состояния материи. В данном случае два состояния – это твёрдый металл и жидкость, в которой он содержится. Эта способность изменять состояние под воздействием магнитного поля позволяет использовать ферромагнитные жидкости в качестве уплотнителей, смазки, а также может открыть другие применения в будущих наноэлектромеханических системах. (Приложение 1)

Несмотря на название, ферромагнитные жидкости не проявляют ферромагнитных свойств, поскольку не сохраняют остаточной намагниченности после исчезновения внешнего магнитного поля. На самом деле ферромагнитные жидкости являются парамагнетиками и их часто называют «суперпарамагнетиками» из-за высокой магнитной восприимчивости.

Способы получения коллоидных систем магнитных жидкостей можно разделить на методы диспергирования и методы конденсации. Методы диспергирования заключаются в измельчении грубых частиц твердых тел до коллоидных размеров. Конденсационные методы основаны на соединении отдельных молекул или ионов растворенного вещества в агрегаты коллоидных размеров.

Для того чтобы создать устойчивость подобной жидкости, необходимо связать ферромагнитные частицы с ПАВ (поверхностно-активным веществом ) - оно создает так называемую защитную оболочку вокруг частиц, что не допускает их слипания, благодаря Ван-дер-Ваальсовым или магнитным силам.

Чтобы обволакивать частицы в ферромагнитной жидкости используются, в частности, следующие ПАВ:

    Олеиновая кислота

    Гидроксид тетраметиламмония

    Полиакриловая кислота

    Полиакрилат натрия

    Лимонная кислота

    Соевый лецитин

ПАВ препятствуют слипанию частиц, мешая им образовать слишком тяжелые кластеры, которые не смогут удерживаться во взвешенном состоянии за счет броуновского движения. В идеальной ферромагнитной жидкости магнитные частицы не оседают даже в очень сильном магнитном или гравитационном поле. Молекулы ПАВ имеют полярную «головку» и неполярный «хвост» (или наоборот); один из концов адсорбируется к частице, а другой прикрепляется к молекулам жидкости-носителя, образуя, соответственно, обычную или обратную мицеллу вокруг частицы. В результате пространственные эффекты препятствуют слипанию частиц. Полиакриловая, лимонная кислоты и их соли формируют на поверхности частиц двойной электрический слой в результате адсорбции полианионов, что приводит к возникновению кулоновских сил отталкивания между частицами, повышающей стабильность жидкости на водной основе.

Под воздействием довольно сильного вертикально направленного магнитного поля поверхность жидкости с парамагнитными свойствами самопроизвольно формирует регулярную структуру из складок. Этот эффект известен как « нестабильность в нормально направленном поле ». Формирование складок увеличивает свободную энергию поверхности и гравитационную энергию жидкости, но уменьшает энергию магнитного поля. Такая конфигурация возникает только при превышении критического значения магнитного поля, когда уменьшение его энергии превосходит вклад от увеличения свободной энергии поверхности и гравитационной энергии жидкости. У ферромагнитных жидкостей очень высокая магнитная восприимчивость, и для критического магнитного поля, чтобы возникли складки на поверхности, может быть достаточно маленького стержневого магнита.

Магнитное поле - это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения. Магнитное поле может создаваться током заряженных частиц и магнитными моментами электронов в атомах. Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля. Для проведения опытов с ферромагнитной жидкостью мне потребуется электромагнит. (Приложение 2)

Электромагнит - устройство, создающее магнитное поле при прохождении электрического тока. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке тока.

Обмотку электромагнитов изготавливают из изолированного алюминиевого или медного провода, хотя есть и сверхпроводящие электромагниты. Магнитопроводы изготавливают из магнитно-мягких материалов - обычно из электротехнической или качественной конструкционной стали, литой стали и чугуна, железоникелевых и железокобальтовых сплавов.

Ферромагнитная жидкость - это уникальный технологический искусственно синтезированный материал, обладающий жидкотекучими и магнитоуправляемыми свойствами с широкими перспективами применения в технике, медицине, экологии. Магнитная жидкость обладает всеми преимуществами жидкого материала - малым коэффициентом трения в контакте с твердым телом, возможностью проникать в микрообъемы, способностью смачивать практически любые поверхности и др. В то же время, магнитоуправляемость магнитной жидкости позволяет удерживать её в нужном месте устройства под действием магнитного поля.

Для магнитных жидкостей придумали множество полезных применений: для уплотнения валов и поршней, для «вечной» смазки, для сбора нефти, разлитой на воде, для обогащения полезных ископаемых, для лечения и диагностики многих болезней и даже для прямого превращения тепловой энергии в механическую.

Ввиду уникальности свойств магнитные жидкости находят широкое применение в различных областях науки и техники. (Приложение 3)

Электронные устройства:

Ферромагнитные жидкости используются для создания жидких уплотнительных устройств вокруг вращающихся осей в жёстких дисках. Вращающаяся ось окружена магнитом, в зазор между магнитом и осью помещено небольшое количество ферромагнитной жидкости, которая удерживается притяжением магнита. Жидкость образует барьер, препятствующий попаданию частиц извне внутрь жёсткого диска.

