Магнитный диполь магнитный момент диполя поле диполя. Нестационарные электромагнитные поля

Существование у атома момента импульса и магнитного момента следовало из теории Н.Бора (1913) и подтверждалось обнаруженным еще в 1896 П.Зееманом влиянием магнитных полей на спектральные линии атома. Прямое измерение относительного магнитного момента атома было выполнено впервые в 1922 О.Штерном и В.Герлахом, которые наблюдали расщепление пучка атомов серебра в неоднородном магнитном поле. Первым предположение о существовании спина и магнитного момента у атомного ядра высказал в 1924 В.Паули при попытке объяснить сверхтонкую структуру спектральных линий. В 1925 Д.Уленбек и С.Гаудсмит на основе данных о тонкой структуре спектральных линий сделали вывод о том, что у электрона должны существовать спин и магнитный момент. Первое доказательство существования у ядра электрического квадрупольного момента было получено Х.Шюлером и Т.Шмидтом в 1935. Многочисленные измерения ядерных моментов были выполнены О.Штерном и И.Раби с сотрудниками, исследовавшими спектральные линии методом молекулярных пучков. Затем в 1937 и 1946 эти измерения продолжили И.Раби, Н.Рамзей, Э.Парселл, Ф.Блох и другие исследователи с помощью разработанных ими методов радиочастотного резонанса, потом – парамагнитного резонанса, а еще позднее – методами микроволновой и лазерной спектроскопии.

Спин.

Любое вращающееся тело обладает моментом импульса относительно своего центра масс; это собственный момент тела, или спин. Спиновый момент, или просто, спин атома или атомного ядра является характеристикой, аналогичной моменту импульса вращающегося волчка или гироскопа. Момент импульса твердого тела, вращающегося вокруг оси, определяется как сумма моментов импульсов всех частиц этого тела относительно той же оси; этот момент равен сумме произведений массы частицы на ее скорость и на кратчайшее расстояние частицы до оси вращения. Вектор момента импульса параллелен оси вращения и направлен в сторону перемещения винта с правой резьбой при таком же вращении. Спин атомов и ядер измеряется в единицах h /2p , где h – постоянная Планка, равная 6,6261Ч10 –34 ДжЧс. Экспериментально установлено, что в этих единицах (в соответствии с правилами квантовой механики) наблюдаемые проекции всех спинов на заданное направление принимают либо целое, либо полуцелое значение, т.е. либо 1, 2, 3,..., либо 1/2, 3/2, 5/2,.... Максимальное значение проекции совпадает с величиной спина; например, если спин ядра j равен 5/2, то измеренное максимальное значение проекции спина составит 5/2 в единицах h /2p ДжЧс.

Магнитный дипольный момент.

Магнитный дипольный момент атома или ядра аналогичен характеристике стрелки компаса. Он представляет собой вращающий момент, действующий на атом или ядро в магнитном поле. Дипольный момент – векторная величина. Магнитный момент атома обычно измеряют в единицах магнетона Бора, m 0 = еh /4pmc = 9,27Ч10 –24 Дж/Тл, где е – заряд электрона, h – постоянная Планка, m – масса электрона и c – скорость света. Магнитные же моменты ядер обычно измеряют в единицах ядерного магнетона mN , который равен магнетону Бора, деленному на отношение масс протона и электрона, а именно mN = 5,051Ч10 –27 Дж/Тл.

Электрический квадрупольный момент.

Электрический квадрупольный момент служит мерой отклонения распределения электрического заряда ядра от сферической симметрии. Количественно он определяется как при условии, что проекция спина ядра максимальна вдоль оси z прямоугольной системы координат, начало которой совпадает с центром ядра. В этом выражении Z – заряд ядра, или его атомный номер, z – координата протона в ядре, r – расстояние от протона до центра ядра, а черта над выражением в скобках означает усреднение плотности заряда по всему ядру. Можно показать, что в сферически симметричном случае Q = 0.

Другие моменты.

В принципе могли бы существовать электрические и магнитные мультипольные моменты любого порядка 2 n , где n – нуль или положительное целое число. Например, у ядер иода, индия и галлия были измерены магнитные октуполи. Можно показать, однако, что вследствие квантовой природы спина атом или ядро со спином j не может иметь мультипольных моментов более высокого порядка, чем n = 2j . Так, атом с j = l/2 не может иметь мультипольных моментов выше дипольного, а атом с j = 0 – даже дипольного момента. Проводились необычайно чувствительные эксперименты по обнаружению у ядер электрических дипольных моментов, но пока что найти их не удалось.

АТОМНЫЕ МОМЕНТЫ

Эффект Зеемана.

Один из первых и наиболее мощных методов исследования атомных моментов был основан на так называемом эффекте П.Зеемана, т.е. на расщеплении спектральных линий во внешних магнитных полях. Если разрядную трубку, в которой возбуждается атомное излучение, поместить во внешнее магнитное поле, то спектральные линии расщепятся на ряд компонент. Расстояние между линиями компонент определяется энергией взаимодействия атомных моментов с внешними магнитными полями. Поскольку энергия взаимодействия зависит от магнитных моментов атомов, измеренное расщепление дает информацию об их величине. Числом спектральных линий определяются значения спина.

Первоначально при изучении оптических спектров атомов последние возбуждались за счет столкновений с электронами в газоразрядных трубках или за счет поглощения электромагнитного излучения, возникающего в таких трубках. В наши дни атомы часто возбуждают лазерным излучением.

Метод молекулярных пучков.

Особенно простой, показательный и прямой метод измерения атомных магнитных моментов предложили О.Штерн и В.Герлах в 1921. Он основан на измерении отклонения атомов, обладающих магнитным моментом, в неоднородном магнитном поле. В однородном магнитном поле магнитный момент не отклоняется, т.к. на северный и южный полюса атомного магнитика поле действует с одинаковой силой. Поэтому центр масс атома не смещается; атом может лишь прецессировать или вращаться вокруг своего центра масс. Если же магнитное поле неоднородно на расстояниях порядка размеров атома, то из-за различий в напряженности магнитного поля на один из полюсов атомного магнитика поле будет действовать сильнее, чем на другой, и атом отклонится под действием разности этих сил.

