Механизм работы рецепторов сопряженных с G-белком. Этот же механизм лежит в основе гормональной регуляции фосфоинозитидспецифичной фосфолипазы С и фосфолипаза А2

Страница 2

G-белки - это регуляторные белки, связывающие при активации ГТФ. Лучше всего изучены G-белки, стимулирующие и ингибирующие аденилатциклазу (Gs - белки и Gi-белки соответственно). βı - адренорецепторы, β2 - адренорецепторы и D1 рецепторы сопряжены с белком Gs, и поэтому стимуляция этих рецепторов сопровождается активацией аденилатциклазы и повышением внутриклеточной концентрации цАМФ - классического второго (внутриклеточного) посредника. Конечный ответ в разных клетках различен и зависит от того, что представляет собой эффекторные фрагменты (фермент, ионный канал и пр) α2– адренорецепторы, М2-холинорецепторы и D2-рецепторы сопряжены с белком Gi, и стимуляция этих рецепторов приводит к снижению активности аденилатциклазы и внутриклеточной концентрации цАМФ. Изменения активности ферментов и других внутриклеточных белков и, соответственно, клеточных функций при этом противоположны тем, что наблюдаются при активации белка Gs. α1-адренорецепторы (как и М1-холинорецепторы), видимо, сопряжены с другим, пока еще мало изученным типом G-белка. Этот белок иногда обозначают Gq. Он активирует фосфолипазу С, катализирующую распад мембранных фосфолипидов, в частности - фосфатидилинозитол-4,5-дифосфата до ИЗФ и ДГА. Оба эти вещества являются вторичными посредниками.

Связывание агониста (гормона, нейромедиатора и др.) с соответствующим рецептором приводит к белок-белковому взаимодействию между рецептором и G-белком и ускоряет диссоциацию ГДФ. В результате образуется короткоживущий комплекс агонист - рецептор - G-белок, не связанный ни с каким нуклеотидом. Связывание с этим комплексом молекулы ГТФ снижает сродство рецептора к G-белку, что приводит к диссоциации комплекса и высвобождению рецептора. Потенциально рецептор может активировать большое количество молекул G-белка, обеспечивая, таким образом, высокий коэффициент усиления внеклеточного сигнала на данном этапе. Активированная α-субъединица G-белка диссоциирует от βγ-субъединиц и вступает во взаимодействие с соответствующим эффектором, оказывая на него активирующее или ингибирующее воздействие.

α-субъeдиница с присоединенным с ней ГТФ способна взаимодействовать с эффектором в мембране - ферментами, такими, как аденилатциклаза, или, возможно, ионными каналами. Фермент может активироваться или ингибироваться, а ионный канал - открываться или закрываться. Конкретные примеры будут рассмотрены в последующих разделах. Взаимодействие с эффектором, однако, длится до тех пор, пока α - субъединица, являющаяся ГТФазой, удерживает ГТФ. Так что, очень вскоре присоединенный ГТФ гидролизуется до ГДФ. Когда это происходит, α - субъединица снова меняет свою конформацию и теряет способность активировать эффектор. После этого α-ГДФ взаимодействует с βγ-комплексом и снова образует тримерный комплекс, завершая, таким образом, цикл. Предполагают также, что комплекс из βγ-субъединиц тоже может (прямо или опосредованно) влиять на эффекторные ферменты.

Такими ферментами являются аденилатциклаза, фосфолипаза С. G-белки также регулируют работу К и Са²+-ионных каналов, К G-белкам относятся полипептид Gs, стимулирующий аденилатциклазу и регулирующий Са²+-ионные каналы, полипептид Gi, ингибирующий аденилатциклазу, и регулирующий К+-каналы в клетках тканей мозга, Gt, трансдуцин, участвующий в передаче светового сигнала, Golf специфичный белок обонятельных ресничек и др. Все G-белки являются гетеротримерами, состоящими из субъединиц α, β‚ и γ в порядке уменьшения молекулярной массы.

Впоследствии ГТФ, связанный с α-субъединицей G-белка, подвергается гидролизу, причем ферментом, катализирующим этот процесс, является сама α-субъединиц. Это приводит к диссоциации α-субъединицы от эффектора и реассоциации комплекса α-ГДФ с βγ - субъединицами. Спонтанная активация G-белка, связанного с ГДФ - весьма маловероятный процесс.


Также смотрите:

Биогеохимическая эволюция состава атмосферы и жизнедеятельности организмов в массообмене газов
История формирования атмосферы служит ярким примером воздействия живого вещества на окружающую среду. Факты, полученные в последние годы, свидетельствуют, что состав современной газовой оболочки Земли является итогом длительного процесса, в котором ведущее значение им...

Понятие интеллекта
Интеллект (от латинского – Intellectus) в широком смысле – это совокупность всех познавательных функций индивида: от ощущения и восприятия до мышления и воображения; в более же узком смысле – это мышление. Интеллект является основной формой познания действительности. ...

Протамины.
Протамины были открыты в 1868 г. Мишером в сперматозоидах, а их белковая природа была расшифрована Косселем в 1886 г. Получают их в чистом виде при помощи пикратов. Молекулярный вес колеблется от 2000 до10000.Содержание азота составляет 30%,в то время как в других про...