Ферромагнитная жидкость также используются в некоторых высокочастотных динамиках для отвода тепла от звуковой катушки. Она удерживается в зазоре вокруг звуковой катушки сильным магнитным полем, находясь одновременно в контакте с обеими магнитными поверхностями и с катушкой.

Печатающие и чертежные устройства:

Есть печатающие и чертежные устройства, работающие на магнитной жидкости. В краску вносится немного магнитной жидкости, и такая краска выбрызгивается тонкой струйкой на протягиваемую перед ней бумагу. Если струю ничем не отклонять, то будет начерчена линия. Но на пути струйки поставлены электромагниты, подобно отклоняющим электромагнитам кинескопа телевизора. Роль потока электронов здесь играет тонкая струйка краски с магнитной жидкостью - ее-то и отклоняют электромагниты, и на бумаге остаются буквы, графики, рисунки.

Машиностроение:

Применение магнитной жидкости для уплотнения вращающихся валов позволяют существенно увеличить ресурс механизмов и снизить уровень шума. В некоторых механизмах применение магнитожидкостных уплотнителей не имеют альтернативы, так-как имеют абсолютную герметичность. Утечки через магнитножидкостные уплотнения полностью исключены. Наиболее широко ее применяют для уплотнения и герметизации зазоров между движущимися частями машин.

Одной из областей применения магнитных жидкостей является их использование в качестве магнитных смазок. В чем преимущества магнитных жидкостей по сравнению с традиционными смазками? МЖ на основе масла по сравнению с тем же маслом снижает трение на 20% эффективнее.

Трение минимально, поскольку основой МЖ является масло, а размер содержащихся в ней твердых частиц на несколько порядков меньше шероховатостей идеально отполированных трущихся деталей. Дополнительным преимуществом использования МЖ в качестве смазок заключается в том, что магнитные жидкости, удерживаемые магнитным полем, не будут вытекать из агрегата. Кроме того, магнитные жидкости будут препятствовать попаданию, например, в подшипники посторонних немагнитных частиц, т.к. МЖ под воздействием магнитного поля выталкивают немагнитные материалы.

«Ferrari » использует ферромагнитные жидкости в некоторых моделях машин для улучшения возможностей подвески. Под воздействием электромагнита, контролируемого компьютером, подвеска мгновенно может стать более твердой или более мягкой.

Оборонная промышленность:

Военно-воздушные силы США внедрили радиопоглощающее покрытие на основе ферромагнитной жидкости. Снижая отражение электромагнитных волн, оно помогает уменьшить эффективную площадь рассеяния самолета.

Авиакосмическая промышленность:

NASA проводило эксперименты по использованию ферромагнитной жидкости в замкнутом кольце как основу для системы стабилизации космического корабля в пространстве. Магнитное поле воздействует на ферромагнитную жидкость в кольце, изменяя момент импульса и влияя на вращение корабля.

Горнорудная промышленность:

Магнитная жидкость обладает еще одним удивительным, поистине уникальным свойством. В ней, как и в любой жидкости, плавают тела менее плотные и тонут тела более плотные, чем она сама. Но если приложить к ней магнитное поле, то утонувшие тела начинают всплывать. Причем чем сильнее поле, тем более тяжелые тела поднимаются на поверхность. Прикладывая различное по напряженности магнитное поле, можно заставлять всплывать тела с какой-то заданной плотностью. Это свойство магнитной жидкости применяют сейчас для обогащения руды. Ее топят в магнитной жидкости, а затем нарастающим магнитным полем заставляют всплывать сначала пустую породу, а затем уже и тяжелые куски руды.

Медицина:

Противоопухолевые препараты, к примеру, вредны для здоровых клеток. Но если их смешать с магнитной жидкостью и ввести в кровь, а у опухоли расположить магнит, магнитная жидкость, а вместе с ней и лекарство, сосредоточиваются у пораженного участка, не нанося вреда всему организму. Также можно перемещать в организме ферменты.

Магнитные коллоиды можно применять в качестве контрастного средства при рентгеноскопии. Обычно при рентгеноскопической диагностике желудочно-кишечного тракта пользуются кашицей на основе сернокислого бария. Если учесть, что коллоидные ферритовые частицы активно поглощают рентгеновские лучи, то можно говорить об использовании магнитных жидкостей в качестве рентгеноконтрастных веществ для диагностики полых органов. Bce процедуры при этом существенно упрощаются. Кроме того, известны предложения о применении МЖ в качестве управляемого рентгеноконтрастного вещества для исследования скорости движения крови.

Магнитные жидкости могут использоваться в хирургии. Если расположить постоянный магнит в том месте, где хирург должен делать разрез, то пробка из магнитной жидкости, введенной шприцем в вену или артерию, будет перекрывать ток крови после разреза.

Магнитоуправляемые частицы магнетита используются для лечения рака. Этот метод лечения (гипертермия ) основан на том, что под действием переменного магнитного поля частицы магнетита разогреваются, подавляя рост раковых клеток. (Приложение 4)

Экология:

Огромный интерес для исследователей представляет возможность очистки сточных вод от нефтепродуктов с помощью магнитных жидкостей. В основе процесса лежит принцип омагничивания нефтепродуктов путем добавления магнитной жидкости в сточные воды и последующего отделения омагниченных нефтепродуктов специальными магнитными системами.

