Метод максимального правдоподобия для распределения пуассона. Методы получения оценок

И другими).

Оценка максимального правдоподобия является популярным статистическим методом, который используется для создания статистической модели на основе данных, и обеспечения оценки параметров модели.

Соответствует многим известным методам оценки в области статистики. Например, предположим, что вы заинтересованы ростом жителей Украины. Предположим, у вас данные роста некоторого количества людей, а не всего населения. Кроме того предполагается, что рост является нормально распределенной величиной с неизвестной дисперсией и средним значением. Среднее значение и дисперсия роста выборки является максимально правдоподобным к среднему значению и дисперсии всего населения.

Для фиксированного набора данных и базовой вероятностной модели, используя метод максимального правдоподобия, мы получим значения параметров модели, которые делают данные «более близкими» к реальным. Оценка максимального правдоподобия дает уникальный и простой способ определить решения в случае нормального распределения.

Метод оценки максимального правдоподобия применяется для широкого круга статистических моделей, в том числе:

  • линейные модели и обобщенные линейные модели;
  • факторный анализ;
  • моделирования структурных уравнений;
  • многие ситуации, в рамках проверки гипотезы и доверительного интервала формирования;
  • дискретные модели выбора.

Сущность метода

называется оце́нкой максима́льного правдоподо́бия параметра . Таким образом оценка максимального правдоподобия - это такая оценка, которая максимизирует функцию правдоподобия при фиксированной реализации выборки.

Часто вместо функции правдоподобия используют логарифмическую функцию правдоподобия . Так как функция монотонно возрастает на всей области определения, максимум любой функции является максимумом функции , и наоборот. Таким образом

,

Если функция правдоподобия дифференцируема, то необходимое условие экстремума - равенство нулю ее градиента :

Достаточное условие экстремума может быть сформулировано как отрицательная определенность гессиана - матрицы вторых производных:

Важное значение для оценки свойств оценок метода максимального правдоподобия играет так называемая информационная матрица, равная по определению:

В оптимальной точке информационная матрица совпадает с математическим ожиданием гессиана, взятым со знаком минус:

Свойства

  • Оценки максимального правдоподобия, вообще говоря, могут быть смещёнными (см. примеры), но являются состоятельными , асимптотически эффективными и асимптотически нормальными оценками. Асимптотическая нормальность означает, что

где - асимптотическая информационная матрица

Асимптотическая эффективность означает, что асимптотическая ковариационная матрица является нижней границей для всех состоятельных асимптотически нормальных оценок.

Примеры

Последнее равенство может быть переписано в виде:

где , откуда видно, что своего максимума функция правдоподобия достигает в точке . Таким образом

. .

Чтобы найти её максимум, приравняем к нулю частные производные :

- выборочное среднее , а - выборочная дисперсия .

Условный метод максимального правдоподобия

Условный метод максимального правдоподобия (Conditional ML) используется в регрессионных моделях. Суть метода заключается в том, что используется не полное совместное распределение всех переменных (зависимой и регрессоров), а только условное распределение зависимой переменной по факторам, то есть фактически распределение случайных ошибок регрессионной модели. Полная функция правдоподобия есть произведение «условной функции правдоподобия» и плотности распределения факторов. Условный ММП эквивалентен полному варианту ММП в том случае, когда распределение факторов никак не зависит от оцениваемых параметров. Это условие часто нарушается в моделях временных рядов, например в авторегрессионной модели . В данном случае, регрессорами являются прошлые значения зависимой переменной, а значит их значения также подчиняются той же AR-модели, то есть распределение регрессоров зависит от оцениваемых параметров. В таких случаях результаты применения условного и полного метода максимального правдоподобия будут различаться.

См. также

Примечания

Литература

  • Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. - М .: Дело, 2007. - 504 с. - ISBN 978-5-7749-0473-0

Wikimedia Foundation . 2010 .