Важнейшим внутриклеточным компонентом сигнальных каскадов являются G-белки. В настоящее время известно около 20 различных G-белков. Так, например, Gs и Gi стимулируют и ингибируют аденилатциклазу, соответственно; Gq активирует фосфолипазу С. Среди G-белков сенсорных клеток можно отметить: фоторецепторные - Gt (трансдуцин), обонятельные - Golf и вкусовые - Gg.

По своему строению G-белки представляют собой гетеротримеры, состоящие из трех типов субъединиц: a (альфа), b (бетта) и g (гамма), однако в нативных условиях бетта и гамма субъединицы функционируют как единый комплекс. Общей структурной особенностью G-белков является наличие семи трансмембранных альфа-спиралей. Важнейшей характеристикой G-белков является присутствие на их a-субъединице центра связывания гуаниловых нуклеотидов: GDP(гуанизидиндифосфат) и GTP (гуанизидинтрифосфат). Если с G-белком связан GTP, то это соответствует его активированному состоянию (G-GTP) или, иначе, G-белок находится в активированном положении. Если в нуклеотидсвязывающем центре присутствует GDP, то эта форма (G-GDP) соответствует "выключенному" состоянию. Ключевым моментом передачи сигнала от рецептора (на который подействовал первичный сигнал) к G-белку является катализ активированным рецептором обмена GDP, связанного с G-белком, на присутствующий в среде GTP (GDP / GTP-обмен на G-белке).

Трансмембранные рецепторы обеспечивают основные жизненно важные функции клетки: сигнальную, транспортную, защитную. Изучение механизма действия различных биологически активных соединений, в том числе противовирусных и противобактериальных показало, что наиболее специфичными мишенями, как для лекарственных, так и для токсических соединений (ядов) являются клеточные рецепторы человека и патогенных микроорганизмов. Значительную часть трансмембранных рецепторов составляют G-белок сопряженные рецепторы (GPCR), около половины всех известных в настоящее время лекарственных препаратов действуют именно на GPCR. Из всех видов поверхностных клеточных рецепторов GPCR наиболее универсальны. Эти рецепторы связывают широкий круг молекул, от, небольших по размеру нейромедиаторов, до крупных белков. GPCR вовлечены практически во все жизненно важные процессы.

Разнообразие сигналов, передаваемых GPCR, обеспечивается функциональным сопряжением разных GPCR между собой. Таким образом, очевидно, что наиболее универсальный механизм влияния токсичных и лекарственных соединений на клетку реализуется через воздействие на рецепторный аппарат клетки, путем изменения их конформации или основных характеристик связи лиганд-рецептор, их специфичности и обратимости.

G-БЕЛКИ, ПОНЯТИЕ И
КЛАССИФИКАЦИЯ.
G-БЕЛОК СОПРЯЖЕННЫЕ
РЕЦЕПТОРЫ
ПОДГОТОВИЛА:
СТУДЕНТКА 3 КУРСА, 3 МЕДИЦИНСКОГО
ФАКУЛТЕТА,6 ГРУППЫ
КАЛИНОВСКАЯ Я.Д

G-белки. Понятие и классификация

G-БЕЛКИ. ПОНЯТИЕ И КЛАССИФИКАЦИЯ
G-белки (англ. G proteins) - это семейство белков,
относящихся к ГТФазам и функционирующих в качестве
вторичных посредников во внутриклеточных сигнальных
каскадах. G-белки названы так, поскольку в своём сигнальном
механизме они используют замену GDP на GTP как
молекулярный функциональный «выключатель» для регулировки
клеточных процессов.
G-белки были обнаружены и исследованы Альфредом Гилманом и
Мартином Родбеллом, которые получили за это открытие
Нобелевскую премию по физиологии и медицине 1994 года

Типы G-белков

ТИПЫ G-БЕЛКОВ
G-белки делятся на две основных группы - гетеротримерные («большие»)
и «малые».
Гетеротримерные G-белки - это белки с четвертичной структурой,
состоящие из трёх субъединиц: альфа(α), бета (β) и гамма (γ). Малые Gбелки - это белки из одной полипептидной цепи, и относятся к
суперсемейству Ras малых ГТФаз. Их единственная полипептидная цепь
гомологична α-субъединице гетеротримерных G-белков. Обе группы Gбелков участвуют во внутриклеточной сигнализации.
Гетеротримерные G-белки
У всех гетеротримерных G-белков сходный механизм активации: они
активируются при взаимодействии со специфическими рецепторами,
сопряженными с G-белками, при этом обменивая ГДФ на ГТФ и
распадаясь на α- и βγ-субъединицы. α-субъединица, связанная с ГТФ,
воздействует на следующее звено в цепи передачи сигнала. βγсубъединица также может вызывать собственные эффекты. Инактивация
G-белков происходит в результате медленного гидролиза ГТФ до ГДФ αсубъединицей, после чего происходит реассоциация (объединение)
субъединиц.

Белки-помощники G-белков

БЕЛКИ-ПОМОЩНИКИ G-БЕЛКОВ
В работе многих G-белков участвуют вспомогательные белки.
GAPs (GTPase Activating Proteins, белки-активаторы ГТФазной
активности) ускоряют гидролиз ГТФ, ускоряя инактивацию Gбелков. Особенно важна функция GAPs для малых G-белков,
так как альфа-субъединицы гетеротримерных G-белков часто
сами обладают достаточной ГТФ-азной активностью. К GAPбелкам относятся белки семейства RGS.
GEFs (Guanine nucleotide Exchange Factors, факторы обмена
гуаниловых нуклеотидов), ускоряют обмен ГДФ на ГТФ и таким
образом активируют G-белки. Обычно для G-белка GEF-ом
служит активированный лигандом рецептор, однако в некоторых
случаях белки AGS (Activator of G-protein Signaling, активаторы
передачи сигнала G-белками) могут активировать G-белок
независимо от воздействия на него рецептора.