Магнитную жидкость можно применять для сбора различных нефтепродуктов на поверхности морей, океанов, озер. Часто случается так, что человек не в состоянии предотвратить загрязнение нефтепродуктами поверхности воды, например, при аварии танкера с нефтью, когда громадное пятно покрывает многие квадратные километры моря, загрязняя все вокруг. Очистка воды от таких загрязнений – дело очень трудное, долгое и не всегда выполнимое. Но и здесь помогает магнитная жидкость. На разлившееся пятно с вертолета разбрызгивают небольшое количество магнитной жидкости, которая быстро растворяется в нефтяном пятне, затем в воду погружают сильные магниты, и пятно начинает стягиваться в точку, здесь же его откачивают насосы. Вода вновь становится чистой.

Выводы:

Ферромагнитная жидкость - очень интересный объект для опытов и исследований.

Я считаю, что опыты с манипулированием ферромагнитной жидкостью довольно актуальны и интересны, потому что причудливые формы, принимаемые ей, вызывают интерес и любопытство. К тому же эта жидкость может наглядно продемонстрировать нам действие магнитного поля.

Уже сейчас ферромагнитная жидкость активно используется во многих областях науки и техники, области ее применения продолжают, и будут продолжать расширяться.

Практическая часть

Подготовка к эксперименту

Подумав над предстоящей работой, я смог разделить практическую часть моего исследования на 5 основных этапов:

    Сбор необходимой информации о предстоящем опыте (техника безопасности, инструкции по изготовлению и т.д.)

    Изготовление электромагнита.

    Приготовление ферромагнитной жидкости.

    Проведение эксперимента.

    Описание проведенного опыта (сделать фотографии и т.д.)

Для того чтобы найти оптимальный режим работы электромагнита мне нужен блок питания с регулируемой мощностью. При этом важно чтобы магнит одновременно работал на пределе своих возможностей и не сгорел от перегрева.

Изготовление электромагнита:

Для изготовления электромагнита мне потребовалось:

    Железный сердечник.

    Медная проволока.

    Два провода.

    Изоляционный материал.

    Для начала изолируем сердечник будущего электромагнита, чтобы избежать коротких замыканий. В нашем случае это будет железный болт.

    Наматываем изолированную медную проволоку на болт. Я использовал для этого электродрель. Перед тем как начать наматывать проволоку, мы выводим ее свободный конец, чтобы мы могли к нему подсоединиться, а второй наматываем на болт.

    Полностью изолируем магнит и выводим второй конец наружу. Электромагнит готов. (Приложение 5)

В дальнейшем подключив магнит к блоку питания, мы сможем регулировать силу воздействия электромагнитного поля на ферромагнитную жидкость.

Приготовление ферромагнитной жидкости:

Для того чтобы приготовить ферромагнитную жидкость мне понадобилось:

    Тонер для лазерного принтера или девелопер, (желательно чтобы частицы материала с магнитными свойствами в нем были как можно меньше).

    Машинное масло.

Нужно помнить, что девелопер для тонера очень маркий, поэтому обращаться с ним нужно предельно осторожно.

    Насыпаем в тару для смешивания девелопер.

    Наливаем в тару машинное масло.

    Ингредиенты нужно смешать до состояния сметаны. Ферромагнитная жидкость готова. (Приложение 6)

Проведение эксперимента

После завершения всех приготовлений, мы можем приступить к проведению эксперимента.

Как только я поднес постоянный магнит к ферромагнитной жидкости она тут же начала поляризоваться и принимать различные формы. (Приложение 7)

После того как мы убедились в том что изготовленная ферромагнитная жидкость работает, я могу использовать для своих опытов электромагнит.

С помощью блока питания с регулируемой мощностью смог подобрать необходимое напряжение, чтобы электромагнит работал на пределе свих возможностей и при этом не перегревался, для моего электромагнита это напряжение не выше 30V.

Зафиксировав электромагнит, я приступил к подробному рассмотрению процесса.

На специальную, заранее приготовленную площадку на электромагните я поместил каплю ферромагнитной жидкости.

Включив электромагнит, мы наблюдаем удивительные метаморфозы ферромагнитной жидкости под воздействием электромагнитного поля.

Мы наблюдаем, как за долю секунды жидкость приобрела состояние твердого вещества, без какого либо механического воздействия.

Самое интересное, что при отключении электромагнита, ферромагнитная жидкость возвращается в прежнее состояние. (Приложение 8)

Повторяя подобный эксперимент можно еще раз убедиться в том, что ферромагнитная жидкость состоит из очень маленьких частиц обладающих магнитными свойствами. То же самое можно увидеть на поверхности магнита, если поводить им в песке или земле.

После проведения экспериментов, я не захотел останавливаться на достигнутом, мне захотелось рассмотреть этот процесс еще ближе, в более мелких подробностях. Для этого я использую цифровой микроскоп. Я надеюсь получить кадры многократно увеличенной ферромагнитной жидкости под воздействием электромагнитного поля.