Смотреть что такое "Метод максимального правдоподобия" в других словарях:

    метод максимального правдоподобия - — метод максимального правдоподобия В математической статистике метод оценивания параметров распределения, основанный на максимизации так называемой функции правдоподобия… …

    Метод оценки по выборке неизвестных параметров функции распределения F(s; α1,..., αs), где α1, ..., αs неизвестные параметры. Если выборка из п наблюдений разбита на r непересекающихся групп s1,…, sr; р1,..., pr… … Геологическая энциклопедия

    Метод максимального правдоподобия - в математической статистике метод оценивания параметров распределения, основанный на максимизации так называемой функции правдоподобия (совместной плотности вероятности наблюдений при значениях, составляющих… … Экономико-математический словарь

    метод максимального правдоподобия - maksimaliojo tikėtinumo metodas statusas T sritis automatika atitikmenys: angl. maximum likelihood method vok. Methode der maksimalen Mutmaßlichkeit, f rus. метод максимального правдоподобия, m pranc. méthode de maximum de vraisemblance, f;… … Automatikos terminų žodynas

    метод максимального правдоподобия с частичным откликом - Метод обнаружения сигналов по Витерби, при котором обеспечивается минимальный уровень межсимвольных искажений. См. тж. Viterbi algorithm. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М … Справочник технического переводчика

    обнаружитель последовательности, использующий метод максимального правдоподобия - Устройство вычисления оценки наиболее вероятной последовательности символов, максимизирующей функцию правдоподобия принимаемого сигнала. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М … Справочник технического переводчика

    метод наибольшего правдоподобия - метод максимального правдоподобия — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы метод максимального правдоподобия EN maximum likelihood method … Справочник технического переводчика

    метод максимума правдоподобия - Общий метод вычисления оценок параметров. Ищутся оценки, которые максимизируют функцию правдоподобия выборки, равную произведению значений функции распределения для каждого наблюденного значения данных. Метод максимального правдоподобия лучше… … Словарь социологической статистики

Метод максимального правдоподобия (ММП) является одним из наиболее широко используемых методов в статистике и эконометрике. Для его применения необходимо знание закона распределения исследуемой случайной величины.

Пусть имеется некоторая случайная величина У с заданным законом распределения ДУ). Параметры этого закона неизвестны и их нужно найти. В общем случае величину Y рассматривают как многомерную, т.е. состоящую из нескольких одномерных величин У1, У2, У3 ..., У.

Предположим, что У – одномерная случайная величина и ее отдельные значения являются числами. Каждое из них (У],у 2, у3, ...,у„) рассматривается как реализация не одной случайной величины У, а η случайных величин У1; У2, У3 ..., У„. То есть:

уj – реализация случайной величины У];

у2 – реализация случайной величины У2;

уз – реализация случайной величины У3;

у„ – реализация случайной величины У„.

Параметры закона распределения вектора У, состоящего из случайных величин Y b Y 2, У3,У„, представляют как вектор Θ, состоящий из к параметров: θχ, θ2,в к. Величины Υ ν Υ 2, У3,..., Υ η могут быть распределены как с одинаковыми параметрами, так и с различными; некоторые параметры могут совпадать, а другие различаться. Конкретный ответ на этот вопрос зависит от той задачи, которую решает исследователь.

Например, если стоит задача определения параметров закона распределения случайной величины У, реализацией которой являются величины У1; У2, У3, У,„ то предполагают, что каждая из этих величин распределена так же, как величина У. Иначе говоря, любая величина У, описывается одним и тем же законом распределения/(У, ), причем с одними и теми же параметрами Θ: θχ, θ2,..., д к.

Другой пример – нахождение параметров уравнения регрессии. В этом случае каждая величина У, рассматривается как случайная величина, имеющая "собственные" параметры распределения, которые могут частично совпадать с параметрами распределения других случайных величин, а могут и полностью различаться. Более подробно применение ММП для нахождения параметров уравнения регрессии будет рассмотрено ниже.

В рамках метода максимального правдоподобия совокупность имеющихся значений У], у2, у3, ...,у„ рассматривается как некоторая фиксированная, неизменная. То есть закон /(У;) есть функция от заданной величиныу, и неизвестных параметров Θ. Следовательно, для п наблюдений случайной величины У имеется п законов /(У;).

