Материалы экранирующие постоянное магнитное поле. Изготовление и исследование свойств магнитных экранов

Для экранирования магнитного поля применяются два метода:

Метод шунтирования;

Метод магнитного поля экраном.

Рассмотрим подробнее каждый из этих методов.

Метод шунтирования магнитного поля экраном.

Метод шунтирования магнитного поля экраном применяется для защиты от постоянного и медленно изменяющего переменного магнитного поля. Экраны изготавливаются из ферромагнитных материалов с большой относительной магнитной проницательностью (сталь, пермаллой). При наличии экрана линии магнитной индукции проходят в основном по его стенкам (рисунок 8.15), которые обладают малым магнитным сопротивлением по сравнению с воздушным пространством внутри экрана. Качество экранирования зависит от магнитной проницаемости экрана и сопротивления магнитопровода, т.е. чем толще экран и чем меньше швов, стыков, идущих поперек направления линий магнитной индукции, эффективность экранирования будет выше.

Метод вытеснения магнитного поля экраном.

Метод вытеснения магнитного поля экраном применяется для экранирования переменных высокочастотных магнитных полей. При этом используются экраны из немагнитных металлов. Экранирование основано на явлении индукции. Здесь явление индукции полезно.

Поставим на пути равномерного переменного магнитного поля (рисунок 8.16, а) медный цилиндр. В нем возбудятся переменные ЭД, которые, в свою очередь, создадут переменные индукционные вихревые токи (токи Фуко). Магнитное поле этих токов (рисунок 8.16,б) будет замкнутым; внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле (рисунок 8.16, в) оказывается ослабленным у цилиндра и усиленным вне его, т.е. происходит вытеснение поля из пространства, занимаемого цилиндром, в чем и заключается его экранирующее действие, которое будет тем эффективнее, чем меньше электрическое сопротивление цилиндра, т.е. чем больше протекающие по нему вихревые токи.

Благодаря поверхностному эффекту («скинэффекту») плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону

, (8.5)

где (8.6)

– показатель уменьшения поля и тока, которое называется эквивалентной глубиной проникновения.

Здесь – относительная магнитная проницаемость материала;

– магнитная проницаемость вакуума, равная 1.25*10 8 гн*см -1 ;

– удельное сопротивление материала, Ом*см;

– частота, Гц.

Величиной эквивалентной глубины проникновения удобно характеризовать экранирующий эффект вихревых токов. Чем меньше х 0 , тем больше создаваемое ими магнитное поле, вытесняющее из пространства занятого экраном, внешнее поле источника наводки.

Для немагнитного материала в формуле (8.6) =1, экранирующий эффект определяется только и . А если экран сделать из ферромагнитного материала?

При равных эффект будет лучше, так как >1 (50..100) и х 0 будет меньше.

Итак, х 0 является критерием экранирующего эффекта вихревых токов. Представляет интерес оценить, во сколько раз плотность тока и напряженность магнитного поля становится меньше на глубине х 0 по сравнению, чем на поверхности. Для этого в формулу (8.5) подставим х=х 0 , тогда

откуда видно, что на глубине х 0 плотность тока и напряженность магнитного поля падают в е раз, т.е. до величины 1/2.72, составляющей 0.37 от плотности и напряженности на поверхности. Так как ослабление поля всего в 2.72 раза на глубине х 0 недостаточно для характеристики экранирующего материала , то пользуются еще двумя величинами глубины проникновения х 0,1 и х 0,01 , характеризующими падение плотности тока и напряжения поля в 10 и 100 раз от их значений на поверхности.

Выразим значения х 0,1 и х 0,01 через величину х 0 , для этого на основание выражения (8.5) составим уравнение

И ,

решив которые получим

х 0.1 =х 0 ln10=2.3x 0 ; (8.7)

х 0.01 =х 0 ln100=4.6x 0

На основании формул (8.6) и (8.7) для различных экранирующих материалов в литературе приведены значения глубин проникновения. Эти же данные, с целью наглядности, приведем и мы в виде таблицы 8.1.

Из таблицы видно, что для всех высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5..1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует исходить не из электрических свойств материала, а руководствоваться соображениями механической прочности, жесткости, стойкости против коррозии, удобства стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобства пайки, сварки и пр.

Из данных таблицы следует, что для частот больше 10 МГЦ пленка из меди и тем более из серебра толщиной меньше 0.1 мм дает значительный экранирующий эффект . Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием.

Сталь можно использовать в качестве экранов, только нужно помнить, что из-за большого удельного сопротивления и явления гистерезиса экран из стали может вносить в экранирующие цепи значительные потери.