Я рассмотрел под микроскопом ферромагнитную жидкость в «спокойном» состоянии и под воздействием электромагнита. (Приложение 9)

Заключение

В результате проведённой мною работы я получил ферромагнитную жидкость, изготовил из подручных материалов электромагнит для наблюдения действия его на магнитную жидкость, провёл наблюдения за изменениями, которые получает ферромагнитная жидкость под действием магнитного поля. Я узнал, что ферромагнитная жидкость обладает удивительными свойствами и уже сейчас широко применяется в различных областях науки, техники, медицины, и может иметь еще большее применение в будущем.

Список литературы

Брук Э.Т., Фертман В.Е. «Ёж» в стакане. Магнитные материалы: от твёрдого тела к жидкости. - Минск, Вышейшая школа, 1983.

Авдеев М.В., Аксенов В.Л. Малоугловое рассеяние нейтронов в структурных исследованиях магнитных жидкостей /УФН. – 2010.- Т. 180.- С. 1009-1034.

Приложение

Приложение 1 Приложение 4

Гипертермия

Приложение 5





Для более простого и быстрого наматывания проволоки на электромагнит можно использовать электродрель.

П



риложение 6

П

риложение 7

На следующих фотографиях, под воздействием круглого постоянного магнита изображены изготовленная мной ферромагнитная жидкость и техническая.

П

риложение 8


Установка для эксперимента

Приложение 9






Ферромагнитная жиидкость (ФМЖ, магнитная жидкость, феррожидкость, феррофлюид) (от латинского ferrum - железо) - жидкость, сильно поляризующаяся в присутствии магнитного поля.

Ферромагнитная жидкость


Ферромагнитные жидкости представляют собой коллоидные системы, состоящие из ферромагнитных или ферримагнитных частиц нанометровых размеров, находящихся во взвешенном состоянии в несущей жидкости, в качестве которой обычно выступает органический растворитель или вода. Для обеспечения устойчивости такой жидкости ферромагнитные частицы связываются с поверхностно-активным веществом (ПАВ), образующим защитную оболочку вокруг частиц и препятствующем их слипанию из-за Ван-дер-Ваальсовых или магнитных сил.


Несмотря на название, ферромагнитные жидкости не проявляют ферромагнитных свойств, поскольку не сохраняют остаточной намагниченности после исчезновения внешнего магнитного поля. На самом деле ферромагнитные жидкости являются парамагнетиками и их часто называют «суперпарамагнетиками» из-за высокой магнитной восприимчивости. Действительно ферромагнитные жидкости в настоящее время создать сложно.


Ферромагнитные жидкости это коллоидные растворы - вещества, обладающие свойствами более чем одного состояния материи. В данном случае два состояния это твердый металл и жидкость, в которой он содержится. Эта способность изменять состояние под воздействием магнитного поля позволяет использовать ферромагнитные жидкости в качестве уплотнителей, смазки, а также может открыть другие применения в будущих наноэлектромеханических системах.


Под воздействием довольно сильного вертикально направленного магнитного поля поверхность жидкости с парамагнитными свойствами самопроизвольно формирует регулярную структуру из складок. Этот эффект известен как «нестабильность в нормально направленном поле». Формирование складок увеличивает свободную энергию поверхности и гравитационную энергию жидкости, но уменьшает энергию магнитного поля. Такая конфигурация возникает только при превышении критического значения магнитного поля, когда уменьшение его энергии превосходит вклад от увеличения свободной энергии поверхности и гравитационной энергии жидкости. У ферромагнитных жидкостей очень высокая магнитная восприимчивость, и для критического магнитного поля, чтобы возникли складки на поверхности, может быть достаточно маленького стержневого магнита.

Ферромагнитные жидкости используются для создания жидких уплотнительных устройств вокруг вращающихся осей в жёстких дисках. Вращающаяся ось окружена магнитом, в зазор между магнитом и осью помещено небольшое количество ферромагнитной жидкости, которая удерживается притяжением магнита. Жидкость образует барьер, препятствующий попаданию частиц извне внутрь жёсткого диска. Согласно утверждениям инженеров (Ferrotec Corporation), жидкие уплотнители на вращающихся осях в норме выдерживают давление в от 3 до 4 фунтов на квадратный дюйм (примерно от 20 до 30 кПа), но такие уплотнители не очень годятся для узлов с поступательным движением (например, поршней), так как жидкость механически вытягивается из зазора.
также используются в некоторых высокочастотных динамиках для отвода тепла от звуковой катушки. Одновременно она работает механическим демпфером, подавляя нежелательный резонанс. удерживается в зазоре вокруг звуковой катушки сильным магнитным полем, находясь одновременно в контакте с обеими магнитными поверхностями и с катушкой.
способна снижать трение. Нанесенная на поверхность достаточно сильного магнита, например неодимового, она позволяет магниту скользить по гладкой поверхности с минимальным сопротивлением.
Ferrari использует магнитореологические жидкости в некоторых моделях машин для улучшения возможностей подвески. Под воздействием электромагнита, контролируемого компьютером, подвеска может мгновенно стать более жесткой или более мягкой.
Замороженная или полимеризованная ферромагнитная жидкость, находящаяся в совокупности постоянного (подмагничивающего) и переменного магнитных полей, может служить источником упругих колебаний с частотой переменного поля, что может быть использовано для генерации ультразвука.