Неизвестные параметры этих законов распределения рассматриваются как случайные величины. Они могут меняться, однако приданном наборе значений Уі,у2,у3, ...,у„ наиболее вероятны конкретные значения параметров. Иначе говоря, вопрос ставится таким образом: каковы должны быть параметры Θ, чтобы значения уj, у2, у3, ...,у„ были наиболее вероятны?

Для ответа на него нужно найти закон совместного распределения случайных величин У1; У2, У3,..., Уп –КУі, У 2, Уз, У„). Если предположить, что наблюдаемые нами величиныу^ у2,у3, ...,у„ независимы, то он равен произведению п законов/

(У;) (произведению вероятностей появления данных значений для дискретных случайных величин или произведению плотностей распределения для непрерывных случайных величин):

Чтобы подчеркнуть тот факт, что в качестве переменных рассматриваются искомые параметры Θ, введем в обозначение закона распределения еще один аргумент – вектор параметров Θ:

С учетом введенных обозначений закон совместного распределения независимых величин с параметрами будет записан в виде

(2.51)

Полученную функцию (2.51) называют функцией максимального правдоподобия и обозначают :

Еще раз подчеркнем тот факт, что в функции максимального правдоподобия значения У считаются фиксированными, а переменными являются параметры вектора (в частном случае – один параметр). Часто для упрощения процесса нахождения неизвестных параметров функцию правдоподобия логарифмируют, получая логарифмическую функцию правдоподобия

Дальнейшее решение по ММП предполагает нахождение таких значений Θ, при которых функция правдоподобия (или ее логарифм) достигает максимума. Найденные значения Θ; называют оценкой максимального правдоподобия.

Методы нахождения оценки максимального правдоподобия достаточно разнообразны. В простейшем случае функция правдоподобия является непрерывно дифференцируемой и имеет максимум в точке, для которой

В более сложных случаях максимум функции максимального правдоподобия не может быть найден путем дифференцирования и решения уравнения правдоподобия, что требует поиска других алгоритмов его нахождения, в том числе итеративных.

Оценки параметров, полученные с использованием ММП, являются:

  • состоятельными , т.е. с увеличением объема наблюдений разница между оценкой и фактическим значением параметра приближается к нулю;
  • инвариантными : если получена оценка параметра Θ, равная 0L, и имеется непрерывная функция q(0), то оценкой значения этой функции будет величина q(0L). В частности, если с помощью ММП мы оценили величину дисперсии какого-либо показателя (af ), то корень из полученной оценки будет оценкой среднего квадратического отклонения (σ,), полученной по ММП.
  • асимптотически эффективными ;
  • асимптотически нормально распределенными.

Последние два утверждения означают, что оценки параметров, полученные по ММП, проявляют свойства эффективности и нормальности при бесконечно большом увеличении объема выборки.

Для нахождения параметров множественной линейной регрессии вида

необходимо знать законы распределения зависимых переменных 7; или случайных остатков ε,. Пусть переменная Y t распределена по нормальному закону с параметрами μ, , σ, . Каждое наблюдаемое значение у, имеет, в соответствии с определением регрессии, математическое ожидание μ, = МУ„ равное его теоретическому значению при условии, что известны значения параметров регрессии в генеральной совокупности

где xfl, ..., x ip – значения независимых переменных в і -м наблюдении. При выполнении предпосылок применения МНК (предпосылок построения классической нормальной линейной модели), случайные величины У, имеют одинаковую дисперсию

Дисперсия величины определяется по формуле

Преобразуем эту формулу:

При выполнении условий Гаусса – Маркова о равенстве нулю математического ожидания случайных остатков и постоянстве их дисперсий можно перейти от формулы (2.52) к формуле

Иначе говоря, дисперсии случайной величины У,- и соответствующих ей случайных остатков совпадают.

Выборочную оценку математического ожидания случайной величины Yj будем обозначать

а оценку ее дисперсии (постоянной для разных наблюдений) как Sy.