В эксперименте материал нагревается в печи и его атомы через щель проходят в вакуумную камеру, где коллимируются в пучок и осаждаются на пластинке. Затем включается неоднородное магнитное поле, направленное поперек пучка, и регистрируется отклонение атомов. Каждому из возможных значений проекции магнитного момента и спина на направление поля должно соответствовать свое отклонение. Соответствующее классической физике непрерывное распределение проекций привело бы к сплошному размытию сигнала на регистрирующей пластинке. Но в квантовой механике допустимы лишь определенные дискретные проекции, и поэтому наблюдаемая картина расщепляется на две или несколько линий, число которых равно 2j + 1, где j – момент импульса атома в указанных выше единицах. По числу компонент 2j + 1 можно определить момент импульса – спин j. Расстояние между линиями позволяет вычислить величину магнитного момента.

Для измерения атомных магнитных моментов были приспособлены также рассматриваемые ниже резонансные методы молекулярных пучков, и они дали наиболее точные результаты. Точно так же для измерения атомных магнитных моментов применяется метод электронного парамагнитного резонанса, подобный методу ЯМР.

Выводы из опытов по определению атомных моментов.

Результаты упомянутых выше и других аналогичных экспериментов согласуются со следующими утверждениями относительно спиновых и магнитных моментов атомных структур.

Каждый элемент в атоме имеет соответствующий его движению по беровской орбите орбитальный момент l . Это движение электрона по орбите можно рассматривать как круговой ток, в результате чего возникает магнитный момент, соответствующий такому движению.

Величина магнитного момента, связанного с орбитальным движением, в классической механике была бы пропорциональна величине орбитального момента. Но у электрона есть еще и собственный момент – спин. Со спином также должен быть связан магнитный момент.

В результате магнитный момент частицы оказывается пропорционален полному механическому моменту (сумме орбитального и спинового моментов).

Важно иметь в виду, что моменты – механические и магнитные – векторные величины. В квантовой механике разработаны определенные способы их суммирования и вычисления магнитных моментов атомов.

ЯДЕРНЫЕ МОМЕНТЫ

Существует ряд методов измерения ядерных моментов; ниже обсуждаются некоторые из них.

Оптическая спектроскопия.

Один из наиболее важных методов измерения ядерных моментов основан на изучении так называемой сверхтонкой структуры атомных спектров, для возбуждения которых в настоящее время часто используют лазеры. Значение спина можно определить по числу компонент спектральных линий или по относительной интенсивности линий. Спин, магнитный момент и электрический квадрупольный момент можно определить по расстоянию между компонентами или по влиянию магнитного поля на линии. Спин можно также определять по полосатым спектрам двухатомных молекул.

Методы молекулярных пучков.

Методы молекулярных пучков, разработанные О.Штерном, И.Раби, Н.Рамзеем, У.Ниренбергом и другими исследователями, особенно эффективны при исследовании ядерных моментов. Известен ряд методов молекулярных пучков. В одном из них, применявшемся Штерном для измерения ядерных моментов водорода и дейтерия, использовались молекулярный водород и установка, в принципе сходная с установкой в опыте Штерна и Герлаха. Поскольку в молекулярном водороде магнитные моменты электронов почти точно компенсируют друг друга, наблюдаемое отклонение обусловлено, главным образом, магнитным моментом ядра. Поэтому измеренное отклонение позволяло определить ядерный магнитный момент. В экспериментах с пучками, проведенных Раби с сотрудниками, использовались атомы с отличным от нуля электронным магнитным моментом, из которых формировался атомный пучок, пропускавшийся через один или два отклоняющих магнитных поля такого же типа, как в опыте Штерна – Герлаха. Путем подбора магнитных полей и исследования картины отклонения или перефокусировки пучка атомов удалось получить сведения о связи ядерных и электронных моментов. Таким путем удалось измерить спины ядер, а также характеристики взаимодействия ядерных магнитных моментов и электрических квадрупольных моментов.

Наиболее эффективным методом изучения ядерных моментов, по-видимому, следует считать измерение поглощения атомами и молекулами электромагнитного излучения радиочастотного и микроволнового диапазонов. Как и в оптической спектроскопии, поглощение излучения молекулой происходит на частоте n , отвечающей значению hn = DE , где DE – разность энергий двух состояний, соответствующих разрешенному переходу. В случае простого магнитного момента m ядра со спином I , находящегося в магнитном поле Н , величину DE можно вычислить теоретически, и оказывается, что резонанс происходит на частоте n , такой, что hn = mH /I , где m – магнитный момент ядра. В этом соотношении h – постоянная Планка, а поэтому, измерив H и n , можно найти отношение магнитного момента к спину. Если же взаимодействие в молекуле оказывается более сложным, то равенство величин DE и mH /I нарушается и поглощение излучения происходит на частотах, отличающихся от соответствующих равенству hn = mH /I. Дополнительное взаимодействие может иметь место в случае ядра, обладающего электрическим квадрупольным моментом, т.к. этот момент может взаимодействовать с неоднородным электрическим полем, создаваемым зарядами других атомов молекулы, в состав которой входит ядро. В этом случае частоты, на которых происходит поглощение, позволяют определить электрический квадрупольный момент ядра.