Цикл активации G-белка под действием G-белок-связанного рецептора.

G-Белок связанные рецепторы

G-БЕЛОК СВЯЗАННЫЕ РЕЦЕПТОРЫ
Рецепторы, сопряженные с G белком (серпетиновые
рецепторы)(англ. G-protein-coupled receptors, GPCRs), также
известные как семиспиральные рецепторы составляют большое
семейство трансмембранных рецепторов. GPCR выполняют
функцию активаторов внутриклеточных путей передачи сигнала,
приводящими в итоге к клеточному ответу.
Эндогенные лиганды-агонисты, которые связываются и активируют эти
рецепторы, включают гормоны, нейромедиаторы, светочувствительные
вещества, пахучие вещества, феромоны и варьируются в своих
размерах от небольших молекул и пептидов до белков. Нарушение
работы GPCR приводит к возникновению множества различных
заболеваний, а сами рецепторы являются мишенью до 40 %
выпускаемых лекарств. на многочисленные схемы, было предложено
разделить надсемейство на три основных класса (a, b и c).
Рецепторы этого семейства обнаружены только в клетках
эукариот: у дрожжей, растений и животных.

Лиганды и лиганд-связывающие участки серпентиновых рецепторов

ЛИГАНДЫ И ЛИГАНД-СВЯЗЫВАЮЩИЕ
УЧАСТКИ СЕРПЕНТИНОВЫХ РЕЦЕПТОРОВ
Уникальная структура лиганд-связывающих участков
серпентиновых рецепторов позволяет связывать лиганды
различной природы и молекулярной массы

Классификация G-Белок Сопряженных рецепторов

КЛАССИФИКАЦИЯ G-БЕЛОК
СОПРЯЖЕННЫХ РЕЦЕПТОРОВ
Семейство GPCR подразделяют на 6 классов на основании гомологии
их аминокислотных последовательностей и функционального сходства:
1.
Класс A (или 1) (Родопсиноподобные рецепторы)
2.
Класс B (или 2) (Рецепторы секретинового семейства)
3.
Класс C (или 3) (Метаботропные глутаматные рецепторы)
4.
Класс D (или 4) (Рецепторы феромонов спаривания грибков)
5.
Класс E (или 5) (Рецепторы цАМФ)
6.
Класс F (или 6) (Frizzled/Smoothened)
Класс A является на сегодняшний день самым большим, поэтому
далее поделен на 19 подклассов (A1-A19). На его долю приходится
около 85 % генов ПЗСК. По предположениям более половины
рецепторов из данного класса кодируют обонятельные рецепторы,
тогда как остальные 15 % - кодируют рецепторы эндогенных
соединений.
Человеческий геном кодирует порядка 350 рецепторов, связанных с Gбелками, которые связывают гормоны, факторы роста и другие
эндогенные лиганды. Функция около 150 рецепторов, обнаруженных в
геноме человека, остаётся невыясненной.

СТРУКТУРА РЕЦЕПТОРА G-БЕЛОК
СОПРЯЖЕННЫХ РЕЦЕПТОРОВ
Внеклеточная часть состоит из петель, в которых среди прочих
остатков содержатся два высококонсервативных остатка
цистеина, образующих дисульфидную связь, что стабилизирует
структуру рецептора.
Ранние структурные модели GPCR были основаны на их
некоторой схожести с бактериородопсином, для которого
структура была определена как методом электронной
дифракции так и рентгеноструктурным анализом.

Структура рецептора G-белок сопряженных рецепторов

СТРУКТУРА РЕЦЕПТОРА G-БЕЛОК
СОПРЯЖЕННЫХ РЕЦЕПТОРОВ
В 2000 году была получена структура первого GPCR
млекопитающих - бычьего родопсина (1F88). Оказалось, что хотя
основная черта - семь трансмембранных спиралей -
сохранена, относительное их расположение заметно отличается от
такового в бактериородопсине.
В 2007 году впервые была получена структура GPCR человека - β2адренэргического рецептора (2R4R, 2R4S) (2RH1).Структура этого
рецептора оказалась весьма сходной со структурой зрительного
родопсина быка по взаимному расположению спиралей. Однако
конформация второй внеклеточной петли в этих структурах
различается коренным образом. А поскольку эта петля является
«крышкой», закрывающей сверху сайт связывания лиганда, то
различия в её конформации подчеркивают трудности построения
моделей рецепторов, связанных с G-белками, основываясь лишь
на структуре зрительного родопсина.
В 2008 году была получена структура опсина, очищенного от
родопсина, с разрешением 2,5 ангстрема.

АКТИЦВАЦИЯ G-БЕЛОК
СОПРЯЖЕННЫХ РЕЦЕПТОРОВ
С-концевой участок рецептора локализован на
цитоплазматической стороне плазматической мембраны и
содержит высококонсервативные цистеиновые остатки,
характерные для всего семейства G-белок связывающих
рецепторов. В неактивном состоянии G белки обычно находятся
вблизи рецептора. Фактически они представляют собой
комплекс, сформированный из 3-х различных субъединиц,
названых: Альфа, Бетта и Гамма.