Если предположить независимость отдельных наблюдений y it то получим функцию максимального правдоподобия

(2.53)

В приведенной функции делитель является константой и не оказывает влияния на нахождение ее максимума. Поэтому для упрощения расчетов он может быть опущен. С учетом этого замечания и после логарифмирования функция (2.53) примет вид

В соответствии с ММП найдем производные логарифмической функции правдоподобия по неизвестным параметрам

Для нахождения экстремума приравняем полученные выражения к нулю. После преобразований получим систему

(2.54)

Эта система соответствует системе, полученной по методу наименьших квадратов. То есть ММП и МНК дают одинаковые результаты, если соблюдаются предпосылки МНК. Последнее выражение в системе (2.54) дает оценку дисперсии случайной переменной 7, или, что одно и то же, дисперсии случайных остатков. Как было отмечено выше (см. формулу (2.23)), несмещенная оценка дисперсии случайных остатков равна

Аналогичная оценка, полученная с применением ММП (как следует из системы (2.54)), вычисляется по формуле

т.е. является смещенной .

Мы рассмотрели случай применения ММП для нахождения параметров линейной множественной регрессии при условии, что величина У, нормально распределена. Другой подход к нахождению параметров той же регрессии заключается в построении функции максимального правдоподобия для случайных остатков ε,. Для них также предполагается нормальное распределение с параметрами (0, σε). Нетрудно убедиться, что результаты решения в этом случае совпадут с результатами, полученными выше.

Сущность задачи точечного оценивания параметров

ТОЧЕЧНАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Точечная оценка предполагает нахождение единственной числовой величины, которая и принимается за значение параметра. Такую оценку целесообразно определять в тех случаях, когда объем ЭД достаточно велик. Причем не существует единого понятия о достаточном объеме ЭД, его значение зависит от вида оцениваемого параметра (к этому вопросу предстоит вернуться при изучении методов интервальной оценки параметров, а предварительно будем считать достаточной выборку, содержащую не менее чем 10 значений). При малом объеме ЭД точечные оценки могут значительно отличаться от истинных значений параметров, что делает их непригодными для использования.

Задача точечной оценки параметров в типовом варианте постановки состоит в следующем.

Имеется: выборка наблюдений (x 1 , x 2 , …, x n ) за случайной величиной Х . Объем выборки n фиксирован.

Известен вид закона распределения величины Х , например, в форме плотности распределения f(Θ , x), где Θ – неизвестный (в общем случае векторный) параметр распределения. Параметр является неслучайной величиной.

Требуется найти оценку Θ* параметра Θ закона распределения.

Ограничения: выборка представительная.

Существует несколько методов решения задачи точечной оценки параметров, наиболее употребительными из них являются методы максимального (наибольшего) правдоподобия, моментов и квантилей.

Метод предложен Р. Фишером в 1912 г. Метод основан на исследовании вероятности получения выборки наблюдений (x 1 , x 2, …, x n) . Эта вероятность равна

f(х 1 , Θ) f(х 2 , Θ) … f(х п, Θ) dx 1 dx 2 … dx n .

Совместная плотность вероятности

L(х 1 , х 2 …, х n ; Θ) = f(х 1 , Θ) f(х 2 , Θ) … f(х n , Θ), (2.7)

рассматриваемая как функция параметра Θ , называется функцией правдоподобия .

В качестве оценки Θ* параметра Θ следует взять то значение, которое обращает функцию правдоподобия в максимум. Для нахождения оценки необходимо заменить в функции правдоподобия Т на q и решить уравнение

dL/d Θ* = 0.

Для упрощения вычислений переходят от функции правдоподобия к ее логарифму lnL . Такое преобразование допустимо, так как функция правдоподобия – положительная функция, и она достигает максимума в той же точке, что и ее логарифм. Если параметр распределения векторная величина

Θ* =(q 1 , q 2 , …, q n),

то оценки максимального правдоподобия находят из системы уравнений


d ln L(q 1 , q 2 , …, q n) /d q 1 = 0;

d ln L(q 1 , q 2 , …, q n) /d q 2 = 0;

. . . . . . . . .



d ln L(q 1 , q 2 , …, q n) /d q n = 0.