Описанный выше метод, основанный на поглощении радиочастотного излучения, впервые был успешно применен в 1937 И.Раби с сотрудниками и получил название метода магнитного резонанса на молекулярных пучках. Для регистрации факта поглощения Раби исследовал влияние поглощения на отклонение молекул в молекулярных пучках. Схема его экспериментальной установки приведена на рисунке. Молекулы из «печи» (термического источника) попадают в вакуумную камеру, в которой имеются магниты А и В , создающие неоднородные магнитные поля, направления неоднородностей который противоположны. В магните А молекулы отклоняются так, как это происходит в опыте Штерна и Герлаха, а затем перефокусируются магнитом В на детекторе при условии, что входящие в состав молекулы магнитные моменты одинаково ориентированы в А и В . Но если один из моментов переориентируется в средней области С , то перефокусировка не происходит и интенсивность пучка уменьшается. Поэтому в области С создают однородное магнитное и осциллирующее радиочастотное поля и измеряют поглощение радиочастотного излучения, регистрируя уменьшение интенсивности пучка. Типичные результаты эксперимента, проведенного с молекулами тяжелого водорода, представлены на рисунке. Это – зависимость интенсивности пучка от напряженности однородного магнитного поля в области С . Самый глубокий центральный минимум интенсивности пучка соответствует частоте n и напряженности поля H , которые связаны соотношением hn = mH /I (см. выше ), так что эти данные позволяют определить отношение магнитного момента к спину. Менее глубокие дополнительные минимумы обусловлены электрическим квадрупольным моментом; по их положению можно определить электрический квадрупольный момент ядра тяжелого водорода, или дейтрона. Рамзей показал, что более высокой точности в измерении резонансных частот удается достичь, если создавать осциллирующие поля в двух узких промежутках – в начале и конце области С .

Для изучения полярных молекул Раби и его сотрудники применили метод электрического резонанса на молекулярных пучках не с магнитными, а с электрическими отклоняющими, перефокусирующими и осциллирующими полями. Этот метод оказался особенно ценным для исследования взаимодействия ядерных электрических квадрупольных моментов.

Ядерный магнитный резонанс (ЯМР).

В 1946 Э.Парселл и Ф.Блох с сотрудниками впервые успешно применили метод магнитного резонанса, при котором не используется молекулярный пучок, но наблюдается резонансное поглощение радиочастотного излучения в образце. Парселл регистрировал непосредственно поглощение излучения, тогда как Блох использовал пару ортогональных катушек: колебания на резонансной частоте, происходившие в одной из катушек, вызывали в образце переориентацию ядер, прецессия которых индуцировала в другой катушке наблюдаемый сигнал.

А.Кастлер и другие экспериментаторы получили значительно более сильные атомные резонансные сигналы, изменяя распределение ориентации ядер посредством оптической накачки и регистрируя резонанс по изменению интенсивности и поляризации испускаемого света.

Другие методы.

Некоторые ядерные моменты определялись методами радиоспектроскопии: ионы захватываются электрическими и магнитными полями, после чего измеряются их магнитные моменты и константы внутренних взаимодействий. Такие методы оказались особенно эффективными с появлением методики лазерного охлаждения, позволившей охлаждать ионы до температур в несколько микрокельвинов, при которых ничтожно малы доплеровские эффекты уширения линий первого и второго порядков. Особенно важный пример – измерения магнитного момента электрона, проведенные Х.Демельтом и его сотрудниками. Эти измерения дали значение

me = 1,001159652193(10)m 0,

которое согласуется с предсказаниями квантовой электродинамики в пределах 10 знаков после запятой.

В настоящее время имеется также возможность захвата и лазерного охлаждения нейтральных атомов, которые затем используются для точных измерений.

Результаты измерений.

С точки зрения теории ядра заслуживают внимания следующие результаты.

Магнитные моменты протона 1 H 1 и нейтрона 0 n 1 отличаются от ядерного магнетона, хотя исходное предсказание заключалось в том, что первый должен быть точно равен ядерному магнетону, а второй – нулю.

Разность магнитного момента дейтрона 1 H 2 и суммы магнитных моментов протона и нейтрона хотя и мала, имеет конечное значение. Это означает, что моменты протона и нейтрона в дейтроне аддитивны лишь приблизительно.

Магнитный момент 1 H 3 отличается от магнитного момента протона на 6,6%, хотя теоретически они должны быть равны.

У дейтрона имеется электрический квадрупольный момент, т.е. он отклоняется от сферической симметрии (имея форму мяча для игры в регби), тогда как теоретически предсказывалось, что он должен был бы обладать сферической симметрией.

Измеренный магнитный момент электрона согласуется с предсказанным квантовой электродинамикой вплоть до десятого знака после запятой. См. также

См. также: Портал:Физика

Дипо́ль - идеализированная система, служащая для приближённого описания поля , создаваемого более сложными системами зарядов, а также для приближенного описания действия внешнего поля на такие системы. Дипольное приближение , выполнение которого обычно подразумевается, когда говорится о поле диполя , основано на разложении потенциалов поля в ряд по степеням радиус-вектора, характеризующего положение зарядов-источников, и отбрасывании всех членов выше первого порядка . Полученные функции будут эффективно описывать поле в случае, если:

  1. размеры излучающей поле системы малы по сравнению с рассматриваемыми расстояниями, так что отношение характерного размера системы к длине радиус-вектора является малой величиной и имеет смысл рассмотрение лишь первых членов разложения потенциалов в ряд;
  2. член первого порядка в разложении не равен 0, в противном случае нужно использовать приближение более высокой мультипольности ;
  3. в уравнениях рассматриваются градиенты потенциалов не выше первого порядка.

Типичный пример диполя - два заряда, равных по величине и противоположных по знаку, находящихся друг от друга на расстоянии, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением.

Дипольный момент системы

Электрический диполь

Электрический диполь - идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов .

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга

Произведение вектора \vec l, проведённого от отрицательного заряда к положительному, на абсолютную величину зарядов q\, называется дипольным моментом: \vec d=q\vec l.

Во внешнем электрическом поле \vec E на электрический диполь действует момент сил {\vec d}\times{\vec E}, который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Потенциальная энергия электрического диполя в (постоянном) электрическом поле равна -{\vec E}\cdot{\vec d}. (В случае неоднородного поля это означает зависимость не только от момента диполя - его величины и направления, но и от места, точки нахождения диполя).

Вдали от электрического диполя напряжённость его электрического поля убывает с расстоянием R как R^{-3}, то есть быстрее, чем у точечного заряда (E \sim R^{-2}).

