Математические проблемы Гильберта и их статус. Полный список

А. А. Болибрух. Проблемы Гильберта (100 лет спустя)

Проблемы Гильберта: историческое вступление

История Международных математических конгрессов насчитывает уже более ста лет; традиционно они проводятся раз в 4 года. Самый, наверное, знаменитый из них состоялся в августе 1900-го года в Париже. Именно на этом конгрессе, на секции преподавания и методологии математики, выступил 38-летний немецкий математик Давид Гильберт. В своем докладе он сформулировал те проблемы, которые, на его взгляд, являлись наиболее значимыми для математики начинающегося XX столетия.

Ни до, ни после него никто не ставил перед собой такую титаническую задачу. Даже в то время математика уже была достаточно специализированной: было много различных направлений, и одному человеку было очень трудно охватить все ее разделы. Но Гильберт отличался широким кругозором: он работал практически во всех существовавших тогда областях математики и во многих из них добился выдающиxся результатов. Это и позволило ему сформулировать ставшие знаменитыми 23 математические проблемы.

Эти проблемы делятся по областям математики следующим образом:

Из таблицы видно, что проблемы Гильберта относятся к самым разным областям математики, а некоторые --- сразу к нескольким областям. Это вполне естественно: математика едина, и одна и та же проблема может быть сформулирована и исследована в терминах различных математических дисциплин.

Доклад Гильберта на Парижском конгрессе можно найти, в частности, в недавно вышедшем двухтомнике его избранных трудов. Вступительная часть этого доклада читается почти как литературное произведение. То была пора "романтической математики", и сам Гильберт начинает свой доклад словами, которые замечательно звучат и сейчас: "Кто из нас не хотел бы приоткрыть завесу, за которой скрыто наше будущее, чтобы хоть одним взглядом проникнуть в предстоящие успехи наших знаний и тайны его развития в ближайшие столетия? Каковы будут те особенные цели, которые поставят себе ведущие математические умы ближайшего поколения? Какие новые методы и новые факты будут открыты в новом столетии на широком и богатом поле математической мысли?" Так звучал математический доклад Гильберта на математическом международном конгрессе.

Когда эти проблемы были сформулированы, выяснилось, что некоторые из них либо решены, либо близки к решению. Однако другие потребовали для своего решения несколько десятков лет и усилий многих выдающихся математиков, а две из них до сих пор не решены. Почему же Гильберт включил в свой доклад именно эти 23 проблемы? Чем он руководствовался, формулируя их?

Сам Гильберт, поясняя свой выбор, приводил слова одного известного французского математика: "Математическую теорию можно считать совершенной только тогда, когда ты сделал ее настолько ясной, что берешься изложить ее содержание первому встречному". Конечно, здесь имеется некоторое преувеличение, но процитированная фраза показывает, что Гильберт придавал большое значение понятности и доступности математики.

Выбирая проблемы для своего доклада, Гильберт придерживался следующих принципов. Он говорил, что задача должна быть а) понятной (должно быть ясно, откуда она возникла); б) достаточно трудной, чтобы вызывать интерес; в) не настолько трудной, чтобы ее невозможно было решить.

Перейдем теперь к более подробному рассказу о некоторых из этих проблем.

(стандартной системе аксиом теории множеств). Таким образом, континуум-гипотезу в этой системе аксиом невозможно ни доказать, ни опровергнуть (при условии, что эта система аксиом непротиворечива).