Для проверки того, что точка оптимума соответствует максимуму функции правдоподобия, необходимо найти вторую производную от этой функции. И если вторая производная в точке оптимума отрицательна, то найденные значения параметров максимизируют функцию.

Итак, нахождение оценок максимального правдоподобия включает следующие этапы: построение функции правдоподобия (ее натурального логарифма); дифференцирование функции по искомым параметрам и составление системы уравнений; решение системы уравнений для нахождения оценок; определение второй производной функции, проверку ее знака в точке оптимума первой производной и формирование выводов.

Решение. Функция правдоподобия для выборки ЭД объемом n

Логарифм функции правдоподобия

Система уравнений для нахождения оценок параметров

Из первого уравнения следует:

или окончательно

Таким образом, среднее арифметическое является оценкой максимального правдоподобия для математического ожидания.

Из второго уравнения можно найти

.

Эмпирическая дисперсия является смещенной. После устранения смещения

Фактические значения оценок параметров: m =27,51, s 2 = 0,91.

Для проверки того, что полученные оценки максимизируют значение функции правдоподобия, возьмем вторые производные

Вторые производные от функции ln(L(m,S )) независимо от значений параметров меньше нуля, следовательно, найденные значения параметров являются оценками максимального правдоподобия.

Метод максимального правдоподобия позволяет получить состоятельные, эффективные (если таковые существуют, то полученное решение даст эффективные оценки), достаточные, асимптотически нормально распределенные оценки. Этот метод может давать как смещенные, так и несмещенные оценки. Смещение удается устранить введением поправок. Метод особенно полезен при малых выборках.

До сих пор мы считали, что оценка неизвестного параметра известна и занимались изучением ее свойств с целью использования их при построении доверительного интервала. В этом параграфе рассмотрим вопрос о способах построения оценок.

Методы правдоподобия

Пусть требуется оценить неизвестный параметр, вообще говоря, векторный, . При этом предполагается, что вид функции распределения известен с точностью до параметра,

В таком случае все моменты случайной величины становятся функциями от:

Метод моментов требует выполнения следующих действий:

Вычисляем k «теоретических» моментов

По выборке строим k одноименных выборочных моментов. В излагаемом контексте это будут моменты

Приравнивая «теоретические» и одноименные им выборочные моменты, приходим к системе уравнений относительно компонент оцениваемого параметра

Решая полученную систему (точно или приближенно), находим исходные оценки. Они, конечно, являются функциями от выборочных значений.

Мы изложили порядок действий, исходя из начальных - теоретических и выборочных - моментов. Он сохраняется при ином выборе моментов, начальных, центральных или абсолютных, который определяется удобством решения системы (25.1) или ей подобной.

Перейдем к рассмотрению примеров.

Пример 25.1. Пусть случайная величина распределена равномерно на отрезке [ ; ] , где - неизвестные параметры. По выборке () объема n из распределения случайной величины. Требуется оценить и.

В данном случае распределение определяется плотностью

1) Вычислим первые два начальных «теоретических» момента:

2) Вычислим по выборке два первых начальных выборочных момента

3) Составим систему уравнений

4) Из первого уравнения выразим через

и подставим во второе уравнение, в результате чего придём к квадратному уравнению

решая которое, находим два корня

Соответствующие значения таковы

Поскольку по смыслу задачи должно выполнятся условие < , выбираем в качестве решения системы и оценок неизвестных параметров

Замечая, что есть не что иное, как выборочная дисперсия, получаем окончательно

Если бы мы выбрали в качестве «теоретических» моментов математическое ожидание и дисперсию, то пришли бы к системе (с учетом неравенства <)

которая линейна и решается проще предыдущей. Ответ, конечно, совпадает с уже полученным.

Наконец, отметим, что наши системы всегда имеет решение и при том единственное. Полученные оценки, конечно, состоятельны, однако свойствам несмещенности не обладают.

Метод максимального правдоподобия

Изучается, как и прежде, случайная величина, распределение которой задается либо вероятностями её значений, если дискретна, либо плотностью распределения, если непрерывна, где - неизвестный векторный параметр. Пусть () - выборка значений. Естественно в качестве оценки взять то значение параметра, при котором вероятность получения уже имеющейся выборки максимальна.