Актицвация G-белок сопряженных рецепторов

АКТИЦВАЦИЯ G-БЕЛОК
СОПРЯЖЕННЫХ РЕЦЕПТОРОВ
До активации все три субъединицы связаны вместе. Когда
рецептор активируется присоединением лиганда, на aсубъединице происходит обмен GDP на GTP (откуда и термин G
белок). Два состояния G белка (on или off) определяются
гуаниновым нуклеотидом, который он в данный момент связывает.
Неактивный G белок связывает GDP, активный связывает GTP. Будучи
в активном состоянии, G белок передает сигналы далее в клетку.
Однако G белок остается в активном состоянии только в течение
короткого периода времени (секунды или меньше), после чего он
дефосфорилируется его собственной GTP-азой. Этот гидролиз
представляет механизм отрицательной обратной связи, который
обеспечивает кратковременность нахождения G белка в активном
состоянии.
В последние годы выяснены механизмы участия b-гамма
субъединицы G белка в регуляции активности К+ и Са2+ каналов.

Ацетилхолин индуцирует открытие К+ каналов в мембране (клеток сердечной мышцы)

АЦЕТИЛХОЛИН ИНДУЦИРУЕТ ОТКРЫТИЕ К+
КАНАЛОВ В МЕМБРАНЕ (КЛЕТОК СЕРДЕЧНОЙ
МЫШЦЫ)
Связывание АХ с мускариновым АХ-рецептором активирует
обмен GTP на GDP на a-субъединице G белка. Освобожденная
b-гамма субъединица связывается с К+ каналом и открывает
его. Увеличение проницаемости для К+ гиперполяризует
мембрану, что уменьшает частоту сердечных сокращений.

РЕГУЛЯЦИЯ G-БЕЛОК-ЗАВИСИМЫХ
РЕЦЕПТОРОВ
Рецепторы, связанные с G-белками теряют чувствительность
после длительной экспозиции со своими лигандами. Различают
две формы потери чувствительности (десенситизации): 1)
гомологичную, при которой сокращается число активированных
рецепторов; и 2) гетерологическую, при которой
активированный рецептор вызывает сокращение числа
рецепторов других типов. Ключевой реакцией подобного
сокращения числа рецепторов является фосфорилирование
внутриклеточного (или, что то же, цитоплазматического) домена
рецептора протеинкиназами.

Регуляция G-белок-зависимых рецепторов

РЕГУЛЯЦИЯ G-БЕЛОК-ЗАВИСИМЫХ
РЕЦЕПТОРОВ
Фосфорилирование цАМФ-зависимыми протеинкиназами
цАМФ-зависимые киназы (протеинкиназа А) активируются цепью
сигналов с G-белка (который был активирован рецептором)
посредством аденилатциклазы и цАМФ. По механизму
обратной связи эти активированные киназы фосфорилируют
рецептор. Чем дольше рецептор остаётся активным, тем
больше киназ активируется, тем больше рецепторов
фосфорилируется.

Регуляция G-белок-зависимых рецепторов

РЕГУЛЯЦИЯ G-БЕЛОК-ЗАВИСИМЫХ
РЕЦЕПТОРОВ
Фосфорилирование GRK-киназами.
Киназы рецепторов, связанных с G-белками (GRK-киназы) - это
протеинкиназы, фосфорилирующие лишь активные рецепторы,
связанные с G-белками.
Фосфорилирование рецептора может иметь такие последствия:
1.
Транслокация: Рецептор, заодно с частью окружающей его
мембраны, захватывается внутрь клетки, где дефосфорилируется при
кислых значениях внутри везикул среды и возвращается обратно. Этот
механизм используется для регуляции при долговременном воздействии,
например, гормонов, позволяя возвращение чувствительности
(ресенситизацию) после её потери. Иначе, рецептор может претерпеть
лизосомальное расщепление или остаться интернализованным.
2.
Связывание аррестина: Фосфорилированный рецептор может
связаться с молекулами аррестина, которые не допустят его связывания с
G-белками (и активации их), эффективно выключая рецептор на
короткое время. Этот механизм используется, например, в родопсине
клеток сетчатки для компенсации воздействия яркого света.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ G-БЕЛОК
СОПРЯЖЕННЫХ РЕЦЕПТОРОВ
Рецепторы, связанные с G-белками вовлечены в широкий круг
физиологических процессов. Вот некоторые примеры:
1.
зрение: опсины используют реакцию фотоизомеризации
для превращения электромагнитного излучения в клеточные
сигналы. Родопсин, например, использует превращение 11-цисретиналя в полностью-транс-ретиналь для этой цели;
2.
обоняние: рецепторы обонятельного эпителия связывают
пахучие вещества (обонятельные рецепторы) и феромоны
(вомероназальные рецепторы);
3.
регуляция поведения и настроения: рецепторы в мозге
млекопитающих связывают несколько различных
нейромедиаторов, включая серотонин, дофамин, гаммааминомасляную кислоту (ГАМК) и глутамат;

Физиологическая роль G-белок сопряженных рецепторов

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ G-БЕЛОК
СОПРЯЖЕННЫХ РЕЦЕПТОРОВ
4.
регуляция активности иммунной системы и воспаления:
хемокиновые рецепторы связывают лиганды, которые
осуществляют межклеточную коммуникацию в иммунной
системе; рецепторы, такие как гистаминовый рецептор,
связывают медиаторы воспаления и вовлекают определенные
типы клеток в воспалительный процесс;
5.
функционирование вегетативной нервной системы: как
симпатическая, так и парасимпатическая нервная система
регулируются посредством рецепторов, связанных с G-белками,
ответственных за многие автоматические функции организма,
такие как поддержание кровяного давления, частоты сердечных
сокращений и пищеварительных процессов.