Прошло 52 года с тех пор, как сотрудник NASA Стив Папелл изобрел ферромагнитную жидкость. Он решал вполне определенную задачу: как в условиях невесомости заставить жидкость в топливном баке ракеты подходить к отверстию, из которого насос перекачивал топливо в камеру сгорания. Тогда-то Папелл и придумал нетривиальное решение — добавлять в топливо какую-нибудь магнитную субстанцию, чтобы с помощью внешнего магнита управлять перемещением топлива в баке. Так на свет появилась ферромагнитная жидкость.

В качестве магнитного вещества Папелл использовал магнетит (Fe 3 O 4), который по специальной технологии размельчал (перетирал в смеси с олеиновой кислотой) в течение многих дней. Получалась устойчивая коллоидная суспензия, в которой стабильно существовали крошечные частички магнетита размером 0,1—0,2 микрона. Олеиновая кислота в этой системе играла роль модификатора поверхности, который не давал частицам магнетита слипаться. Патент С.Папелла US 3215572 A (Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles) открыт, и его можно посмотреть в Интернете. Классический состав ферромагнитной жидкости — 5% (по объему) магнитных частиц, 10% модификатора поверхности (олеиновая, лимонная или полиакриловая кислоты и др.). Остальное — органический растворитель, включая жидкие масла.

Интерес к магнитным жидкостям оживился в последние годы, и сегодня они нашли уже множество применений. Если нанести такую жидкость на неодимовый магнит, то магнит будет скользить по поверхности с минимальным сопротивлением, то есть трение резко уменьшится. На основе ферромагнитной жидкости в США делают радиопоглощающие покрытия на самолеты. А создатели знаменитого Ferrari используют магнитореологическую жидкость в подвеске автомобиля: манипулируя магнитом, водитель может сделать подвеску в любой момент более жесткой или более мягкой. И это лишь несколько примеров.

Магнитная жидкость — удивительный материал. Стоит поместить ее в магнитное поле, как разрозненные магнитные частицы объединяются и выстраиваются вдоль силовых линий поля, превращаясь во вполне твердое вещество. Сегодня фокусы с магнитной жидкостью, которая при соприкосновении с магнитом превращается в безупречных с точки зрения симметрии ежиков или кактусы, показывают на многих развлекательных шоу. Конечно, ферромагнитную жидкость можно купить, но ведь гораздо интереснее сделать самому.

Мы писали о том, как получить самозатвердевающую магнитную жидкость, которая позволит рассмотреть структуры, образованные магнитными частицами, под микроскопом («Химия и жизнь», 2015, №11).А вот еще один рецепт самодельной ферромагнитной жидкости. Возьмите 50 мл тонера для лазерного принтера. Этот порошок не менее чем на 40% состоит из магнетита, размер частиц которого — 10 нанометров и меньше. В тонере также обязательно присутствует модификатор поверхности, чтобы наночастицы не слипались. К 50 мл тонера добавьте 30 мл растительного масла (две столовые ложки) и тщательно перемешайте, не жалея на этот процесс времени. Получится черная однородная жидкость, похожая на сметану. А теперь налейте ее в плоскую стеклянную емкость с бортиками, чтобы толщина слоя была не меньше сантиметра. Поднесите магнит под донышко емкости, и в этом месте в жидкости сразу же возникнет жесткий ежик. С помощью магнита его можно перемещать. Если же вы поднесете магнит к поверхности жидкости или сбоку, то жидкость буквально выскочит навстречу магниту, так что будьте осторожны. Чтобы избежать этой неприятности, можно поместить магнитную жидкость в небольшую стеклянную коническую колбу, заполнив ее наполовину или чуть меньше. Наклоните колбу, чтобы образовался слой жидкости вдоль ее стенки, и поднесите магнит к стеклу.

Успех зависит от силы магнита (неодимовый магнит небольшого размера можно купить в магазинах) и качества тонера. В последнем случае надо быть уверенным, что он содержит магнитный порошок.

1

Белоногова С.А. (Калининград, МАОУ СОШ № 19)

1. Викторова Л. Как сделать ферромагнитную жидкость дома? // НиЖ. – 2015. – №12. – https://www.hij.ru/read/issues/2015/december/5750/.

2. Сенатская И., Байбуртский Ф. Магнитная жидкость // Наука и жизнь. – https://www.nkj.ru/archive/articles/4971/.

3. Ферромагнитная жидкость. – https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D1%80%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F_%D0%B6%D0%B8%D0%B4%D0%BA%D0%BE%D1%81%D1%82%D1%8C.

4. Феррожидкость – что это и как сделать ферромагнитную жидкость самому. – http://www.sciencedebate2008.com/ferrofluid/.

Цель: приготовить ферромагнитную жидкость и изучить её свойства.

Задачи :

1. Узнать о ферромагнитной жидкости (вид неньютоновской жидкости).

2. Приготовить ферромагнитную жидкость.

3. Провести эксперименты для изучения её свойств.

4. Узнать её применение.