Выражение

называют функцией правдоподобия , она представляет собой совместное распределение или совместную плотность случайного вектора с n независимыми координатами, каждая из которых имеет то же распределение (плотность), что и.

В качестве оценки неизвестного параметра берется такое его значение, которое доставляет максимум функции, рассматриваемой как функции от при фиксированных значениях. Оценку называют оценкой максимального правдоподобия . Заметим, что зависит от объема выборки n и выборочных значений

и, следовательно, сама является случайной величиной.

Отыскание точки максимума функции представляет собой отдельную задачу, которая облегчается, если функция дифференцируема по параметру.

В этом случае удобно вместо функции рассматривать её логарифм, поскольку точки экстремума функции и её логарифма совпадают.

Методы дифференциального исчисления позволяют найти точки, подозрительные на экстремум, а затем выяснить, в какой из них достигается максимум.

С этой целью рассматриваем вначале систему уравнений

решения которой - точки, подозрительные на экстремум. Затем по известной методике, вычисляя значения вторых производных

по знаку определителя, составленного из этих значений, находим точку максимума.

Оценки, полученные по методу максимального правдоподобия, состоятельны, хотя могут оказаться смещенными.

Рассмотрим примеры.

Пример 25.2. Пусть производится некоторый случайный эксперимент, исходом которого может быть некоторое события А, вероятность Р(А) которого неизвестна и подлежит оцениванию.

Введем случайную величину равенством

если событие А произошло,

если событие А не произошло (произошло событие).

Распределение случайной величины задается равенством

Выборкой в данном случае будет конечная последовательность (), где каждое из может быть равно 0 либо 1.

Функция правдоподобия будет иметь вид

Найдем точку её максимума по р, для чего вычислим производную логарифма

Обозначим - это число равно количеству единиц «успехов» в выбранной последовательности.

В предыдущем разделе рассматривалась байесовская теория оценивания. Одной из наиболее полезных оценок, полученных там, является оценка по максимуму апостериорной плотности вероятности. Значения этой оценки определяются путем максимизации условной плотности

относительно переменной . Для этой оценки было введено специальное обозначение . Так как безусловная плотность не зависит от параметра , то значения оценки могут отыскиваться путем максимизации совместной плотности

относительно . Можно также максимизировать значение натурального логарифма от этой плотности. В этом случае значение оценки при каждой выборке является корнем уравнения

Предположим теперь, что никаких априорных сведений о параметре нет. Если бы параметр был случайным и имел нормальную плотность вероятности

,

то рассматриваемый здесь случай можно было бы получить предельным переходом при неограниченном увеличении дисперсий всех компонент вектора . Так как при этом

,

то при имеем . Таким образом, при отсутствии априорных сведений о параметре можно положить

. (6.27)

Получающаяся при этом из ур-ния (6.26) оценка называется оценкой максимального правдоподобия. Она является корнем уравнения

(6.28)

или, что эквивалентно,

. (6.29)

Оценка максимального правдоподобия была предложена раньше, чем была развита байесовская теория оценивания . Она определялась как значение параметра , при котором функция правдоподобия принимает наибольшее значение. Из приведенных выше рассуждений должно быть очевидным, что точность оценки максимального правдоподобия будет хуже, чем байесовской оценки. Несмотря на это, существуют достаточно веские причины, из-за которых использование этой оценки оказывается разумным. Так, довольно часто встречаются задачи оценивания, в которых

Параметр не является случайным, а его значение неизвестно;

Параметр является случайным, однако его априорная плотность вероятности неизвестна;

Выражение для апостериорной плотности [или для ] оказывается настолько сложным, что его трудно использовать для вычислений, в то время как функция правдоподобия имеет относительно простой вид.

В первом случае вообще нет возможности найти байесовскую оценку, поскольку о плотности вероятности вообще нельзя говорить. Один из возможных путей преодоления этой трудности состоит в том, чтобы использовать псевдобайесовские оценки. Такие оценки будут рассмотрены в § 6.5.