ПРИМЕРЫ G-БЕЛОК СОПРЯЖЕННЫХ
РЕЦЕПТОРОВ
1.Карта белка рецептора мускаринового
Ацетилхолиновый мускариновый рецептор относится к классу
серпентиновых рецепторов, осуществляющих передачу сигнала
через гетеротримерные G- белки.
Семейство мускариновых рецепторов впервые было о
бнаружено благодаря их способности связывать алкалоид
мускарин. Мускариновые рецепторы были изначально
разделены фармакологически на М1 и М2 типы, на основании
различия в их чувствительности к пирензепину, оказавшемуся
селективном антагонистом М1 рецептора. Показано, что
стимуляция М1 рецептора активирует фосфолипазу С (PLC),
приводя к высбождению вторичного мессенджера инозитол 3фосфата и последующей мобилизации внутриклеточного
кальция.

Примеры G-белок сопряженных рецепторов

ПРИМЕРЫ G-БЕЛОК СОПРЯЖЕННЫХ
РЕЦЕПТОРОВ
Показано также, что ингибирование M2 рецептора подавляет
активность аденилатциклазы, приводя к уменьшению
внутриклеточного уровня сАМР. Мускариновые рецепторы
можно разбить на подтипы в соответствии с их способностью
мобилизовать внутриклеточный кальций (m1,m3,m5) или
ингибировать аденилатциклазу (m2,m). Подтипы m1, m3 и m5
рецептора активируют фосфолипазы А2, С и D, тирозинкиназу и
вход кальция. Подтипы M2, M также увеличивают активность
фосфолипазы А2. В передаче сигнала с b-адренергического
рецептора G белки.

Примеры G-белок сопряженных рецепторов

ПРИМЕРЫ G-БЕЛОК СОПРЯЖЕННЫХ
РЕЦЕПТОРОВ
2.Карта белка рецептора адренергического бета
При молекулярном клонировании гена и кДНК бетаадренаргического рецептора млекопитающих выявились
неожиданные особенности. Во-первых, оказалось, что в данном
гене нет интронов и, следовательно, вместе с генами гистонов и
интерферона он составляет единственную группу генов
млекопитающих, лишенных этих структур. Во-вторых, удалось
установить, что бета-адренергический рецептор имеет близкую
гомологию с родопсином (по крайней мере в трех пептидных
участках) - белком, инициирующим зрительную реакцию на
свет.
Действуя как лиганд, адреналин связывается с рецептороми,
экспонированными на поверхности разнообразных типов
клеток повсюду в организме. Эти рецепторы называются bадренергическими и являются серпентиновыми. Адреналин не
проникает в клетку. Активность серпентиновых рецепторов не
зависит от димеризации рецепторов.

Примеры G-белок сопряженных рецепторов

ПРИМЕРЫ G-БЕЛОК СОПРЯЖЕННЫХ
РЕЦЕПТОРОВ
3.Рецепторы, связывающие G-белки: гликозилирование
Следует отметить, что NH2 концевой участок рецепторов,
связывающих G-белки, находится на экстраклеточной стороне
мембраны и содержит потенциальные места
гликозилирования. Существенная роль гликолизирования в
связывании лиганда была показана посредством мутационного
анализа мускариновых рецепторов.

РЕЦЕПТОРЫ ГОРМОНОВ
СОПРЯЖЕННЫЕ С G-БЕЛКАМИ
Многие гормоны активируют рецепторы, которые регулируют
активность белков клеток- мишеней (например, ферментов или
белков ионных каналов) не напрямую, а объединяясь с группами
белков клеточных мембран, называемыми гетеротримерными
ГТФ-связанными белками (G-белками). Известно более 1000 Gбелок-сопряженных рецепторов, все они имеют 7трансмембранных сегментов, образующих петли внутри и
снаружи мембраны клетки. Некоторые части рецептора,
выступающие в цитоплазму клетки (главным образом
расположенный в цитоплазме клеточный хвост рецептора),
объединены с G-белками, включающими три части (отсюда -
тримерные): а-, бета-, у-субъединицы.

Рецепторы гормонов Сопряженные с G-белками

РЕЦЕПТОРЫ ГОРМОНОВ
СОПРЯЖЕННЫЕ С G-БЕЛКАМИ
Когда лиганд (гормон) взаимодействует с внеклеточной частью
рецептора, в нем происходят конформационные изменения,
активирующие G-белок и индуцирующие внутриклеточные
сигналы, которые либо 1) открывают или закрывают ионные
каналы мембраны, либо 2) изменяют активность ферментов в
цитоплазме клетки.
Трехкомпонентные G-белки получили свое название благодаря
своей способности связываться с гуанозиновыми нуклеотидами.
Таким образом, в зависимости от взаимодействия рецептора
гормона с тормозящим или активирующим G-белком гормон
может либо увеличивать, либо снижать активность ферментов
в клетке. Эта комплексная система мембран клеток и Gбелков потенциально обеспечивает многообразие ответов
различных тканей-мишеней организма на действие различных
гормонов.