Изготовление и исследование свойств магнитных экранов

Целью работы является изучение методов экранирования с помощью ВТСП устройств, получение объемного и толстопленочного экранов, исследование их коэффициентов ослабления поля.

Общие сведения

Экранирование представляет собой защиту объема от воздействия внешнего электрического, магнитного или электромагнитного полей. Как правило, в этом объеме располагается устройство, нуждающееся в защите от данного поля. В зависимости от вида и ориентации экранируемого поля выбираются материал и конструкция экрана. Так, например, магнитное поле традиционно экранируют с помощью конструкций из ферромагнетиков, а электромагнитные поля – с помощью проводниковых конструкций. Конструкция может иметь форму сферы, стакана с дном, длинного цилиндра и т.д.

Применение сверхпроводниковых материалов позволило существенно улучшить массогабаритные показатели экранирующих конструкций, однако необходимость использования жидкого гелия ограничивает применение таких экранов.

Применение ВТСП электромагнитных экранов на частотах порядка звуковых представляется достаточно перспективным, поскольку использование обычных металлов, например меди или алюминия, требует большой толщины экрана (соответствующие толщины скин-слоя составляют несколько сантиметров). Пермаллоевые и другие экраны с высоким значением магнитной проницаемости характеризуются также большими габаритами и массой.

Для монокристаллических образцов ВТСП значения глубины проникновения составляют доли микрометра. Для поликристаллических образцов она существенно больше (10 мкм), однако использование ВТСП экранов, экранирующих корпусов интегральных схем и т.д. является перспективным в сравнении с другими методами. Физической основой работы экрана является эффект Мейсснера-Оксенфельда. Внешнее магнитное поле в сверхпроводнике убывает с глубиной:

B (x ) = B (0) exp(-x / λ L ), (4.9)

где x – расстояние от поверхности,

λ L – лондоновская глубина проникновения.

Для низкотемпературных сверхпроводников λ L =10 -7 м, поэтому слабые поля в объемный сверхпроводник практически не проникают. Для реальных ВТСП, как уже отмечалось, эта величина много больше. Если величина внешнего магнитного поля становится сравнимой со значением нижнего критического поля, сверхпроводник второго рода может перейти в промежуточное состояние. При этом образец разбивается на чередующиеся сверхпроводящие и нормальные области (состояние Шубникова) и в него проникает магнитное поле. Индукция поля, при котором образец переходит в состояние Шубникова, определяется его формой и критическими свойствами материала. Для экрана в виде цилиндра с плоским дном и отношением внутреннего диаметра к внешнему не более 0,7 это поле (перпендикулярные оси цилиндра) можно определить из выражения

B ││ = В С 1 [(1-d /D )/2] 1/2 , (4.10)

где В С 1 – индукция первого критического поля материала;

D , d – внешний и внутренний диаметры экрана.

Индукция аксиального поля, при котором материал экрана переходит в промежуточное состояние, приблизительно равна критической индукции поля.

Для ВТСП материалов картина усложняется вследствие того, что они представляют собой гранулированные конгломераты, где между СП гранулами есть джозефсоновские контакты. В этом случае экранирующие свойства связывают с величиной критического поля межгранульных связей, при котором начинается проникновение поля в ВТСП.

Обычно ВТСП магнитные экраны выполняются путем одностороннего, двухстороннего или гидростатического прессования ВТСП порошка и последующего обжига. Такой способ пригоден для изготовления небольших экранов. Однако для изготовления длинномерных цилиндров или экранов более сложной формы (сфера) такой способ не подходит. В этом случае пользуются дискретными экранами, состоящими из фрагментов-колец. В предыдущей работе были изготовлены такие кольца-фрагменты, которые можно собрать в длинномерный цилиндр. Такие фрагменты могут быть выполнены нанесением тонких или толстых пленок на керамическое основание.

Коэффициент экранирования (ослабления поля) К определяется как отношение величины внутреннего поля B i к внешнему – B e :

К = B i / B e . (4.11)

Измерение производят следующим образом. Экран с датчиком поля помещают внутри соленоида, задающего внешнее поле. В качестве датчика используют феррозондовый датчик или, как в нашем случае, датчик Холла. Соленоид на штанге опускают в сосуд Дьюара с жидким азотом. Вся система располагается внутри установленного вертикально двухслойного ферромагнитного экрана с коэффициентом ослабления магнитного поля Земли около 100.

Последовательно с обмоткой соленоида включен резистор. Падение напряжения на резисторе пропорционально величине внешнего магнитного поля соленоида, ЭДС Холла пропорциональна величине внутреннего поля. Из графика U x = f(I c ) можно оценить коэффициент ослабления поля для данного экрана.