Пример 6.6. Рассмотрим одну из классических задач оценивания, которая была решена с использованием оценок максимального правдоподобия. Пусть требуется оценить среднее значение и дисперсию нормальной случайной величины по выборке из независимых наблюдений этой величины. Для наблюдаемой величины при этом имеем

, где

В силу независимости наблюдений можно зависать

В этой задаче подлежащие оцениванию параметры и не являются случайными, так чтобайесовские оценки найти нельзя.

Это уравнение имеет единственный корень , который и следует принять в качестве оценки максимального правдоподобия для среднего значения. Так как математическое ожидание этой оценки совпадает со значением оцениваемого параметра, т. е. то эту оценку называют несмещенной.

Случай 2. Предположим теперь, что значение параметра известно. Оценка максимального правдоподобия для дисперсии в этом случае является корнем уравнения

.

Решив это уравнение, получаем

.

Эта оценка также является несмещенной, поскольку .

Рассмотрим теперь задачу оценивания стандартного отклонения . Можно предположить, что эта оценка представляется как корень квадратный из оценки для дисперсии. Это действительно так, поскольку оценка

является корнем уравнения

Случай 3. Значения обоих параметров и неизвестны. В этом случае оцениваться должны два параметра и . Вычисляя производные функции правдоподобия по переменным и , приравнивая их нулю и решая найденную систему из двух уравнений, получаем

; .

Оценка среднего значения здесь вновь является несмещенной, а среднее значение оценки дисперсии равно значению оцениваемого параметра, т. е. в указанных условиях является смещенной. Можно было бы, введя поправку, получить несмещенную оценку , которая не является, однако, более оценкой максимального правдоподобия.

Часто полезно иметь алгоритмы последовательного вычисления оценок и . Здесь нижние индексы оценок максимального правдоподобия заменены индексом , который указывает объем используемой для оценивания выборки. При объеме выборки, равном , оценка . Поэтому алгоритм последовательного вычисления этой оценки имеет вид . Алгоритм последовательного вычисления оценки отыскивается несколько сложнее. Воспользуемся уже полеченным ранее выражением для оценки

и выпишем аналогичное выражение для оценки

.

Оценку теперь представим в рекуррентном виде. Тогда из двух выписанных равенств после немногочисленных алгебраических преобразований получаем

Рекуррентные алгоритмы вычисления оценок и должны использоваться совместно.

Пример 6.7. Найдем оценку максимального правдоподобия для параметра рассматривавшегося в примере 6.1. Теперь плотность вероятности

Оценка максимального правдоподобия определяется как корень уравнения

и имеет вид

В рассматриваемом случае можно найти и байесовскую оценку

Если принять, что , , то оценка, обеспечивающая минимум среднеквадратической ошибки, совпадает с оценкой максимального правдоподобия. Интересно отметить, что в этом случае оценка с минимальной дисперсией, которая совпадает также с байесовской оценкой при модульной функции стоимости и с оценкой по максимуму апостериорной плотности вероятности, так же, как и оценка максимального правдоподобия, является несмещенной.

Чрезвычайно полезно вычислить корреляционные матрицы вектора ошибок этих двух оценок. Для байесовской оценки такая матрица уже была вычислена и было показано, что

Для оценки максимального правдоподобия получаем

Если теперь воспользоваться представлением , то

Корреляционная матрица вектора ошибок при использовании оценки максимального правдоподобия всегда больше, чем корреляционная матрица вектора ошибок для оценки с минимальной среднеквадратической ошибкой. Эти матрицы совпадают только в том случае, когда .

Полезно рассмотреть также случай, когда матрица является единичной, т. е . При этом .

Оценка максимального правдоподобия, байесовская оценка и их корреляционные матрицы в этом случае принимают вид

Здесь нельзя ожидать, что оценка максимального правдоподобия окажется достаточно точной, поскольку ее значения просто совпадают со значениями получаемой выборки.