  • Курт Гёдель доказал , что непротиворечивость аксиом арифметики нельзя доказать, исходя из самих аксиом арифметики. В 1936 году Герхард Генцен доказал непротиворечивость арифметики, используя примитивно рекурсивную арифметику с дополнительной аксимой для трансфинитной индукции до ординала ε 0 .
  • Согласно Рову (Rowe) и Грею (Gray) (см. далее), большинство проблем были решены. Некоторые из них не были достаточно точно сформулированы, однако достигнутые результаты позволяют рассматривать их как «решённые». Ров и Грей говорят о четвёртой проблеме как о такой, которая слишком нечётко поставлена, чтобы судить о том, решена она или нет.
  • L. Corry, David Hilbert and the axiomatization of physics (1894-1905), Archive for History of Exact Sciences 51 (1997), no. 2, 83-198, DOI: http://doi.org/10.1007/BF00375141 .
  • Решена Зигелем и Гельфондом (и независимо Шнайдером) в более общем виде: если a ≠ 0, 1 - алгебраическое число , и b - алгебраическое иррациональное, то a b - трансцендентное число
  • Проблема № 8 содержит две известные проблемы, первая из которых не решена, а вторая решена частично. Первая из них, гипотеза Римана , является одной из семи Проблем тысячелетия , которые были обозначены как «Проблемы Гильберта» 21-го века.
  • Terence Tao - Google+ - Busy day in analytic number theory; Harald Helfgott has…
  • Major arcs for Goldbach’s theorem , H. A. Helfgott // arxiv 1305.2897
  • Goldbach Variations // SciAm blogs, Evelyn Lamb, May 15, 2013
  • Two Proofs Spark a Prime Week for Number Theory // Science 24 May 2013: Vol. 340 no. 6135 p. 913 doi:10.1126/science.340.6135.913
  • Проблема № 9 была решена для абелевого случая; неабелев случай остаётся нерешённым.
  • Юрий Матиясевич в 1970 году доказал алгоритмическую неразрешимость вопроса о том, имеет ли произвольное диофантово уравнение хотя бы одно решение. Изначально проблема была сформулирована Гильбертом не в качестве дилеммы, а в качестве поиска алгоритма: в то время, видимо, даже не задумывались о том, что может существовать отрицательное решение подобных проблем.
  • Утверждение о конечной порождённости алгебры инвариантов доказано для произвольных действий редуктивных групп на аффинных алгебраических многообразиях. Нагата в 1958 году построил пример линейного действия унипотентной группы на 32-мерном векторном пространстве, для которого алгебра инвариантов не является конечно порождённой. В. Л. Попов доказал, что если алгебра инвариантов любого действия алгебраической группы G на аффинном алгебраическом многообразии конечно порождена, то группа G редуктивна.
  • Первая (алгебраическая) часть проблемы № 16 более точно формулируется так. Харнаком доказано, что максимальное число овалов равно M=(n-1)(n-2)/2+1, и что такие кривые существуют - их называют M-кривыми. Как могут быть расположены овалы M-кривой? Эта задача сделана до степени n=6 включительно, а для степени n=8 довольно много известно (хотя её ещё не добили). Кроме того, есть общие утверждения, ограничивающие то, как овалы M-кривых могут быть расположены - см. работы Гудкова, Арнольда, Роона, самого Гильберта (впрочем, стоит учитывать, что в доказательстве Гильберта для n=6 есть ошибка: один из случаев, считаемый им невозможным, оказался возможным и был построен Гудковым). Вторая (дифференциальная) часть остаётся открытой даже для квадратичных векторных полей - неизвестно даже, сколько их может быть, и что оценка сверху существует. Даже индивидуальная теорема конечности (то, что у каждого полиномиального векторного поля имеется конечное число предельных циклов) была доказана только недавно. Она считалась доказанной Дюлаком , но в его доказательстве была обнаружена ошибка, и окончательно эта теорема была доказана Ильяшенко и Экалем, для чего каждому из них пришлось написать по книге.
  • Приведён перевод исходного названия проблемы, данного Гильбертом: «16. Problem der Topologie algebraischer Curven und Flächen» (нем.) . Однако, более точно её содержание (как оно рассматривается сегодня) можно было бы передать следующим названием: «Число и расположение овалов вещественной алгебраической кривой данной степени на плоскости; число и расположение предельных циклов полиномиального векторного поля данной степени на плоскости». Вероятно (как можно увидеть из английского перевода текста анонса (англ.) ), Гильберт считал, что дифференциальная часть (в реальности оказавшаяся значительно труднее алгебраической) будет поддаваться решению теми же методами, что и алгебраическая, и потому не включил её в название.
  • Bieberbach L. Über die Bewegungsgruppen der Euklidischen Raume I.-Math. Ann., 1911, 70, S. 297-336; 1912, 72, S. 400-412.
  • Ров и Грей также называют проблему № 18 «открытой» в своей книге за 2000 год, потому что задача упаковки шаров (известная также как задача Кеплера) не была решена к тому времени, однако на сегодняшний день есть сведения о том, что она уже решена (см. далее). Продвижения в решении проблемы № 16 были сделаны в недавнее время, а также в 1990-х.
  • Hilbert’s twenty-fourth problem . Rüdiger Thiele, American Mathematical Monthly, January 2003.
  • В 1900 году в Париже состоялся II Международный Конгресс математиков. На нем выступил немецкий ученый, профессор Давид Гильберт, который в своем докладе поставил 23 самые главные на тот момент, существенные проблемы, касающиеся математики, геометрии, алгебры, топологии, теории чисел, теории вероятностей.

    На данный момент решены 16 проблем из 23. Ещё 2 не являются корректными математическими проблемами (одна сформулирована слишком расплывчато, чтобы понять, решена она или нет, другая, далёкая от решения, - физическая, а не математическая). Из оставшихся пяти проблем две не решены никак, а три решены только для некоторых случаев.

    Полный список проблем Гильберта и их статус:

    1. Континуум–гипотеза. Существует ли бесконечное кардинальное число строго между кардиналами множеств целых и действительных чисел? Решена Полом Коэном в 1963 г. - ответ на вопрос зависит от того, какие аксиомы используются в теории множеств.