Рис. 4.8. Толстопленочный фрагмент-кольцо магнитного экрана:
1 – керамика, 2 – пленка

Рис. 4.9. Температурный режим вжигания ВТСП пленки: Т 1 =120°С (30 мин) V 1 =30ºС/ч; Т 2 =910-915°С (10-20 мин); Т 3 =895°С, V 2 =6ºС/ч; Т 4 =860°С

Задания

1). Получите толстопленочные фрагменты-кольца.

1.1. На керамическое основание (рис. 4.8) нанесите пасту (порошок Bi-2212 и 10–15% органической связки).

1.2. В электрической печи проведите вжигание пасты (рис. 4.9).

Рис. 4.10. Магнитный экран: Ф – кольца-фрагменты экрана; Д – датчик Холла;
a – расстояние между кольцами-фрагментами; L – обмотка соленоида

2). Соберите магнитные экраны.

2.1. Соберите экран из объемных колец-фрагментов.

2.2. Соберите экран из пленочных колец-фрагментов.

3). Измерьте коэффициент экранирования объемного и пленочного экранов.

3.1. Соберите схему для измерения коэффициента экранирования (рис. 4.11).

Рис. 4.11. Схема установки для измерения коэффициента экранирования: ИП – источники питания, Д – датчик Холла, С – двухкоординатный самописец; L – соленоид;
R – резистор

3.2. Получите графики B i = f(B e ).

3.3. Изменяя расстояние между кольцами, получите графики K =B i /B e = f(a ).

4). Оформите отчет, содержащий графики и их сравнительную оценку.

Контрольные вопросы

1. Как осуществляют экранирование?

2. Какие существуют экраны?

3. Какие устройства требуют экранирования?

4. Опишите и объясните эффект Мейсснера.

5. Охарактеризуйте состояние Шубникова.

6. Что такое вихри Абрикосова?

7. Поясните характер зависимости x =f(a ).

8. Как работает устройство измерения коэффициента ослабления?

Литература

1. Красов В.Г. и др. Толстопленочная технология в СВЧ микроэлектронике / Красов В.Г., Петрацскас Г.Б., Чернозубов Ю.С. – М.: Радио и связь, 1985.- 168 с.

2. Бондаренко С.И., Шеремет В.И. Применение сверхпроводимости в магнитных измерениях – Л.: Энергоатомиздат, 1982.-132 с.

Заключение

Мы рассмотрели в этой книге основные вопросы проектирования и технологии высокотемпературной криоэлектроники. Из-за ограниченности объема пособия и желания сэкономить время читателя рассматривались наиболее важные в теоретическом и практическом плане вопросы. Многие существенные моменты, недостаточно “продвинутые” в практическом плане, остались вне поля зрения.

Недавно исполнилось 90 лет со дня открытия сверхпроводимости и 40 лет с тех пор, как на базе сверхпроводниковых материалов и криогенной техники гелиевых температур зародились низкотемпературные сверхпроводниковые технологии, в числе которых была и криоэлектроника. Одним из первых её элементов был проволочный криотрон. За прошедшие годы низкотемпературная криоэлектроника получила существенное развитие: были изобретены цифровые устройства на базе криотронов (в начале пленочных, а затем джозефсоновских); приемники и преобразователи СВЧ сигналов, приборы на базе СКВИДов и т. д.

Более 15 лет прошло со дня открытия высокотемпературной сверхпроводимости – события, которое должно было стимулировать работы в области сверхпроводимости вообще и криоэлектроники в частности. Так и случилось: количество и объем исследований в этой области резко возросли в 1996 году и в настоящее время являются довольно значительными.

Однако, несмотря на явные успехи, высокотемпературная криоэлектроника все еще находится на стадии становления, чему имеются различные причины.

Сегодня сохранилось драматичное и напряженное состояние в области исследований ВТСП. По-прежнему велики ожидания в этом плане. Правительство и промышленные фирмы, вложившие и продолжающие вкладывать в исследования ВТСП крупные средства, внимательно следят за прикладными аспектами исследований, опасаясь пропустить момент рывка в наукоемкий (а значит перспективный, престижный и доходный) ВТСП рынок. Большие ожидания заставляют скрупулезно оценивать и сегодняшнее состояние исследований, и их рыночный потенциал.

К причинам, тормозящим развитие криоэлектроники, можно отнести также:

· слабую изученность криоэлектронных процессов в охлаждаемых структурах и пленках,

· недостаточность реальных конструкторско-технологических идей по созданию интегральных криоэлектронных приборов и особенно – надежных, воспроизводимых, многоэлементных, многослойных интегральных схем с субмикронными зазорами.