5. Сделать выводы.

6. Представить результаты.

Гипотеза: в домашних условиях можно приготовить ферромагнитную жидкость и изучить ее свойства.

Область применения результатов: участие в научно-исследовательских конкурсах

Актуальность: Магнетизм - это физическое явление, при котором материалы оказывают притягивающую или отталкивающую силу на другие материалы на расстоянии. Планета Земля имеет два магнитных полюса и собственное магнитное поле. Магниты - важная часть нашей повседневной жизни. Магниты являются существенными компонентами таких устройств, как электрические двигатели, динамики, компьютеры, проигрыватели компакт-дисков, микроволновые печи и, конечно, автомобили. Магниты используются в датчиках, приборах, производственном оборудовании, научных исследованиях. Ферромагнитная жидкость - один из видов неньютоновской жидкости. Это искусственно созданная жидкость. Эта жидкость меняет свойства при определенных условиях которыми может управлять человек.

1. Теоретическая часть

Магнитные жидкости - это уникальный технологический искусственно синтезированный материал, обладающий жидкотекучими и магнитоуправляемыми свойствами.

В 1963 году сотрудник NASA Стив Папелл изобрел ферромагнитную жидкость. Он решал вполне определенную задачу: как в условиях невесомости заставить жидкость в топливном баке ракеты подходить к отверстию, из которого насос перекачивал топливо в камеру сгорания. Тогда-то Папелл и придумал нетривиальное решение - добавлять в топливо какую-нибудь магнитную субстанцию, чтобы с помощью внешнего магнита управлять перемещением топлива в баке. Так на свет появилась ферромагнитная жидкость.

Минимальный состав ферромагнитой жидкости: ферромагнетик (например, мелкие частицы магнитного металла) и растворитель (например, различные масла). Но такая жидкость будет оседать. Чтобы этого не происходило, необходимо добавить модификатор поверхности (вещество, которое не даёт ферромагнетику слипаться, например лимонная кислота). Ферромагнитные жидкости изучает раздел науки коллоидная химия.

Магнитная жидкость обладает всеми преимуществами жидкого материала - малым коэффициентом трения в контакте с твердым телом, возможностью проникать в микрообъемы, способностью смачивать практически любые поверхности и др. В то же время, магнитоуправляемость магнитной жидкости позволяет удерживать её в нужном месте устройства под действием магнитного поля.

2. Практическая часть

В практической части работы я пробовал сделать ферромагнитную жидкость и посмотреть как она изменяется в присутствии магнита.

2.1. Материалы и инструменты

Тонер-порошок, девелопер, железная стружка, магнитный порошок;

Машинное масло, подсолнечное масло;

Лимонная кислота;

Неодимовые магниты: из обычного жесткого диска для компьютера, из звукового динамика, приобретенный в специализированном магазине неодимовое магнит-кольцо;

Флакон, воронка, разные поверхности, полиэтиленовый пакет, перчатки, палочка;

Блокнот для записей, ручка, фотоаппарат, ноутбук.

2.2. Опыт № 1. Получение ферромагнитной жидкости из тонер-порошка и машинного масла

В глобальной сети Интернет есть множество сайтов, на которых описан способ получения ферромагнитной жидкости из тонер-порошка и машинного масла в пропорции одна третья тонер порошка, остальное машинное масло. Я взял тонер-порошок для лазерных принтеров brother и машинное масло. Смешал в пластиковой бутылке. После смешивания, я поднес магнит и ничего не произошло. Жидкость получилась, но она не обладала магнитными свойствами. Если бы жидкость обладала магнитными свойствами, она бы затвердела и изменила свою форму при движении магнита. Опыт завершился неудачей.

2.3. Опыт № 2. Получение ферромагнитной жидкости из тонер-порошка, девелопера и машинного масла

Из первого опыта я сделал вывод о том, что используемый тонер не является ферромагнетиком. В современных лазерных принтерах для намагничивания краски используется девелопер - специальный магнитный порошок. В получившуюся в первом опыте жидкость я добавил треть объема девелопера. Когда я поднес магнит, жидкость образовала почти незаметный холмик и не затвердела. Получилась жидкость со слабыми ферромагнитными свойствами. Опыт завершился неудачей.

2.4 Опыт № 3. Получение ферромагнитной жидкости из железной стружки и машинного масла

После первых двух неудавшихся опытов, я задумался о силе магнита. С помощью которого проверяю наличие магнитных свойств. Для проверки жидкости я использовал два магнита: магнит от звукового динамика и неодимовый магнит из уже не работающего жесткого диска для компьютера (HDD). Для того чтобы убедится, что ферромагнитная жидкость не получается из-за свойств ферромагнетика в жидкости, а не магнита я добавил в получившийся раствор обычные железные опилки (отходы от работы на слесарном станке). Магнит притянул к стенке все железные элементы жидкости! Магнитные свойства появились, но все то что я смешал уже сложно назвать жидкостью. Опыт снова завершился неудачей.

2.5. Опыт № 4. Получение ферромагнитной жидкости из магнитного порошка и подсолнечного масла

Итак, для получения ферромагнитной жидкости нужен хороший ферромагнетик! В специализированном магазине "Мир магнитов" я приобрел специальный железный магнитный порошок для опытов.