Любая в целом электронейтральная система, содержащая электрические заряды, в некотором приближении (то есть собственно в дипольном приближении ) может рассматриваться как электрический диполь с моментом \vec d = \sum_i q_i {\vec r}_i, где q_i - заряд i-го элемента, {\vec r}_i - его радиус-вектор. При этом дипольное приближение будет корректным, если расстояние, на котором изучается электрическое поле системы, велико по сравнению с её характерными размерами.

Магнитный диполь

Магнитный диполь - аналог электрического, который можно представить себе как систему двух «магнитных зарядов» (эта аналогия условна, так как магнитных зарядов, с точки зрения современной электродинамики , не существует). В качестве модели магнитного диполя можно рассматривать небольшую (по сравнению с расстояниями, на которых излучается генерируемое диполем магнитное поле) плоскую замкнутую проводящую рамку площади S\, по которой течёт ток I\,. При этом магнитным моментом диполя (в системе СГСМ) называют величину {\vec \mu} = I S {\vec n}, где {\vec n} - единичный вектор, направленный перпендикулярно плоскости рамки в том направлении, при наблюдении в котором ток в рамке представляется текущим по часовой стрелке.

\mathbf{Z} = - \frac{1}{R} \cdot \mathbf{d}\left(t-\frac{R}{c}\right).

Напомним, что диполь покоится в начале координат, так что \mathbf{d} является функцией одной переменной. Тогда

\mathbf{E} = - \operatorname{rot}\,\operatorname{rot}\,\mathbf{Z}, \mathbf{B} = - \frac{1}{c}\operatorname{rot}\,\dot{\mathbf{Z}}.

При этом потенциалы поля можно выбрать в виде

\mathbf{A} = - \frac{\dot{\mathbf{Z}}}{c}, ~~ \phi = \operatorname{div}\,\mathbf{Z}.

Указанные формулы можно применять всегда, когда применимо дипольное приближение.

Дипольное излучение (излучение в волновой зоне или дальней зоне)

Приведённые формулы существенно упрощаются, если размеры системы много меньше длины излучаемой волны, то есть скорости зарядов много меньше c , а поле рассматривается на расстояниях много больших, чем длина волны. Такую область поля называют волновой зоной . Распространяющуюся волну можно в этой области считать практически плоской . Из всех членов в выражениях для \mathbf{E} и \mathbf{B} существенными оказываются только члены, содержащие вторые производные от \mathbf{d}, так как

\frac{\dot{\mathbf{d}}}{c} \approx \frac{d}{\lambda}, \frac{\ddot{\mathbf{d}}}{c^2} \approx \frac{d}{\lambda^2}.

Выражения для полей в системе СГС принимают вид

\mathbf{H} = \frac{1}{c^2 R}[\ddot{\mathbf{d}},\mathbf{n}], ~~ \mathbf{H} = [\mathbf{n} , \mathbf{E}], \mathbf{E} = \frac{1}{c^2 R}\left[ [\ddot{\mathbf{d}},\mathbf{n}] , \mathbf{n} \right], ~~ \mathbf{E} = [\mathbf{B} , \mathbf{n}].

В плоской волне интенсивность излучения в телесный угол d\Omega равна

dI = c \frac{H^2}{4\pi}R^2 d\Omega,

поэтому для дипольного излучения

dI = \frac{1}{4 \pi c^3}[\ddot{\mathbf{d}}, \mathbf{n}]^2 d\Omega

= \frac{\ddot{\mathbf{d}}^2}{4\pi c^3}\sin^2{\theta} d\Omega.

где \theta - угол между векторами \ddot{\mathbf{d}} и \mathbf{n}. Найдём полную излучаемую энергию. Учитывая, что d\Omega = 2\pi\, \sin{\theta}\, d\theta, проинтегрируем выражение по d\theta от 0 до \pi. Полное излучение равно

I = \frac{2}{3 c^3} {\ddot{\mathbf{d}}}^2.

Укажем спектральный состав излучения. Он получается заменой вектора \ddot{\mathbf{d}} на его Фурье-компоненту и одновременным умножением выражения на 2. Таким образом,

d \mathcal{E}_\omega = \frac{4 \omega^4}{3 c^3} \left| \mathbf{d}_\omega \right|^2 \frac{d\omega}{2\pi}.

См. также

Напишите отзыв о статье "Диполь (электродинамика)"

Примечания

Литература

  • Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика », том II). - ISBN 5-02-014420-7 .
  • Ахманов С. А., Никитин С. Ю. , «Физическая оптика», 2004.

Отрывок, характеризующий Диполь (электродинамика)