Практически отсутствуют методы снижения энергоемкости и массогабаритных показателей криостатов, увеличения срока их непрерывной работы.

Иными словами, необходимо найти решения, с помощью которых полученные результаты будут дешевыми, воспроизводимыми, доступными. Мы надеемся, что приобретенные вами знания и навыки помогут решить поставленные задачи.

Экранирование магнитного поля.

Метод шунтирования. -Метод магнитного поля экраном.

Метод шунтирования магнитного поля экраном применяется для защиты от постоянного и медленно изменяющего переменного магнитного поля. Экраны изготавливаются из ферромагнитных материалов с большой относительной магнитной проницательностью (сталь, пермаллой). При наличии экрана линии магнитной индукции проходят в основном по его стенкам, которые обладают малым магнитным сопротивлением по сравнению с воздушным пространством внутри экрана. Чем толще экран и, чем меньше швов, стыков, тем экранирование эффективнее. Метод вытеснения магнитного поля экраном применяется для экранирования переменных высокочастотных магнитных полей. При этом используются экраны из немагнитных металлов. Экранирование основано на явлении индукции.

Если поставить на пути равнопеременного магнитного моля медный цилиндр, в котором возбудятся переменные вихревые индукционные токи(токи Фуко). Магнитное поле этих токов будет замкнутым; внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле оказывается ослабленным у цилиндра и усиленным вне его, т.е. происходит вытеснение поля из пространства, занимаемого цилиндром, в чем и заключается его экранирующее действие, которое будет тем эффективнее, чем меньше электрическое сопротивление цилиндра, т.е. чем больше протекающие по нему вихревые токи.

Благодаря поверхностному эффекту («скинэффекту») плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону

Где

μ– относительная магнитная проницаемость материала; μ˳– магнитная проницаемость вакуума, равная 1.25*108 гн*см-1; ρ– удельное сопротивление материала, Ом*см; ƒ– частота, Гц.

Для немагнитного материала μ = 1. И экранирующий эффект определяется только по ƒ и ρ.

Экранирование является активным методом защиты информации. Экранирование магнитного поля (магнитостатическое экранирование) используется при необходимости подавить наводки на низких частотах от 0 до 3..10 кГц. Эффективность магнитостатического экранирования повышается при применении многослойных экранов.

Эффективность магнитного экранирования зависит от частоты и электрических свойств материала экрана. Чем ниже частота, тем слабее действует экран, тем большей толщины приходится его делать для достижения одного и того же экранирующего эффекта. Для высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5 ... 1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует учитывать механическую прочность, жесткость, стойкость против коррозии, удобство стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобство пайки, сварки и пр. Для частот выше 10 МГц медная и тем более серебряная пленка толщиной более 0,1 мм дает значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием. Для изготовления экранов используются: металлические материалы, материалы-диэлектрики, стёкла с токопроводящим покрытием, специальные металлизированные ткани, токопроводящие краски. Металлические материалы (сталь, медь, алюминий, цинк, латунь), применяемые для экранирования, изготавливаются в виде листов, сеток и фольги.

Все эти материалы удовлетворяют требованию устойчивости против коррозии при использовании соответствующих защитных покрытий. Наиболее технологичными являются конструкции экранов из стали, так как при их изготовлении и монтаже можно широко использовать сварку или пайку. Металлические листы должны быть между собой электрически соединены по всему периметру. Шов электросварки или пайки должен быть непрерывным, с тем чтобы получить цельносварную конструкцию экрана. Толщина стали выбирается исходя из назначения конструкции экрана и условий его сборки, а также из возможности обеспечения сплошных сварных швов при изготовлении. Экраны из стали обеспечивают ослабление электромагнитного излучения более чем на 100 дБ. Сетчатые экраны проще в изготовлении, удобны для сборки и эксплуатации. Для защиты от коррозии сетки целесообразно покрывать антикоррозийным лаком. К недостаткам сетчатых экранов следует отнести невысокую механическую прочность и меньшую эффективность экранирования по сравнению с листовыми. Для сетчатых экранов пригодна любая конструкция шва, обеспечивающая хороший электрический контакт между соседними полотнищами сетки не реже чем через 10-15 мм. Для этой цели может применяться пайка или точечная сварка. Экран, изготовленный из лужёной низкоуглеродистой стальной сетки с ячейкой 2,5-3 мм, даёт ослабление порядка 55-60 дБ, а из такой же двойной (с расстоянием между наружной и внутренней сетками 100 мм) около 90 дБ. Экран, изготовленный из одинарной медной сетки с ячейкой 2,5 мм, имеет ослабление порядка 65-70 дБ