    2. Логическая непротиворечивость арифметики. Доказать, что стандартные аксиомы арифметики не могут привести к противоречию. Решена Куртом Геделем в 1931 г.: с обычными аксиомами теории множеств такое доказательство невозможно.

    3. Равносоставленность равновеликих тетраэдров. Если два тетраэдра имеют одинаковый объем, то всегда ли можно разрезать один из них на конечное число многоугольников и собрать из них второй? Решена в 1901 г. Максом Деном, ответ отрицательный.

    4. Прямая как кратчайшее расстояние между двумя точками. Сформулировать аксиомы геометрии на основе данного определения прямой и посмотреть, что из этого следует. Слишком расплывчатая задача, чтобы можно было рассчитывать на определенное решение, но сделано немало.

    5. Группы Ли без опоры на дифференцируемость. Технический вопрос теории групп преобразований. В одной из интерпретаций ее решил Эндрю Глисон в 1950–е гг., в другой - Хидехико Ямабе.

    6. Аксиомы физики. Разработать строгую систему аксиом для математических областей физики, таких как теория вероятностей или механика. Систему аксиом для вероятностей построил Андрей Колмогоров в 1933 г.

    7. Иррациональные и трансцендентные числа. Доказать, что определенные числа являются иррациональными или трансцендентными. Решена в 1934 г. Александром Гельфондом и Теодором Шнайдером.

    8. Гипотеза Римана. Доказать, что все нетривиальные нули римановой дзета–функции лежат на критической линии. См. главу 9.

    9. Законы взаимности в числовых полях. Обобщить классический закон квадратичной взаимности (о квадратах по определенному модулю) на более высокие степени. Частично решена.

    10. Условия существования решений диофантовых уравнений. Найти алгоритм, позволяющий определить, имеет ли данное полиномиальное уравнение со многими переменными решения в целых числах. Невозможность доказал Юрий Матиясевич в 1970 г.

    11. Квадратичные формы с алгебраическими числами в качестве коэффициентов. Технические вопросы решения диофантовых уравнений со многими переменными. Решена частично.

    12. Теорема Кронекера об абелевых полях. Технические вопросы обобщения теоремы Кронекера. Не доказана до сих пор.

    13. Решение уравнений седьмой степени при помощи функций специального вида. Доказать, что общее уравнение седьмой степени не может быть решено с использованием функций двух переменных. В одной из интерпретаций возможность такого решения доказали Андрей Колмогоров и Владимир Арнольд.

    14. Конечность полной системы функций. Расширить теорему Гильберта об алгебраических инвариантах на все группы преобразований. Опроверг Масаёси Нагата в 1959 г.

    15. Исчислительная геометрия Шуберта. Герман Шуберт нашел нестрогий метод подчета различных геометрических конфигураций. Задача в том, чтобы сделать этот метод строгим. Полного решения до сих пор нет.

    16. Топология кривых и поверхностей. Сколько связанных компонент может иметь алгебраическая кривая заданной степени? Сколько различных периодических циклов может иметь алгебраическое дифференциальное уравнение заданной степени? Ограниченное продвижение.

    17. Представление определенных форм в виде суммы квадратов. Если рациональная функция всегда принимает неотрицательные значения, то должна ли она обязательно выражаться в виде суммы квадратов? Решили Эмиль Артин, Д. Дюбуа и Альбрехт Пфистер. Верно для действительных чисел, неверно в некоторых других числовых системах.

    18. Заполнение пространства многогранниками. Общие вопросы о заполнении пространства конгруэнтными многогранниками. Имеет отношение к гипотезе Кеплера, ныне доказанной (см. главу 5).

    19. Аналитичность решений в вариационном исчислении. Вариационное исчисление отвечает на такие вопросы, как «найти кратчайшую кривую с заданными свойствами». Если подобная задача формулируется при помощи красивых функций, то должно ли решение тоже быть красивым? Доказали Эннио де Джорджи в 1957 г. и Джон Нэш.

    20. Граничные задачи. Разобраться в решениях дифференциальных уравнений физики в определенной области пространства, если заданы свойства решения на ограничивающей эту область поверхности. В основном решена (вклад внесли многие математики).

    21. Существование дифференциальных уравнений с заданной монодромией. Особый тип комплексного дифференциального уравнения, в котором можно разобраться при помощи данных о его точках сингулярности и группе монодромии. Доказать, что может существовать любая комбинация этих данных. Ответ «да» или «нет» в зависимости от интерпретации.

    22. Униформизация с использованием автоморфных функций. Технический вопрос об упрощении уравнений. Решил Пауль Кебе вскоре после 1900 г.

    23. Развитие вариационного исчисления. Гильберт призывал к выдвижению новых идей в области вариационного исчислении. Многое сделано, но формулировка слишком неопределенная, чтобы задачу можно было считать решенной.