G – белки усиливают передаваемый сигнал. Например, передатчик нервного импульса норэпинефрин может взаимодействовать со своим мембранным рецептором всего несколько милисекунд. G – белок увеличивает длительность действия сигнала с милисекунд до десятков секунд, что чрезвычайно важно (не нужно постоянно посылать сигналы нервной системе). Происходит экономия нервной энергии.

Рецепторы, сопряженные с G – белками образуют семейство “серпантинных” (или змеиных) рецепторов, называемых так потому, что их полипептидные цепи пересекают плазматическую мембрану 7 раз.

К этому семейству принадлежат рецепторы для адренергических аминов, серотонина, ацетилхолина (мускариновые), многих пептидных гормонов, обонятельного эпителия, зрительных рецепторов (в колбочках и палочках сетчатки). Информационная молекула (например, норэпинефрин) связывается с «карманом», образованным трансмембранными областями рецептора. Возникшие изменения конформации этих участков передаются цитоплазматическим петлям рецептора, которые активируют G-белок. Чем больше молекул агониста, тем больше скорость его связывания с рецептором.

Десенситизация рецепторов.

Это означает, что после достижения начального высокого уровня эффекта (например, накопление внутриклеточного цАМФ, ток Na + , сокращение мышцы и т.д.) ответ клетки постепенно уменьшается в течение секунд или минут, даже не смотря на постоянное присутствие сигнальной молекулы. Десенситизация обратима. Так, через 15 минут после удаления сигнальной молекулы, его повторное воздействие ведет к реакции, сравнимой по величине с начальной.

Down – регуляция рецепторов.

Рецептор, при его чрезмерной стимуляции, может погружаться в цитозоль и клетка с помощью лизосомальных ферментов «переваривает» его до аминокислот. Мембрана, где был рецептор, восстанавливается.

Ар – регуляция.

Если хирургически перерезать нервы, иннервирующие мышцу, то мышца не получит сигнал из нервной системы и не может сократиться. Реакция мышцы на денервацию направлена на синтез дополнительных рецепторов. Они синтезируются и встраиваются в наружную клеточную мембрану. Клетка хочет получить сигнал на сокращение. Сигнал не поступает (нерв перерезан), хотя рецепторов много и они особенно восприимчивы к нейромедиатору. Рецепторы располагаются даже в других местах, вдали от места соединения нерва с мышцей. Это и есть так называемая Ар – регуляция рецепторов – синтез новых рецепторов клеткой и встраивание их в мембрану. Рецепторы постоянно обновляются. Срок жизни рецептора – несколько дней. Взамен состарившемуся и разрушенному клеткой, она строит новый. Это динамичный процесс.



Таким образом, встроенный в мембрану рецептор принимает сигнал (нервный импульс, гормон лекарства), G-белок усиливает этот сигнал. Эффекторный элемент (фермент) реализует этот сигнал, запуская синтез в клетке вторичных посредников. Они изменяют скорость протекания биохимических реакций в клетках и непосредственно реализуют сигнал, посылаемый нервной или гормональной системой.

Вторичные посредники.

1) цАМФ. участвует в передаче таких гормональных эффектов, как: 1) мобилизация энергетических запасов (распад углеводов в печени или триглицеридов в жировых клетках – эффекты катехоламинов – (эпинефрин, изопреналин).

2) задержка воды почками – эффекты вазопресина;

3) поддержание Са +2 гомеостаза – эффекты гормонов паращитовидных желез;

4) увеличение частоты и силы сокращений сердечной мышцы – эффекты катехоламинов (эпинефрин, изопреналин)

5) регуляция биосинтеза стероидов в надпочечниках и половых железах – эффекты кортикотропина или фолликулостимулирующего гомона;

6) – расслабление гладких мышц и многие другие гормональные и нервные процессы.

Когда нервный или гормональный стимул завершается, внутриклеточные эффекты цАМФ прекращаются путем активации фермента разрушающего цАМФ.

Одним из механизмов лечебного действия кофеина , теофиллина и других метилксантинов является ингибирование распада цАМФ.

2) Са +2 и фосфоинозитиды.

Некоторые гормоны, нейромедиаторы и факторы роста связываются с рецептором на поверхности эффекторной клетки. Сигнал передается на G-белок. В последующем происходит активация фосфолипазы С. Последняя специфически расщепляет фосфолипиды плазматической мембраны с образованием двух вторичных посредников: 1) диацилглицерола , 2) инозитолтрифосфата .

Диацилглицерол активирует протеинкиназу С, которая фосфорилирует ферменты и изменяет их активность.

Инозитолтрифосфат высвобождает Са 2+ из внутриклеточных хранилищ (саркоплазматический ретикулум, митохондрии). Са 2+ изменяет функции клетки. Например провоцирует сокращение мышцы и т.д.).

Через фосфоинозитиды действует литий, используемый для лечения маниакально-депрессивных состояний.