Если объем выборки намного больше размерности оцениваемого параметра , то оценка максимального правдоподобия может оказаться достаточно хорошей. Например, пусть , где - скалярный параметр, а векторы и имеют размерность . Предположим также, что

и . Рассматривающиеся здесь оценки и их среднеквадратические ошибки при этом определяются соотношениями

; ;

; .

Часто оказывается, что для достаточно больших значений выполняется неравенство . В этом случае среднеквадратические ошибки обеих оценок будут фактически одинаковы.

Аналогичные результаты можно получить при непрерывном времени для примера 6.3. Если модель наблюдений в последнем примере с дискретным временем трактовать как дискретный аналог следующей модели наблюдаемого процесса

; .

где - нормальный белый шум с нулевым средним значением, то, используя обозначения примера 6.3, можно получить

; .

Отсюда следует, что если вид функции не изменяется при изменении , то среднеквадратическая ошибка оценивания уменьшается с ростом . Если же энергия сигнала , определяемая как , должна оставаться постоянной при любом значении параметра , то значение среднеквадратической ошибки не зависит ни от длительности , ни от формы сигнала . Если , то среднеквадратическая ошибка байесовской оценки фактически будет такой же, как и у оценки максимального правдоподобия. Если же это не так и справедливо обратное неравенство , то это означает, что либо имеется достаточно интенсивный шум ( велико), либо имеется хорошая априорная оценка для , с которой можно начать ( мало). Значения оценки с минимальной среднеквадратической ошибкой и среднеквадратическая ошибка этой оценки при этом мало отличаются от соответствующих параметров априорного распределения и можно записать

;

.

Так что в этом случае среднее значение априорного распределения принимается в качестве наилучшей оценки для параметра . В примере 6.5 уже отмечалось, что при больших отношениях сигнал/шум среднеквадратические ошибки оценивания при использовании оценки по максимуму апостериорной плотности и оценки с минимальной среднеквадратической ошибкой практически одинаковы. Из результатов этого примера следует, что при больших значениях отношения сигнал/шум (здесь при ) точность оценок и практически такая же, как и у оценки максимального правдоподобия

Пример 6.8. Приведем теперь подробный анализ простой задачи оценивания по методу максимального правдоподобия при наличии окрашенного шума. В процессе решения этой задачи будут проиллюстрированы соображения, которыми можно будет пользоваться при практическом выборе интервала дискретизации. Пусть наблюдению доступны реализации скалярного процесса , , где - постоянный скалярный параметр, и

Для решения задачи оценивания параметра поступим следующим образом. Введем соответствующую модель наблюдений при дискретном времени , , , где период отсчетов выбирается так, чтобы изменения процесса на таком интервале были хорошо заметны. Для этой модели имеем

Наблюдаемый процесс можно теперь записать в векторной форме:

.

Оценка максимального правдоподобия параметра

где ковариационная матрица шума имеет элементы: (или от периода отсчетов компоненты вектора (или ) при дальнейшем, даже неограниченном, увеличении объема выборки оказывается незначительным.

Рис. 6.8. Зависимость дисперсии ошибки оценивания от объема выборки (пример 6.8.): 1 - алгоритм, ориентированный на белый шум; 2 - алгоритм, ориентированный на окрашенный шум.

Приведенное выше выражение для справедливо только в том случае, если компоненты вектора в самом деле независимы. Истинное значение среднеквадратической ошибки оценивания при использовании оценки в случае окрашенного шума может быть найдено из соотношения

) алгоритм, ориентированный на белый шум, обеспечивает значение среднеквадратической ошибки, лишь незначительно превышающее значение ошибки для алгоритма, ориентированного на окрашенный шум. Поскольку алгоритмы для белого шума намного проще, чем алгоритмы для окрашенного шума, то в практических приложениях можно поступить следующим образом, объем выборки принять равным 40 и использовать простые алгоритмы оценивания, ориентированные на белый шум, если такая высокая частота отсчетов допустима. Среднеквадратическая ошибка оценивания по выборке объема при использовании алгоритма для окрашенного шума (когда шум на самом деле окрашен) равна среднеквадратической ошибке оценивания по выборке объема при использовании алгоритма для белого шума. Отношение этих среднеквадратических ошибок при равно примерно двум.