Использование: для получения пространства без магнитного поля, обеспечивающего повышение качества экранирования. Магнитный экран выполнен в виде оболочки с люком, причем оболочка расположена соосно с установленным вертикально кольцом постоянного магнита с осевой намагниченностью или двух расположенных подвижно относительно кольца оболочек, выполненных из композиционного или диамагнитного материала. Изобретение может применяться в медицине для снятия нагрузки в период магнитных бурь, а технике при производстве однородных постоянных магнитов, полупроводников, при производстве и настройке радиоэлектронной аппаратуры. 3 з.п ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для получения пространства без магнитного поля, в котором производятся настройка и испытание, например, датчиков феррозондового типа радиоизмерительной аппаратуры. Известны магнитные экраны из ферромагнитных материалов, для эффективной работы которых используют, например, размагничивающую катушку индуктивности, намотанную на корпус, и источник питания. Сравнительно часто для уменьшения остаточного магнитного поля экран, выполненный из нескольких слоев ферромагнитного материала, снабжен дополнительной размагничивающей обмоткой. Недостатком подобных систем является обязательная связь экрана с источником электрической энергии, которая при этом используется с низкой эффективностью. Для снижения энергетических затрат находят применение экраны, выполненные из сверхпроводящего материала или содержащие сверхпроводящие обмотки. При этом существенно усложняется конструкция и исключается использование экрана в полевых условиях. В качестве прототипа использовано устройство экранированной комнаты для магнитных измерений, которое содержит каркас с закрепленным на нем многослойным ферромагнитным экраном, опорные колонны на фундаменте, приборы освещения. Однако в этом случае по мере необходимости при намагничивании слоев магнитным полем Земли к вершинам углов каждого слоя подключается источник питания. Таким образом, в этом как и в других случаях магнитное поле Земли играет отрицательную роль. Для защиты от него и создают различные экраны. Цель изобретения - повышение качества экранирования. Это достигается тем, что магнитный экран выполнен в виде оболочки с люком, причем оболочка расположена соосно с кольцом постоянного магнита с осевой намагниченностью или две расположенные подвижно относительно кольца оболочки, выполненные из композиционного или диамагнитного материала, например из меди. На фиг. 1 показан постоянный кольцевой магнит; на фиг.2 - топография магнитного поля кольца. Постоянный кольцевой магнит 1 выполнен с внутренним радиусом R и толщиной , на опоре 2 на расстоянии S от кольца установлены оболочки 3 с люками 4 для доступа внутрь оболочки. На фиг.2 показана топография магнитного поля кольца с осевой намагниченностью, имеющего специфические области l и k. Персонал размещает в оболочке 3 используемые для работы (настройки) приборы (при необходимости размещается и сам) и устанавливает ее на расстоянии S, определяемом характерными размерами кольца R и . При этом расположение оболочек совпадает с областями l и k, в которых магнитное поле кольца равно нулю. Эти области являются магнитным вакуумом. Вертикальное размещение кольца упрощает его монтаж и взаимное расположение оболочек. При этом магнитное поле кольца может как совпадать, так в общем случае и не совпадать с магнитным полем Земли. Материал оболочек выбирается из учета его нейтральности к магнитному полю. В частности, таким материалом может быть либо композиционный, либо диамагнитный материал. Использование постоянного магнита с осевой намагниченностью в виде кольца и заданное расположение оболочек позволяют создать объемы без магнитного поля, которые, например, могут найти применение в медицине для снятия нагрузки в период магнитных бурь, в технике для производства и настройки радиоэлектронной аппаратуры, в перспективных производствах (изготовление однородных, постоянных магнитов, полупроводников, БИС и др.).

Формула изобретения

1. МАГНИТНЫЙ ЭКРАН, выполненный в виде оболочки с люком, отличающийся тем, что оболочка расположена соосно с кольцом постоянного магнита с осевой намагниченностью на расстоянии s = (2-2,5), где s - расстояние от плоскости симметрии кольца до центра естественного расслоения магнитного поля указанного кольца, в котором расположен магнитный экран с совмещением его центра с центром естественного расслоения магнитного поля от магнитного источника (кольца); - толщина кольца, а радиус оболочки соизмерим с радиусом центрального отверстия кольцевого постоянного магнита. 2. Экран по п.1, отличающийся тем, что он содержит расположенные соосно и подвижно относительно постоянного магнита две оболочки. 3. Экран по пп.1 и 2, отличающийся тем, что оболочки выполнены из композиционного материала. 4. Экран по пп.1 и 2, отличающийся тем, что оболочки выполнены из диамагнитного материала, например из меди.