3) цГМФ . В отличие от цАМФ, участвует в передаче сигналов лишь в некоторых типах клеток. В слизистой кишечника и гладких мышцах сосудов функционирует параллельно с цАМФ-системой (как запасной). Механизм действия цГМФ также опосредован фосфорилированием белков.

Повышенная концентрация цГМФ вызывает расслабление гладкой мускулатуры сосудов за счет дефосфорилирования легких цепей миозина.

Фосфорилирование: общий механизм.

Почти все механизмы передачи сигнала с помощью вторичных посредников обусловлены фосфорилированием.

В процессе эволюции организм не выработал специальные рецепторы для лекарств. Они действуют через рецепторы для нейромедиаторов и гормонов. Почти все лекарства (исключение составляют, пожалуй, лишь средства для общей анестезии) оказывают свое действие через рецепторы.

Мы детально рассмотрели рецепторы, встроенные в плазматическую мембрану клетки. Но есть и другие рецепторы лекарств. В принципе рецептор – это то, с чем лекарство связывается (взаимодействует) в организме. Например, альбумин – рецептор для лекарств, которые связываются с ним. Но этот рецептор не активный, не приводящий к возникновению фармакологического эффекта.

К другим классам рецепторов лекарств относятся:

1) ферменты, 2) транспортные белки, 3) структурные белки.

При связывании с лекарствами они могут ингибироваться или (реже) активироваться. Например, дигидрофолатредуктаза – рецептор для метотрексата.

Транспортные белки (например, мембранный рецептор для сердечных гликозидов – Nа + , К + , АТФаза).

Структурные белки (например, тубулин – рецептор для противовоспалительного средства колхицина) .

В каждом случае взаимодействия лекарства с рецептором образуется лекарственно-рецепторный комплекс, приводящий к изменению метаболизма в клетке и органе. Развивается фармакологический эффект. Его величина пропорциональна количеству лекарственно-рецепторных комплексов.

Лекарства, действие которых связано с возбуждением рецепторов называют агонистами . Агонисты бывают: 1) полные (вызывают максимальный ответ) и 2) частичные. Последние связываются с рецепторами и возбуждают их. Но фармакологический эффект слабее, чем от природного регулятора. Вещества, препятствующие действию специфических агонистов называются антагонистами (блокаторами).

Рецепторы классифицируют по их чувствительности к естественным медиаторам и к их антагонистам. Например, чувствительные к ацетилхолину рецепторы называют холинэргическими, чувствительные к эпинефрину (адреналину) – адренергическими.

Для возбуждения рецепторов и получения соответствующего эффекта используют как сами медиаторы (норэпинефрин, дофамин и другие), так и лекарства, обладающие сродством к рецепторам. Чаще всего последние являются структурными аналогами медиаторов.

Некоторые вещества возбуждают соответствующий рецептор не путем непосредственного взаимодействия с ним, а за счет освобождения медиаторов из связанной (физиологически неактивной) формы или путем угнетения ферментов, разрушающих медиаторы.

Рецепторы занимают небольшую часть наружной клеточной мембраны. Так, участки мембраны, реагирующие на ацетилхолин, составляют только 1/6000 часть общей поверхности клетки

2. ВЛИЯНИЕ НА АКТИВНОСТЬ ФЕРМЕНТОВ. Действие некоторых лекарств основано на активации или ингибировании ферментов. Например, ФИЗОСТИГМИН угнетает активность холинэстеразы, разрушающей ацетилхолин. Он вызывает эффекты, характерные для возбуждения парасимпатической нервной системы.

Некоторые лекарства способны вызывать индукцию, то есть увеличивать содержание ферментного белка. При этом возрастает их активность. Например, фенобарбитал, повышая активность УДФ-глюкуронилтрансферазы снижают гипербилирубинемию.

3. ФИЗИКО-ХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА МЕМБРАНЫ КЛЕТОК .

Для некоторых лекарств природа молекул-мишеней неизвестна. Их действие не связано со специфическими рецепторами. Например, средства для общей анестезии действуют, изменяя транспорт ионов. Лечебный эффект мазей, присыпок, жидких мазей имеет физическую природу. Они предохраняют пораженные участки кожи или слизистых оболочек от раздражения.

(С protein coupled receptors, GPCR), передают сигнал от первичных месенджеров к внутриклеточным мишеням с помощью каскада GPCR-^-G-белок^-эффекторный белок. Первичными сигналами для этих рецепторов служат самые разнообразные молекулы, например, низкомолекулярные гормоны и нейротрансмиттеры (такие, как адреналин, норадреналин, ацетилхолин, серотонин, гистамин), опиоиды, гормоны пептидной и белковой природы (адренокортико- тропин, сомаостатин, вазопрессин, ангиотензин, гонадотропин, эпидер­мальный фактор роста), некоторые нейропептиды.

В этот же ряд попадают множество химических сигналов, воспри­нимаемых обонятельными и вкусовыми сенсорными клетками, и свет, рецептором для которого служит пигмент зрительных или фоторецеп­торных клеток родопсин.

Следует учесть, что один и тот же первичный сигнал может инициировать передачу сигнала через несколько (иногда более 10) разных GPCR, так что, если число внешних сигналов для GPCR составляет несколько десятков, то самих таких рецепторов известно более 200.