– Тое кое, малый, – передразнивали мужиков. – Страсть не любят.
Пьер замечал, как после каждого попавшего ядра, после каждой потери все более и более разгоралось общее оживление.
Как из придвигающейся грозовой тучи, чаще и чаще, светлее и светлее вспыхивали на лицах всех этих людей (как бы в отпор совершающегося) молнии скрытого, разгорающегося огня.
Пьер не смотрел вперед на поле сражения и не интересовался знать о том, что там делалось: он весь был поглощен в созерцание этого, все более и более разгорающегося огня, который точно так же (он чувствовал) разгорался и в его душе.
В десять часов пехотные солдаты, бывшие впереди батареи в кустах и по речке Каменке, отступили. С батареи видно было, как они пробегали назад мимо нее, неся на ружьях раненых. Какой то генерал со свитой вошел на курган и, поговорив с полковником, сердито посмотрев на Пьера, сошел опять вниз, приказав прикрытию пехоты, стоявшему позади батареи, лечь, чтобы менее подвергаться выстрелам. Вслед за этим в рядах пехоты, правее батареи, послышался барабан, командные крики, и с батареи видно было, как ряды пехоты двинулись вперед.
Пьер смотрел через вал. Одно лицо особенно бросилось ему в глаза. Это был офицер, который с бледным молодым лицом шел задом, неся опущенную шпагу, и беспокойно оглядывался.
Ряды пехотных солдат скрылись в дыму, послышался их протяжный крик и частая стрельба ружей. Через несколько минут толпы раненых и носилок прошли оттуда. На батарею еще чаще стали попадать снаряды. Несколько человек лежали неубранные. Около пушек хлопотливее и оживленнее двигались солдаты. Никто уже не обращал внимания на Пьера. Раза два на него сердито крикнули за то, что он был на дороге. Старший офицер, с нахмуренным лицом, большими, быстрыми шагами переходил от одного орудия к другому. Молоденький офицерик, еще больше разрумянившись, еще старательнее командовал солдатами. Солдаты подавали заряды, поворачивались, заряжали и делали свое дело с напряженным щегольством. Они на ходу подпрыгивали, как на пружинах.
Грозовая туча надвинулась, и ярко во всех лицах горел тот огонь, за разгоранием которого следил Пьер. Он стоял подле старшего офицера. Молоденький офицерик подбежал, с рукой к киверу, к старшему.
– Имею честь доложить, господин полковник, зарядов имеется только восемь, прикажете ли продолжать огонь? – спросил он.
– Картечь! – не отвечая, крикнул старший офицер, смотревший через вал.
Вдруг что то случилось; офицерик ахнул и, свернувшись, сел на землю, как на лету подстреленная птица. Все сделалось странно, неясно и пасмурно в глазах Пьера.
Одно за другим свистели ядра и бились в бруствер, в солдат, в пушки. Пьер, прежде не слыхавший этих звуков, теперь только слышал одни эти звуки. Сбоку батареи, справа, с криком «ура» бежали солдаты не вперед, а назад, как показалось Пьеру.
Ядро ударило в самый край вала, перед которым стоял Пьер, ссыпало землю, и в глазах его мелькнул черный мячик, и в то же мгновенье шлепнуло во что то. Ополченцы, вошедшие было на батарею, побежали назад.
– Все картечью! – кричал офицер.
Унтер офицер подбежал к старшему офицеру и испуганным шепотом (как за обедом докладывает дворецкий хозяину, что нет больше требуемого вина) сказал, что зарядов больше не было.
– Разбойники, что делают! – закричал офицер, оборачиваясь к Пьеру. Лицо старшего офицера было красно и потно, нахмуренные глаза блестели. – Беги к резервам, приводи ящики! – крикнул он, сердито обходя взглядом Пьера и обращаясь к своему солдату.
– Я пойду, – сказал Пьер. Офицер, не отвечая ему, большими шагами пошел в другую сторону.
– Не стрелять… Выжидай! – кричал он.
Солдат, которому приказано было идти за зарядами, столкнулся с Пьером.
– Эх, барин, не место тебе тут, – сказал он и побежал вниз. Пьер побежал за солдатом, обходя то место, на котором сидел молоденький офицерик.
Одно, другое, третье ядро пролетало над ним, ударялось впереди, с боков, сзади. Пьер сбежал вниз. «Куда я?» – вдруг вспомнил он, уже подбегая к зеленым ящикам. Он остановился в нерешительности, идти ему назад или вперед. Вдруг страшный толчок откинул его назад, на землю. В то же мгновенье блеск большого огня осветил его, и в то же мгновенье раздался оглушающий, зазвеневший в ушах гром, треск и свист.
Пьер, очнувшись, сидел на заду, опираясь руками о землю; ящика, около которого он был, не было; только валялись зеленые обожженные доски и тряпки на выжженной траве, и лошадь, трепля обломками оглобель, проскакала от него, а другая, так же как и сам Пьер, лежала на земле и пронзительно, протяжно визжала.

Пьер, не помня себя от страха, вскочил и побежал назад на батарею, как на единственное убежище от всех ужасов, окружавших его.
В то время как Пьер входил в окоп, он заметил, что на батарее выстрелов не слышно было, но какие то люди что то делали там. Пьер не успел понять того, какие это были люди. Он увидел старшего полковника, задом к нему лежащего на валу, как будто рассматривающего что то внизу, и видел одного, замеченного им, солдата, который, прорываясь вперед от людей, державших его за руку, кричал: «Братцы!» – и видел еще что то странное.
Но он не успел еще сообразить того, что полковник был убит, что кричавший «братцы!» был пленный, что в глазах его был заколон штыком в спину другой солдат. Едва он вбежал в окоп, как худощавый, желтый, с потным лицом человек в синем мундире, со шпагой в руке, набежал на него, крича что то. Пьер, инстинктивно обороняясь от толчка, так как они, не видав, разбежались друг против друга, выставил руки и схватил этого человека (это был французский офицер) одной рукой за плечо, другой за гордо. Офицер, выпустив шпагу, схватил Пьера за шиворот.
Несколько секунд они оба испуганными глазами смотрели на чуждые друг другу лица, и оба были в недоумении о том, что они сделали и что им делать. «Я ли взят в плен или он взят в плен мною? – думал каждый из них. Но, очевидно, французский офицер более склонялся к мысли, что в плен взят он, потому что сильная рука Пьера, движимая невольным страхом, все крепче и крепче сжимала его горло. Француз что то хотел сказать, как вдруг над самой головой их низко и страшно просвистело ядро, и Пьеру показалось, что голова французского офицера оторвана: так быстро он согнул ее.
Пьер тоже нагнул голову и отпустил руки. Не думая более о том, кто кого взял в плен, француз побежал назад на батарею, а Пьер под гору, спотыкаясь на убитых и раненых, которые, казалось ему, ловят его за ноги. Но не успел он сойти вниз, как навстречу ему показались плотные толпы бегущих русских солдат, которые, падая, спотыкаясь и крича, весело и бурно бежали на батарею. (Это была та атака, которую себе приписывал Ермолов, говоря, что только его храбрости и счастью возможно было сделать этот подвиг, и та атака, в которой он будто бы кидал на курган Георгиевские кресты, бывшие у него в кармане.)
Французы, занявшие батарею, побежали. Наши войска с криками «ура» так далеко за батарею прогнали французов, что трудно было остановить их.
С батареи свезли пленных, в том числе раненого французского генерала, которого окружили офицеры. Толпы раненых, знакомых и незнакомых Пьеру, русских и французов, с изуродованными страданием лицами, шли, ползли и на носилках неслись с батареи. Пьер вошел на курган, где он провел более часа времени, и из того семейного кружка, который принял его к себе, он не нашел никого. Много было тут мертвых, незнакомых ему. Но некоторых он узнал. Молоденький офицерик сидел, все так же свернувшись, у края вала, в луже крови. Краснорожий солдат еще дергался, но его не убирали.

Электромагнитное излучение возникает во всех случаях, когда в пространстве создается переменное электромагнитное поле. В свою очередь электромагнитное поле будет изменяться во времени, если меняется распределение электрического заряда в системе или является переменной плотность электрического тока. Таким образом, источником электромагнитного излучения являются всякого рода переменные токи и пульсирующие электрические заряды.

Простейшими системами, создающими электромагнитное поле, являются магнитный и электрический диполи (и прежде всего второй из них) с переменным моментом. Таким электрическим диполем является система, состоящая из неподвижного положительного заряда и совершающего около него колебание отрицательного заряда. Если это колебание происходит по гармоническому закону, то дипольный момент будет также меняться по этому закону, т. е. представится формулой Значение этой простой модели излучателя весьма велико по той причине, что множество реальных систем ведут себя с хорошей точностью как идеальные диполи.

Мы должны напомнить содержание § 93, где было указано, что электрические свойства любой системы, у которой «центры тяжести» положительного и отрицательного заряда не совпадают, могут быть описаны, если указан дипольный момент такой системы. А электрически нейтральные системы, у которых способны смещаться друг по отношению к другу доложительные и отрицательные заряды, составляют основную долю излучателей электромагнитной энергии, прежде всего потому, что под эту рубрику попадают молекулярные и атомные системы. Электрон, вращающийся около ядра атома,

представляет собой систему с переменным дипольным, моментом; нейтральная молекула, атомы которой находятся в состоянии колебания, также является зачастую системой с переменным дипольным моментом. Однако этим еще не исчерпывается наш интерес к электрическому диполю. В следующем параграфе будет показано, что радиотехническая линейная антенна может быть уподоблена диполю (аналогичные термины - осциллятор, вибратор - несколько шире точного термина «диполь»).

Что касается магнитных диполей, то мы сталкиваемся с ними тогда, когда распределение электрического заряда, а следовательно, и дипольный момент системы остаются неизменными, но в то же время плотность тока, а значит, и магнитный момент системы меняются во времени. Основным примером является рамка, по которой идет переменный электрический ток. Если ток замкнут, то электрические заряды нигде не скапливаются и не рассасываются, дипольный электрический момент такой рамки равен нулю и неизменен. В то же время магнитное поле рамки, связанное со значением ее магнитного момента, будет меняться и, следовательно, приведет к излучению электромагнитной энергии. Отметим такой результат теории: если система обладает одновременно и электрическим и магнитным моментом, то обычно излучение магнитного диполя на больших расстояниях от источника много меньше, чем излучение электрического диполя.

Если диполь излучает, отдавая при этом свою внутреннюю энергию, или, как это имеет место в антенне, превращая в энергию излучения энергию сторонних источников, то такой диполь можно назвать первичным излучателем. Однако, кроме подобных случаев, значительный интерес представляет и вторичное излучение, т. е. такое явление, при котором диполь приходит в колебание благодаря действию электромагнитной волны и становится излучателем лишь по этой причине. Вторичные колебания будут особо интенсивными в том случае, если первичная волна имеет ту же частоту, что и собственная частота диполя (резонанс).

Приведение диполя в колебательное состояние можно представлять себе как механический процесс - раскачка зарядов внешней силой, равной произведению заряда на напряженность. В то же время для приемной антенны процесс создания в ней вторичных колебаний можно рассматривать как индукционный процесс наведения переменного электрического тока переменным магнитным полем. С той точностью, с которой антенну можно подменять диполем, оба рассмотрения совпадают.

Пусть в однородное магнитное поле помещена рамка с током (рис. 4.13). Тогда силы Ампера, действующие на боковые стороны рамки, будут создавать вращающий момент, величина которого пропорциональна магнитной индукции, силе тока в рамке, ее площади S и зависит от угла a между вектором и нормалью к площади :

Направление нормали выбирают так, чтобы в направлении нормали перемещался правый винт при вращении по направлению тока в рамке.

Максимальное значение вращательный момент имеет тогда, когда рамка устанавливается перпендикулярно магнитным силовым линиям:

Это выражение также можно использовать для определения индукции магнитного поля:

Величину, равную произведению , называют магнитным моментом контура Р т . Магнитный момент есть вектор, направление которого совпадает с направлением нормали к контуру. Тогда вращательный момент можно записать

.

При угле a = 0 вращательный момент равен нулю. Значение вращательного момента зависит от площади контура, но не зависит от его формы. Поэтому на любой замкнутый контур, по которому течет постоянный ток, действует вращательный момент М , который поворачивает его так, чтобы вектор магнитного момента установился параллельно вектору индукции магнитного поля.

Поле магнитного диполя.

Диполь - идеализированная система, служащая для приближённого описания поля, создаваемого более сложными системами зарядов, а также для приближенного описания действия внешнего поля на такие системы. Дипольное приближение , выполнение которого обычно подразумевается, когда говорится о поле диполя , основано на разложении потенциалов поля в ряд по степеням радиус-вектора, характеризующего положение зарядов-источников, и отбрасывании всех членов выше первого порядка.

Типичный пример диполя - два заряда, равных по величине и противоположных по знаку, находящихся друг от друга на расстоянии, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением.