2.6. Опыт № 5. Получение ферромагнитной жидкости из магнитного порошка, лимонной кислоты и подсолнечного масла

Для того чтобы ферромагнитная жидкость не расслаивалась в нее добавляют ПАВ (поверхностно активное вещество). В качестве ПАВ я выбрал лимонную кислоту.

2.7. Опыт № 6. Изучение свойств феррмагнитной жидкости. Магнитоуправляемость

Для изучения свойств полученной жидкости я использовал неодимовый магнит.

Магниты и инструментарий

Когда я поднес магнит к стенке пузырька с ферромагнитной жидкость часть жидкости примагнитилас к стенке, затвердела и изменила свою форму (см. фото)

Когда я положил магнит на дно и перевернул пузырек, все его содержимое стало твердым и не стекало сверху вниз.

Когда я убрал магнит, твердое вещество стало превращаться в жидкость и стекло сверху вниз

С помощью пипетки я перелил часть ферромагнитной жидкости на пластиковый диск

Обратите внимание - это жидкость!!!

Вот что произошло с жидкостью на которую воздействует магнит. Форма похожа на иголки ежика.

При перемещении магнита часть твердой жидкости переместилась вместе с ним, оставшаяся стала принимать жидкую форму.

Моя младшая сестра захотела сделать ферромагнитного котика, у которого может пониматься шерсть дыбом.

На фанерке, оклеенной фольгой, с помощью пластилина я сделал очертания кота и заполнил его с помощью пипетки моей ферромагнитной жидкостью

Вот что получилось при поднесении магнита снизу

…хвост дыбом…

Мой ферромагнитный ежик

Исследуем…..

2.8. Опыт № 7. Изучение свойств феррмагнитной жидкости. Способность проникать в микрообъемы (закупорка отверстия)

В последнем эксперименте я пытался понять, как можно с помощью внешнего магнита закрывать отверстия от течи. Для этого я сначала налил мою жидкость в пластмассовую колбу с большим отверстием внизу. Потом поднес магнит к стенке рядом с отверстием и поднял колбу. Затвердевшая под действием магнита жидкость препятствовала вытеканию остальной жидкой части. Как только я убрал магнит, все вытекло из колбы.

3. Практическое применение

1. Применение ферромагнитных жидкостей:

2. На основе ферромагнитной жидкости делают радиопоглощающие покрытия на самолеты.

3. Создатели знаменитого Ferrari используют магнитореологическую жидкость в подвеске автомобиля: манипулируя магнитом, водитель может сделать подвеску в любой момент более жесткой или более мягкой.

4. Ферромагнитная жидкость используются в некоторых высокочастотных динамиках для отвода тепла от звуковой катушки. Одновременно она работает механическим глушителем, подавляя нежелательный резонанс. Ферромагнитная жидкость удерживается в зазоре вокруг звуковой катушки сильным магнитным полем, находясь одновременно в контакте с обеими магнитными поверхностями и с катушкой

5. Ферромагнитные жидкости имеют множество применений в оптике благодаря их преломляющим свойствам. Среди этих применений измерение удельной вязкости жидкости, помещенной между поляризатором и анализатором, освещаемой гелий-неоновым лазером.

6. В качестве рабочего тела в датчиках угла наклона и акселерометрах.

7. В магнитных сепараторах для разделения и сепарации материалов с различной плотностью. Магнитная жидкость обладает еще одним удивительным, поистине уникальным свойством. В ней, как и в любой жидкости, плавают тела менее плотные и тонут тела более плотные, чем она сама. Но если приложить к ней магнитное поле, то утонувшие тела начинают всплывать. Причем чем сильнее поле, тем более тяжелые тела поднимаются на поверхность. Прикладывая различное по напряженности магнитное поле, можно заставлять всплывать тела с какой-то заданной плотностью. Это свойство магнитной жидкости применяют сейчас для обогащения руды. Ее топят в магнитной жидкости, а затем нарастающим магнитным полем заставляют всплывать сначала пустую породу, а затем уже и тяжелые куски руды. Например, для разделения золота и шлиха.

8. Для очистки водных поверхностей от нефтепродуктов при аварийных разливах и катастрофах.

9. Печатающие и чертежные устройства. Есть печатающие и чертежные устройства, работающие на магнитной жидкости. В краску вносится немного магнитной жидкости, и такая краска выбрызгивается тонкой струйкой на протягиваемую перед ней бумагу. Если струю ничем не отклонять, то будет начерчена линия. Но на пути струйки поставлены электромагниты, подобно отклоняющим электромагнитам кинескопа телевизора. Роль потока электронов здесь играет тонкая струйка краски с магнитной жидкостью - ее-то и отклоняют электромагниты, и на бумаге остаются буквы, графики, рисунки.

Заключение

В домашних условиях можно приготовить ферромагнитную жидкость и изучить ее свойства.

Успех опытов зависит от силы магнита и качества ферромагнетика. В случае применения тонер-порошка или девелопера для принтера надо быть уверенным, что он содержит магнитный порошок.