При всем их разнообразии GPCR представляют собой мономерные интегральные мембранные белки, полипептидная цепь которых семь раз пересекает клеточную мембрану. Во всех случаях участок рецептора, ответственный за взаимодействие с первичным сигналом, локализован с внешней стороны мембраны, а участок, контактирующий с G-белком - на её цитоплазматической стороне.

Следующий за рецептором компонент каскада передачи сигнала с участием GPCR представлен G-белком. Найдено около 20 различных G-белков, среди них прежде всего нужно упомянуть G s и С;, которые соответственно стимулируют и ингибируют аденилатциклазу; G q , активи­рующий фосфолипазу С; G-белки сенсорных клеток: фоторецепторных - G t (трансдуцин), обонятельных - G o if и вкусовых - G g .

С-белки - это гетеротримеры, которые состоят из субъединиц трёх типов: ct, (S и у, но в естественных условиях последние две субъединицы функционируют как единый Ру-комплекс. Важнейшая характеристика С-белков - присутствие на их а-субъединице центра связывания гуани- ловых нуклеотидов: ГДФ и ГТФ (рисунки 139, 145). Если с С-белком связан ГТФ, то это соответствует его активированному состоянию. Если в нуклеотидсвязывающем центре присутствует ГДФ, то эта форма соответствует неактивному состоянию белка (рисунок 79).

Центральное событие при передаче сигнала от рецептора, на кото­рый подействовал первичный сигнал, к G-белку состоит в том, что активи­рованный рецептор катализирует обмен ГДФ, связанного с G-белком, на присутствующий в среде ГТФ. Такой ГДФ/ГТФ-обмен на G-белке сопровождается диссоциацией тримерной молекулы G-белка на две функ­циональные субъединицы: а-субъединицу, содержащую ГТФ, и Ру-комп- лекс (рисунки 139, 145).

Далее одна из этих функциональных субъединиц, какая именно - зависит от типа сигнальной системы, взаимодействует с эффекторным белком, представленным ферментом или ионным каналом. Как следствие их каталитическая активность или ионная проводимость соответственно меняется, что, в свою очередь, приводит к изменению цитоплазматической концентрации вторичного месенджера (или иона) и, в конечном счёте, инициирует тот или иной клеточный ответ.

Эффекторными белками в сигнальных системах типа GPCR-^э G-белок^ээффекторный белок могут быть аденилатциклаза, катализи­рующая синтез цАМФ из АТФ; фосфолипаза С, гидролизующая фосфати- дилинозит с образованием ДАТ и 1Рз; фосфодиэстераза, расщепляющая цГМФ до ГМФ; некоторые типы калиевых и кальциевых каналов.

Важно, что при передаче сигнала в каскаде рецептора G-белок^ээффекторный белок исходный внешний сигнал может много­кратно усиливаться (амплифицироватъся}. Это происходит благодаря тому, что одна молекула рецептора за время пребывания в активированном состоянии (R*) успевает перевести в активированную форму (G*) несколько молекул G-белка.

Например, в зрительном каскаде родопсин^С^эцГМФ-фосфоди­эстераза на каждую молекулу R* может образоваться несколько сотен или даже тысяч молекул G t *, а это означает, что на первой стадии каскада 7?*-»G* коэффициент усиления внешнего сигнала составляет 10 2 -10 3 . Хотя на следующей стадии каскада (С*^ээффекторный белок} каждая молекула G* взаимодействует только с одной молекулой эффекторного белка, сигнал здесь также амплифицируется, поскольку на каждую молекулу G* и, соответственно, активированного эффекторного белка в цитоплазме появляется (или исчезает) множество молекул вторичного месенджера. Так, в зрительном каскаде на второй его стадии одна молекула активированной цГМФ-фосфодиэстеразы способна расщепить в секунду до 3000 молекул цГМФ, служащего в фоторецепторных клетках вторичным месенджером.

Общий коэффициент усиления каскада равен произведению коэффициентов усиления на всех стадиях каскада. Коэффициент амплификации сигнала при его прохождении через каскад может достигать весьма высоких значений: в зрительных клетках это величина порядка 10 5 -10 6 .

Прекращение действия внешнего стимула сопровождается выклю­чением всех компонентов сигнальной системы. На уровне рецепторов это достигается, во-первых, в результате диссоциации первичного месенджера из комплекса с GPCR, во-вторых, путем фосфорилирования рецепторов под действием специальных протеин-киназ и последующего связывания с модифицированным рецептором специального белка (например, Р-аррес- тина).

G-белки обладают ГТФазной активностью, то есть способностью гидролизовать связанный с ними ГТФ до ГДФ, что обеспечивает их самовыключение, то есть переход G-ГТФ^э G-ГДФ. Поскольку состояние активации эффекторного белка (включён-выключен) прямо зависит от состояния G-белка, то этот переход означает также выключение эффекторного белка, а, следовательно, прекращение синтеза (гидролиза) вторичного месенджера или закрывание ионного канала.

И, наконец, чтобы переход клетки к исходному (до действия внешнего стимула) состоянию завершился, специальные механизмы восстанавливают исходный уровень вторичного месенджера или катиона в её цитоплазме. Например, цАМФ, цитоплазматическая концентрация которого повышается при передаче сигнала в каскаде Р-адренорецептора С 5 -белок^аденилатциклаза, гидролизуется затем цАМФ-фосфодиэсте- разой до нециклического (линейного) АМФ, который свойствами вторичного месенджера не обладает.