Магнитный диполь - аналог электрического, который можно представить себе как систему двух «магнитных зарядов» (эта аналогия условна, так как магнитных зарядов, с точки зрения современной электродинамики, не существует). В качестве модели магнитного диполя можно рассматривать небольшую (по сравнению с расстояниями, на которых излучается генерируемое диполем магнитное поле) плоскую замкнутую проводящую рамку площади S {\displaystyle S\,} по которой течёт ток I .{\displaystyle I\,.} При этом магнитным моментом диполя (в системе СГСМ) называют величину {\displaystyle {\vec {\mu }}=IS{\vec {n}},} где {\displaystyle {\vec {n}}}- единичный вектор, направленный перпендикулярно плоскости рамки в том направлении, при наблюдении в котором ток в рамке представляется текущим по часовой стрелке.

Выражения для вращающего момента {\displaystyle {\vec {M}}}, действующего со стороны магнитного поля на магнитный диполь, и потенциальной энергии постоянного магнитного U {\displaystyle U}диполя в магнитном поле, аналогичны соответствующим формулам для взаимодействия электрического диполя с электрическим полем, только входят туда магнитный момент {\displaystyle {\vec {m}}} и вектор магнитной индукции {\displaystyle {\vec {B}}}:

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12

1. Магнитный векторный и скалярный электрический потенциалы.

Магнитный векторный потенциал div B = 0 - уравнение Максвелла для дивергенции В. Из векторного анализа: div(rot A) ≡ 0 -для любой дифференцируемой векторной функции A. Если предположить B = rot A, то уравнение Максвелла будет автоматически выполняться. Полезно вспомнить, что аналогично был получен скалярный потенциал ϕ: так как в электростатике rot E = 0 и rot(grad ϕ) ≡ 0, то ⇒ E = −grad(ϕ). Кстати, отсюда видно, что величина A определена с точностью до градиента произвольной функции: B = rot (A+grad ψ) = rot A +rot(grad ψ) = rot A. Величина, ротор которой равен индукции магнитного поля, называется магнитным векторным потенциалом.

Электри́ческий потенциа́л - временна́я компонента четырёхмерного электромагнитного потенциала, называемый также иногда скалярным потенциалом (скалярным - в трёхмерном смысле; скаляром в релятивистском смысле - инвариантомгруппы Лоренца - он не является, то есть не является неизменным при смене системы отсчёта).

Через электрический потенциал {\displaystyle \varphi } выражается напряжённость электрического поля:

{\displaystyle {\vec {E}}=-{\vec {\nabla }}\varphi -{\frac {\partial {\vec {A}}}{\partial t}},}

где {\displaystyle {\vec {\nabla }}} - оператор градиента (набла), а {\displaystyle {\vec {A}}} - векторный потенциал, через который выражается (также) магнитное поле.

В частном случае постоянных или пренебрежимо медленно меняющихся со временем электрического и магнитного полей (случай электростатики), электрический потенциал носит название электростатического потенциала , а формула для напряжённости электрического поля (называемого в этом случае электростатическим) упрощается, так как второй член (производная по времени) равен нулю (или достаточно мал по сравнению с первым - и его можно приравнять нулю в рамках принятого приближения):

{\displaystyle {\vec {E}}=-{\vec {\nabla }}\varphi .}

В этом случае, как нетрудно увидеть, пропадает (отсутствует) вихревое электрическое поле , поле {\displaystyle {\vec {E}}} - потенциально, а отсюда следует возможность определить электростатический потенциал через работу, совершаемую электрическим полем, так как она в этом случае полностью определяется разностью потенциалов в начальной и конечной точке .

2.Численные методы расчета магнитного поля.

Наибольшей универсальностью обладают численные методы. Они обладают следующими достоинствами: простотой алгоритмизации и автоматизации вычислений, возможностью рассчитать нелинейные и неоднородные поля, легкость построения графиков, нормируемая (управляемая) точность вычислений. К их недостаткам можно отнести: невозможность вывести общие соотношения, которые можно применить во всем диапазоне решаемых задач, ограниченный объем вычислений (ограничен временем, выделенным для решения задачи), обязательно присутствует некоторая погрешность, связанная с дискретизацией величин.

Численные методы можно поделить на метод прямой подстановки и методы интегрирования уравнений. При прямой подстановке используется аналитическое выражение (если оно известно) и ряд значений координат и времени. При этом результатом является распределение магнитного поля в пространстве и времени. Численные методы решения дифференциальных уравнений можно разделить на метод прямого интегрирования и итерационного интегрирования. При прямом интегрировании непрерывное пространство заменяется (квантуется) массивом точек, а время - массивом моментов времени. Далее интеграл заменяется на сумму, а приращение (дифференциал) - на шаг квантования. При этом выбор шага квантования зависит от требуемой точности. Шаг квантования может быть как постоянным для всех переменных, так и различным. Получаемый результат - распределение поля в пространстве и времени даже при сложных эллиптических интегралах. Итерационные методы основаны на произвольном первоначальном распределении магнитного поля в пространстве (задается) и дальнейшем анализе отклонений (погрешностей) в каждой точке.

Билет

1. Поле точечного заряда в однородной среде.

Магнитный диполь

Магнитным диполем является небольшая петля с током. Под словом «небольшая» понимают то, что размеры витка с током много меньше, чем геометрические величины, характеризующие размеры петли. Любая петля с током создает магнитное поле, которое можно уподобить электрическому полю от электрического диполя. Магнитный диполь характеризуется магнитным моментом ($\overrightarrow{p_m}$), как электрический диполь имеет электрический момент диполя ($\overrightarrow{p_e}=q\overrightarrow{l\ },$).

Определение

Произведение:

называется магнитным моментом магнитного диполя.

Из формулы (1) очевидно, что эта величина по модулю равна произведению силы тока, который течет в контуре на площадь, которая охвачена им. Направление магнитного момента совпадает с положительной нормалью к поверхности S. Векторный потенциал магнитного диполя примет вид:

\[\overrightarrow{A}\left(\overrightarrow{r}\right)=\frac{{\mu }_0}{4\pi }\frac{\overrightarrow{p_m}\times \overrightarrow{r}}{r^3}\left(2\right).\]

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\left\{\frac{3\left(\overrightarrow{p_m}\cdot \overrightarrow{r}\right)\overrightarrow{r}}{r^5}-\frac{\overrightarrow{p_m}}{r^3}\right\}\left(3\right).\]

На больших расстояниях от диполя в любом направлении поле убывает пропорционально $r^3$, и растет пропорционально площади витка.

Слово диполь в применении к токам слегка запутывает, так как нет отдельных магнитных полюсов, которые бы соответствовали электрическим зарядам. Магнитное «дипольное» поле создается не двумя зарядами, а элементарной петлей с током.

Взаимодействие магнитных диполей

Из представления о магнитном диполе как о витке с током можно представить следующую схему взаимодействия магнитных диполей. Один из витков (номе 1) тока создает магнитное поле, которое описывается формулой (3), другой виток с током (номер 2) в этом поле находится и взаимодействует с ним. Поле, которое создает магнитный диполь однородным не является ($\overrightarrow{B}\ne const$). Соответственно сила, с которой магнитное поле действует на виток с током отлична то нуля. Сила $\overrightarrow{dF}$, действующая на элемент контура (2), перпендикулярна к вектору индукции ($\overrightarrow{B}$) поля, которое создает диполь (1), то есть к линии в месте пересечения ее с элементом витка ($\overrightarrow{dl}$). Поэтому силы, которые приложены к различным элементам контура (магнитного диполя 2) имеют вид симметричного конического веера. Их результирующая, направлена в сторону возрастания магнитной индукции поля, следовательно, втягивает диполь в сторону более сильного поля.

Если ориентация магнитного момента диполя (2) остается неизменной по отношению к полю диполя (1), то легко найти количественное выражение для силы взаимодействия диполей. При этом потенциальная энергия механического взаимодействия диполей ($W_{p\ m}$) зависит только от x (через B). Следовательно:

где $B_1$ -- индукция поля, которое создает магнитный диполь (1), $p_{m2}$ -- магнитный момент диполя (2), $\alpha $ -- угол между вектором поля и вектором магнитного момента. В некоторых случаях считают, что в других направлениях поле изменяется слабо и тогда:

Согласно (5) сила, действующая на магнитный диполь в поле другого диполя, зависит от их взаимной ориентации магнитных моментов. Если вектор $\overrightarrow{p_{m2}}\uparrow \uparrow \overrightarrow{B_1}$ ($\alpha =0$), то сила взаимодействия диполей положительна, то есть, направлена в сторону возрастания $\overrightarrow{B_1}$ (считается, что $\frac{\partial B_1}{\partial x}>0$). Кроме силы F.

На контур с током будет действовать вращательный момент ($\overrightarrow{M}$), равный:

\[\overrightarrow{M}=\left[\overrightarrow{p_{m2}}\ \overrightarrow{B_1}\right]\ \left(6\right).\]

Модуль вектора М равен:

Энергия диполь-дипольного взаимодействия

Пусть два диполя имеют магнитные моменты $\overrightarrow{p_{mi\ ,}}\overrightarrow{p_{mj}}$, они располагаются в точках, которые определены радиус -- векторами: $\overrightarrow{r_{i\ ,}}\overrightarrow{r_j}$. Тогда энергия взаимодействия этих двух диполей может быть записана как:

Энергия диполь-дипольного взаимодействия зависит от взаимного расположения диполей.

Пример 1

Задание: Проведите сравнение поля электрического диполя и поля магнитного диполя.

Напряженности поля электрического диполя, имеет вид:

\[\overrightarrow{E}=\frac{1}{4\pi {\varepsilon }_0\varepsilon }\left(\frac{3\left({\overrightarrow{p}}_e\cdot \overrightarrow{r}\right)\overrightarrow{r}}{r^5}-\frac{\overrightarrow{p_e}}{r^3}\right)\left(1.1\right),\]

где $\overrightarrow{p_e}=q\overrightarrow{l\ }$-- электрический момент диполя.

Согласно формуле (1.1) напряженность поля диполя убывает, пропорционально третьей степени расстояния от диполя, до точки в которой рассматривается поле.

Магнитное поле, которое создает магнитный диполь, имеет вид:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\left\{\frac{3\left(\overrightarrow{p_m}\cdot \overrightarrow{r}\right)\overrightarrow{r}}{r^5}-\frac{\overrightarrow{p_m}}{r^3}\right\}\left(1.2\right),\]

$\overrightarrow{p_m}=I\overrightarrow{S}-$магнитный момент магнитного диполя.

Исходя из вида формул (1.1) и (1.2) магнитное и электрические поля диполей ведут себя аналогично. Именно поэтому элементарный ток называют магнитным диполем. Похожесть этих полей объясняют тем, что дипольные поля возникают тогда, когда наблюдатель находится далеко от токов и зарядов. Тогда в большей части пространства уравнения для напряженности электрического поля и индукции магнитного поля очень похожи по форме. У них дивергенция и ротор равны нулю. Следовательно, они дают одни решения. Однако, источники, конфигурацию которых мы описываем с помощью дипольных моментов физически, существенно различны. В магнитном поле -- это ток, в электрическом поле заряды.

Пример 2

Задание: Покажите, что энергия диполь - дипольного взаимодействия зависит от взаимной ориентации диполей.

В качестве основания для решения задачи используем формулу для энергии магнитного взаимодействия диполей:

где $\overrightarrow{p_{mi\ ,}}\overrightarrow{p_{mj}}-$ магнитные моменты диполей, $\overrightarrow{r_{i\ ,}}\overrightarrow{r_j}$-радиус векторы, определяющие положения диполей.

Преобразуем выражение (2.1), получим:

где $r_{ij}=r_i-r_j$, $\vartheta_{ij}$ -- угол между векторами $\overrightarrow{p_{mi\ ,}}\overrightarrow{p_{mj}}$.

Так из (2.2) ясно видно, что энергия $W_{ij}$ -- зависит от взаимного расположения диполей. Для пары диполей с одинаковыми дипольными моментами $p_{mj}{=p}_{mi}=p$, при их горизонтальной параллельной ориентации энергия взаимодействия диполей минимальна и равна:

Так требуемое доказано.