С помощью магнита можно увидеть некоторые свойства ферромагнитной жидкости и понять как работают разные механизмы.

Библиографическая ссылка

Федоров Е.О. ФИЗИКА. ФЕРРОМАГНИТНАЯ ЖИДКОСТЬ // Старт в науке. – 2018. – № 5-5. – С. 783-790;
URL: http://science-start.ru/ru/article/view?id=1200 (дата обращения: 02.01.2020).

Ферромагнитные жидкости — представляют собой коллоидные системы, состоящие из ферромагнитных или ферримагнитных частиц нанометровых размеров, находящихся во взвешенном состоянии в несущей жидкости, в качестве которой обычно высту­пает органический растворитель или вода. Для обеспечения устойчивости такой жидкости ферромагнитные частицы связываются с поверхностно-активным веществом (ПАВ), образующим защитную оболочку вокруг частиц и препятствующем их слипа­нию из-за Ван-дер-Ваальсовых или магнитных сил.

Ферромагнитные жидкости:

Магнитные жидкости это коллоидные растворы - вещества, обладающие свойствами более чем одного состояния материи. В данном случае два состояния это твердый металл и жидкость, в которой он содержится. Эта способность изме­нять состояние под воздействием магнитного поля позволяет использовать ферро­магнитные жидкости в качестве уплотнителей, смазки, а также может открыть другие применения в будущих наноэлектромеханических системах.

Первый способ получения магнитной жидкости:

Изготовить своими руками жидкость, реагирующую на магнитное поле, по силам практически каждому — без каких-либо реактивов и всего за несколько минут. Конечно, качество её существенно хуже, чем у полученной химическим пу­тём. В частности, консистенция продукта получается такой, что его скорее мож­но назвать не «жидкостью», а «жижей». Да и время осаждения магнитных частиц достаточно мало - обычно от нескольких секунд до нескольких минут. Зато ника­кой химии и экзотических технологий, лишь просеивание и смешивание. Для того, чтобы сделать «магнитную жижу», требуется всего лишь на­брать необходимое количество мелких стальных опилок. Чем мельче, тем лучше, поэтому наиболее подходящей является стальная пыль, остающаяся после работы «болгарки» или точила.

Пыль собирается магнитом (не слишком сильным - не столько для предотвращения большого остаточного намагничивания, сколько для того, чтобы железные опилки не так интенсивно стремились к нему и увлекали с собой поменьше немагнитной пыли).

Затем для отсева грязи и крупных фракций собранно её можно просеять через ткань на газете. Чем плотнее ткань, тем мельче будет просеянная пыль, но тем дольше придётся трясти мешо­чек.

Ещё раз подчеркну — стальные частички должны быть как можно мельче. Для по­лучения мелкой стальной пыли следует использовать мелкозернистый (доводочный) точильный круг. В качестве ориентира можно предложить следующее — при рассмотрении невооружённым глазом нельзя определить форму пылинок, на белой бу­маге они выглядят мельчайшими точками. Если форма опилок хорошо различима (при нормальном зрении обычно это соответствует размерам от 0.1-0.3 мм и больше), то такие опилки слишком крупны, они очень быстро осядут и будут практически неподвижными!


Рисунок №1 — Железные опилки и магнит

Отобранная стальная пыль заливается жидкостью, хорошо смачивающей металл. Это может быть обычная вода - желательно, насыщенная поверхностно-активными веществами, то есть мылом или другим моющим средством (пенообразование здесь вредно, поэтому оно должно быть как можно меньше!).

Но! Во избежание быстрой коррозии железных пылинок, способной просто-напросто «съесть» их за несколько дней, для стали лучше использовать жидкое машинное масло. Вполне подойдёт бы­товое — то, что используется для смазки швейных машинок.

Концентрация стальной пыли в жидкости должна быть, с одной стороны, не слишком высокой, чтобы жидкость не стала чересчур густой и вязкой, а с другой стороны, не слишком низкой, иначе перемещение магнитных частиц не сможет ув­лечь с собой сколько-нибудь заметный объём жидкости. Она подбирается опытным путём с помощью постепенного добавления опилок в жидкость, тщательного пере­мешивания и проверки магнитом. Лучше получить небольшой избыток базовой жид­кости, нежели её недостаток, так как в последнем случае подвижность получен­ной субстанции уменьшается очень заметно.

Конкретная величина кри­тической силы магнитного поля зависит как от магнитных свойств используемого металла, так и от силы смачивания металла базовой жидкостью или ПАВ, а также от температуры жидкости и размеров металлических частиц. При снятии магнитного поля подвижность жид­кости восстановится, если остаточная намагниченность будет не слишком боль­шой.

Второй способ как сделать магнитную жидкость:

Магнитную жидкость можно изготовить еще проще. Существуют диэлектрические магнитные тонеры (ДМ-тонеры) для лазерных принтеров. ДМ-Тонер представляет собой вещество, состоящее из смолы и намагниченной окиси железа. В этом слу­чае без ПАВ можно обойтись.

На 50 мл магнитного тонера нужно взять 2 столовых ложки очень чистого рас­тительного масла.

Тщательно перемешиваем тонер с маслом, вот и всё — магнитная жидкость готова.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт