Метод разложения интегралов примеры. Сложные интегралы

Этот небольшой урок позволит не только освоить типовую задачу, которая довольно часто встречается на практике, но и закрепить материалы статьи Разложение функций в степенные ряды . Нам потребуется таблица разложений функций в степенные ряды , которую можно раздобыть на странице Математические формулы и таблицы . Кроме того, читатель должен понимать геометрический смысл определенного интеграла и обладать элементарными навыками интегрирования.

Следует также отметить, что точность до трёх знаков после запятой самая популярная. Также в ходу и другая точность вычислений, обычно 0,01 или 0,0001.

Теперь второй этап решения:
Сначала меняем подынтегральную функцию на полученный степенной ряд:

Почему это вообще можно сделать? Данный факт пояснялся ещё на уроке о разложении функций в степенные ряды – график бесконечного многочлена в точности совпадает с графиком функции ! Причем, в данном случае утверждение справедливо для любого значения «икс», а не только для отрезка интегрования .

На следующем шаге максимально упрощаем каждое слагаемое:

Лучше это сделать сразу, чтобы на следующем шаге не путаться с лишними вычислениями.

Техника вычислений стандартна: сначала подставляем в каждое слагаемое 0,3, а затем ноль. Для вычислений используем калькулятор:

Сколько членов ряда нужно взять для окончательных вычислений? Если сходящийся ряд знакочередуется , то абсолютная погрешность вычислений по модулю не превосходит последнего отброшенного члена ряда. В нашем случае уже третий член ряда меньше требуемой точности 0,001 , и поэтому если мы его отбросим, то заведомо ошибёмся не более чем на 0,000972 (осознайте, почему!) . Таким образом, для окончательного расчёта достаточно первых двух членов: .

Ответ : , с точностью до 0,001

Что это получилось за число с геометрической точки зрения? – это приблизительная площадь заштрихованной фигуры (см. рисунок выше).

Пример 2

Вычислить приближенно определенный интеграл, предварительно разложив подынтегральную функцию в ряд по степеням , с точностью до 0,001

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как-то незаслуженно я обошел стороной арктангенс, ни разу не разложив его в ряд. Исправим оплошность.

Пример 3

Вычислить определенный интеграл с точностью 0,01 с помощью разложения подынтегральной функции в ряд.

Решение : Есть сильное подозрение, что данный интеграл является берущимся, правда, решение не самое простое.

Разложим подынтегральную функцию в ряд Маклорена. Используем разложение:

В данном случае


Здесь повезло, что в итоге степени таки остались целыми, дробные степени было бы труднее интегрировать.

Таким образом:

Бывает и так. Члены с возу – студенту легче.

Ответ : с точностью до 0,01.

И снова обратите внимание, что точность 0,01 здесь гарантирована лишь потому, что сходящийся ряд знакочередуется . Для ряда с положительными членами, например, ряда такую оценку проводить нельзя, поскольку сумма отброшенного «хвоста» может запросто превысить 0,00089. Что делать в таких случаях? Расскажу в конце урока. А пока открою секрет, что во всех сегодняшних примерах ряды знакочередуются.

И, конечно, следует контролировать область сходимости ряда . В рассмотренном примере она, кстати, «урезана»: (из-за квадратного корня) , однако наш отрезок интегрирования полностью лежит в данной области.

Что будет, если попытаться решить какой-нибудь нелегальный случай вроде ? Функция так же прекрасно разложится в ряд, члены ряда так же замечательно проинтегрируются. Но, когда мы начнем подставлять значение верхнего предела по формуле Ньютона-Лейбница , то увидим, что числа будут неограниченно расти , то есть каждое следующее число будет больше, чем предыдущее. Ряд-то сходится лишь на отрезке . Это не паранойя, на практике так время от времени бывает. Причина – опечатка в сборнике задач или методичке, когда авторы недосмотрели, что промежуток интегрирования «вылезает» за область сходимости ряда.

Интеграл с арксинусом я рассматривать не буду, поскольку он занесен в красную книгу. Лучше дополнительно рассмотреть что-нибудь «бюджетное»:

Пример 4

Вычислить определенный интеграл с точностью 0,001 путем разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

Это пример для самостоятельного решения. Что касаемо нуля, то он здесь не помеха – подынтегральная функция терпит лишь устранимый разрыв в точке , и поэтому несобственный интеграл здесь и рядом не валялся, т.е. речь идёт по-прежнему об определённом интеграле . В ходе решения вы увидите, что полученный ряд прекрасно сходится к нулю.

В заключение рассмотрим еще пару примеров, которые несколько сложнее.

Пример 5

Вычислить определенный интеграл с точностью 0,001 с помощью разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

Решение : Анализирую подынтегральную функцию, приходим к выводу, что нужно использовать биномиальное разложение. Но сначала функцию надо представить в соответствующем виде:

К сожалению, ни один частный случай биномиального разложения не подходит, и нам придется использовать громоздкую общую формулу:

В данном случае: ,

Разложение уже на этом этапе лучше максимально упростить. Замечаем также, что четвертый член ряда нам, очевидно, не потребуется, так как в нём еще до интегрирования появилась дробь , которая заведомо меньше требуемой точности 0,001.

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями:


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Метод разложения

Несколько менее трудоемким является метод, основанный на разложении структуры сети относительно какого-нибудь ее элемента (метод разложения Шеннона-Мура). Идея этого метода заключается в том, чтобы свести анализируемую структуру к последовательно-параллельным соединениям и тем самым избежать полного перебора состояний. Для примера рассмотрим сеть простейшей структуры в виде мостика (рис.2.1).

Рисунок 2.1 Метод разложения

Для простоты положим, что узлы этой сети идеально надежны, а ветви имеют конечную надежность р i , i=. Нумерация ветвей приведена на рисунке. Проделаем с элементом под номером 5 ("перемычка" мостика) два опыта - "короткого замыкания", соответствующий исправному состоянию элемента, и "холостого хода", соответствующий его неисправному состоянию. Если перемычка находится в исправном состоянии, что случается с вероятностью p 5 , то соединяемые ею узлы можно "стянуть" в смысле надежности (см. рис.2.1) и сеть будет иметь вид двух последовательно соединенных и параллельно включенных пар ветвей. Если перемычка находится в неработоспособном состоянии, что случается с вероятностью 1-p 5 , то оставшаяся сеть будет иметь вид параллельного соединения цепочек.

Таким образом, мы "разложили" сеть относительно элемента 5, в результате чего получили две подсети с числом элементов на единицу меньше, чем в исходной сети. Поскольку обе подсети представляют собой последовательно-параллельные структуры, то, пользуясь формулами (2.3) и (2.4), можно сразу записать искомое выражение для вероятности связности сети относительно узлов r, l, используя для компактности обозначениеq i =1-p i .

H rl =p 5 (1-q 1 q 3 ) (1-q 2 q 4 ) +q 5 .

В более сложных структурах может потребоваться неоднократное применение теоремы разложения. Так, на рис.2.2 показано разложение относительно элемента 7 (верхняя строка), а затем по элементу 8 (нижняя строка). Получившиеся четыре подсети имеют последовательно-параллельные структуры и больше не требуют разложений. Легко видеть, что на каждом шаге число элементов в получающихся подсетях уменьшается на единицу а число подсетей, требующих дальнейшего рассмотрения удваивается. Поэтому описанный процесс в любом случае конечен, а число результирующих последовательно-параллельных структур составит 2 m , где т - число элементов, по которым пришлось провести разложение. Трудоемкость этого метода можно оценить величиной 2 m , что меньше трудоемкости полного перебора, но тем не менее все еще неприемлемо для расчета надежности реальных сетей коммутации.

Рисунок.2.2 Последовательное разложение сети

Метод сечений или совокупности путей

Рассмотрим еще один метод расчета структурной надежности сетей. Предположим, как и ранее, что необходимо определить вероятность связности сети между заданной парой узлов A,B. Критерием исправной работы сети в данном случае является наличие хотя бы одного пути передачи информации между рассматриваемыми узлами. Предположим, что имеется список возможных путей в виде перечня элементов (узлов и направлений связи), входящих в каждый путь. В общем случае пути будут зависимы, поскольку любой элемент может входить в несколько путей. Надежность R s любого s-ro пути можно вычислить по формуле последовательного соединения R s =p 1s p 2s …p ts , где p is - надежность i-го элемента s-ro пути.

Искомая надежность H AB зависит от надежности каждого пути и вариантов их пересечений по общим элементам. Обозначим надежность, которая обеспечивается первыми r путями, через H r . Добавление очередного (r+1) - го пути с надежностью R r+1 , очевидно, приведет к увеличению структурной надежности, которая теперь будет определяться объединением двух событий: исправен хотя бы один из первых r путей или исправен (r+1) - й путь. Вероятность наступления этого объединенного события с учетом возможной зависимости. отказов (r+1) - го и остальных путей

H r+i =H r +R r+i -R r+1 H r/ (r+1), (2.10)

где H r/ (r+1) - вероятность исправности хотя бы одного из первых r путей при условии, что исправен (r+1) - й путь.

Из определения условной вероятности H r/ (r+1) следует, что при ее расчете вероятность исправной работы всех элементов, входящих в (r+1) - й путь, необходимо положить равной единице. Для удобства дальнейших расчетов представим последний член выражения (2.10) в следующем виде:

R r+1 H r/ (r+1) = R r+1 ¤ H r (2.11)

где символ (¤) означает, что при перемножении показатели надежности всех элементов, входящих в первые r путей и общих с (r+l) - м путем, заменяются единицей. С учетом (2.11) можно переписать (2.10):

?H r+1 = R r+1 ¤ Q r (2.12)

где?H r+1 =H r+1 -H r - приращение структурной надежности при введении (r+1) - го пути; Q r =1 - H r вероятность того, что произойдет одновременный отказ первых r путей.

Учитывая, что приращение надежности?H r+1 численно равно уменьшению ненадежности?Q r+1 получаем следующее уравнение в конечных разностях:

?Q r+1 =R r+1 ¤ Q r (2.13)

Легко проверить, что решением уравнения (2.13) является функция

Q r = (1-R 1) ¤ (1-R 2) ¤…¤ (1-R r) (2.14)

В случае независимых путей операция символического умножения совпадает с обычным умножением и выражение (2.14) аналогично (2.4) дает коэффициент простоя системы, состоящей из параллельно включенных элементов. В общем случае необходимость учета общих элементов путей заставляет производить умножение согласно (2.14) в алгебраическом виде. При этом число членов в результирующей формуле с умножением на каждый очередной двучлен удваивается и окончательный результат будет иметь 2 r членов, что эквивалентно полному перебору совокупности всех r путей. Например, при r=10 число членов в окончательной формуле превысит 1000, что уже выходит за рамки ручного счета. С дальнейшим увеличением числа путей довольно быстро исчерпываются и возможности современных ЭВМ.

Однако свойства введенной выше операции символического умножения позволяют резко сократить трудоемкость расчетов. Рассмотрим эти свойства более подробно. Согласно операции символического умножения для показателя надежности p i любого элемента справедливо следующее правило:

p i ¤p i =p i . (2.15)

Напомним, что второй сомножитель (2.15) имеет смысл вероятности исправной работы i-го элемента при условии его исправности, которая, очевидно, равна единице.

Для сокращения дальнейших выкладок введем следующее обозначение ненадежности i-го элемента:

=1-p i (2.16)

С учетом (2.15) и (2.16) можно записать следующие простые правила преобразования выражений, содержащих р и р:

p i ¤p i =p i (2.17)

p i p j ¤ =p i p j -p i p s

Для примера использования этих правил при расчете надежности рассмотрим простейшую сеть связи, изображенную на. рис.2.3 Буквы, стоящие у ребер графа, обозначают показатели надежности соответствующих линий связи.

Узлы для простоты будем считать идеально надежными. Предположим, что для связи между узлами А и В можно использовать все пути, состоящие из трех и менее последовательно включенных линий, т.е. следует учесть подмножество путей {м} = {ab, cdf, cgb, ahf}. Определим приращение надежности, обеспечиваемое каждым последующим путем, по формуле (2.12) с учетом (2.14):

Зr+1=Rr+1¤ (¤1¤…¤) (2.18),


Рисунок.2.3 - Пример сети расчета на ограниченном подмножестве путей


Рисунок 2.4 - Пример сети для расчета надежности по полной совокупности путей, где Ri=1-R1 аналогично (2.16).

Применяя последовательно формулу (2.18) и правила символического умножения (2.17). к рассматриваемой сети, получаем

З 2 =cdf¤ () =cdf*;

З 3 =cgb¤ (¤) =cgb**;

З 4 =ahf¤ (¤¤) =ahf**.

При расчете последнего приращения мы использовали правило 4, которое можно назвать правилом поглощения длинных цепей короткими; в данном случае его применение дает b¤cgb=b. Если разрешено использование других путей, например пути cdhb, то не представляет труда рассчитать обеспечиваемое им приращение надежности?H 5 =cdhb¤ (a¤ f¤ g¤ af) = =cdfb*a*f*g. Результирующую надежность сети можно теперь вычислить как сумму приращений, обеспечиваемых каждым из рассмотренных путей:

H R =?H i (2.19)

Так, для рассмотренного примера в предположении, что надежность. всех элементов сети одинакова, т.е. a=b=c=d=f=h=g=p, получаем H 5 =p 2 +p 3 (1-p 2) + +2p 3 (1-p) (1-p 2) +p 4 (1-p) 3 . При машинной реализации в основу расчета можно также положить формулу (2.13), с учетом того, что

Q r =?Q i (2.20)

Согласно (2.13) имеем следующее рекуррентное соотношение

Q r +i =Q r -R r+1 ¤Q r . (2.21)

При начальном условии Q 0 =l на каждом последующем шаге из полученного ранее выражения для Q r следует вычесть произведение надежности очередного (r+1) - го пути на это же выражение, в котором только показатели надежности всех элементов, входящих в (r+1) - й путь, нужно положить равными единице.

В качестве примера рассчитаем надежность сети, изображенной на рис.2.4, относительно узлов А и В, между которыми имеется 11 возможных путей передачи информации. Все расчеты сведены в табл.2.1: перечень элементов, входящих в каждый путь, результат умножения надежности данного пути на значение Q r , полученное при рассмотрении всех предыдущих путей, и результат упрощения содержимого третьего столбца по правилам (2.17). Окончательная формула для q AB содержится в последней колонке, если ее читать сверху вниз. В таблице полностью приведены все выкладки, необходимые для расчета структурной надежности рассматриваемой сети.

Таблица 2.1 Результаты расчета надежности сети, изображенной на рис.2.4

acmh (b*-d**-rg* *)

fgmd (*-ac**-rb* *-rc***)

fgmdh (-ac*-rb*-rc*) -

argmd [*-c**-h* * - f (-c)]

frcmh (*-ad* *-b* - a* *c-d** *)

fgmcd [*-r**-d* (-r)]

Для уменьшения объема вычислений не следует без необходимости раскрывать скобки; если промежуточный результат допускает упрощения (приведение подобных членов, вынесение за скобку общего множителя и т.д.), их следует выполнить.

Поясним несколько шагов расчета. Поскольку Q 0 = 1 (при отсутствии путей сеть разорвана), то для Q 1 из (2.21) Q 1 =1- ab=ab. Делаем следующий шаг (6.21) для Q 2 =ab-fghab==ab*fgh и т.д.

Рассмотрим подробнее шаг, на котором учитывается вклад пути 9. Произведение показателей надежности составляющих его элементов, записанное во втором столбце табл.2.1, переносится в третий. Далее в квадратных скобках записана вероятность разрыва всех предыдущих восьми путей, накопленная в четвертом столбце (начиная с первой строки), с учетом правила (2.15), согласно которому показатели надежности всех элементов, вошедших в путь 9, заменяются единицами. Вклад четвертой, шестой и седьмой строк оказывается равным нулю по правилу 1. Далее выражение, стоящее в квадратных скобках, упрощается по правилам (2.17) следующим образом: b =b (fhc-hfc-fhc) =bc (h-fh) =bchf. Аналогично производится расчет относительно всех других путей.

Использование рассматриваемого метода позволяет получить общую формулу структурной надежности, содержащую в рассмотренном случае всего 15 членов вместо максимального числа 2 11 =2048, получающегося при непосредственном перемножении вероятностей отказов этих путей. При машинной реализации метода удобно представить все элементы сети в позиционном коде строкой бит и использовать встроенные булевы функции для реализации логических элементов преобразований (2.17).

До сих пор мы рассматривали показатели структурной надежности сети относительно выделенной пары узлов. Совокупность таких показателей для всех или некоторого подмножества пар может достаточно полно характеризовать структурную надежность сети в целом. Иногда используется другой, интегральный, критерий структурной надежности. По этому критерию сеть считается исправной, если имеется связь между всеми ее узлами и задается требование на вероятность такого события.

Для расчета структурной надежности по этому критерию достаточно ввести обобщение понятия пути в виде дерева, соединяющего все заданные узлы сети. Тогда сеть будет связана, если существует, по крайней мере, одно связывающее дерево, и расчет сводится к перемножению вероятностей отказа всех рассматриваемых деревьев с учетом наличия общих элементов. Вероятность. Q s отказа s-го дерева определяется аналогично вероятности отказа пути

где p is - показатель надежности i-ro элемента, входящего в s-e дерево; n s число элементов в s-м дереве.

Рассмотрим для примера простейшую сеть в виде треугольника, стороны. которого взвешены показателями надежности а, b, с соответствующих ветвей. Для связности такой сети достаточно существования, по крайней мере, одного из деревьев аb, bс, са. Используя рекуррентное соотношение (2.12), определяем вероятность связности этой сети H. cb =ab+bca+cab. Если а=b=с=р, получаем следующее значение вероятности связности, которое легко проверить перебором: H. cb =3р 2 -2р 3 .

Для расчета вероятности связности достаточно разветвленных сетей вместо перечня связывающих деревьев, как правило, удобнее пользоваться перечнем сечений {у} которые приводят к потере связности сети по рассматриваемому критерию. Легко показать, что для сечения справедливы все введенные выше правила символического умножения, только вместо показателей надежности элементов сети в качестве исходных данных следует использовать показатели ненадежности q=1-p. Действительно, если все пути или деревья можно считать включенными "параллельно" с учетом их взаимозависимости, то все сечения включены в этом смысле "последовательно". Обозначим вероятность того, что в некотором сечении s нет ни одного исправного элемента, через р s . Тогда можно записать

р s =q 1s q 2s …q ms , (2.22)

где q is - показатель ненадежности i-ro элемента, входящего в s-e сечение.

Вероятность Н cb связности сети можно тогда представить аналогично (2.14) в символическом виде

Н cb = (1-р 1 ) ¤ (1-р 2 ) ¤…¤ (1-р r ) (2.23)

где r - число рассматриваемых сечений. Другими словами, для того чтобы сеть была связна, необходимо, чтобы одновременно были исправны хотя бы по одному элементу в каждом сечении с учетом взаимной зависимости сечений по общим элементам. Формула (2.23) является в некотором смысле двойственной по отношению к формуле (2.14) и получается из последней заменой путей на сечения и вероятностей исправной работы на вероятности пребывания в состоянии отказа. Аналогично двойственным по отношению к формуле (2.21) является рекуррентное соотношение

H r+1 =H r - р r+1 ¤ H r (2.24)

Рассчитаем для примера вероятность связности рассмотренной выше треугольной сети с набором сечений ab, bc, ca. Согласно (2.23) при начальном условии H 0 =1 имеем H cd =ab-bca-cab. При одинаковых показателях ненадежности элементов сети a=b=c=q получаем H cb =1-q 2 -2q 2 (1 - q). Этот результат совпадает с ранее полученным по методу перечисления деревьев.

Метод сечений можно, конечно, применять и для расчета вероятности связности сети относительно выделенной пары узлов, особенно в тех случаях, когда число сечений в рассматриваемой сети значительно меньше числа нулей. Однако наибольший эффект в смысле сокращения трудоемкости вычислений дает одновременное использование обоих методов, которое будет рассмотрено дальше.

Сложные интегралы

Данная статья завершает тему неопределенных интегралов, и в неё включены интегралы, которые я считаю достаточно сложными. Урок создан по неоднократным просьбам посетителей, которые высказывали пожелания, чтобы на сайте были разобраны и более трудные примеры.

Предполагается, что читатель сего текста хорошо подготовлен и умеет применять основные приемы интегрирования. Чайникам и людям, которые не очень уверенно разбираются в интегралах, следует обратиться к самому первому уроку – Неопределенный интеграл. Примеры решений , где можно освоить тему практически с нуля. Более опытные студенты могут ознакомиться с приемами и методами интегрирования, которые в моих статьях еще не встречались.

Какие интегралы будут рассмотрены?

Сначала мы рассмотрим интегралы с корнями, для решения которых последовательно используется замена переменной и интегрирование по частям . То есть, в одном примере комбинируются сразу два приёма . И даже больше.

Затем мы познакомимся с интересным и оригинальным методом сведения интеграла к самому себе . Данным способом решается не так уж мало интегралов.

Третьим номером программы пойдут интегралы от сложных дробей , которые пролетели мимо кассы в предыдущих статьях.

В-четвертых, будут разобраны дополнительные интегралы от тригонометрических функций . В частности, существуют методы, которые позволяют избежать трудоемкой универсальной тригонометрической подстановки .

(2) В подынтегральной функции почленно делим числитель на знаменатель.

(3) Используем свойство линейности неопределенного интеграла. В последнем интеграле сразу подводим функцию под знак дифференциала .

(4) Берём оставшиеся интегралы. Обратите внимание, что в логарифме можно использовать скобки, а не модуль, так как .

(5) Проводим обратную замену, выразив из прямой замены «тэ»:

Студенты-мазохисты могут продифференцировать ответ и получить исходную подынтегральную функцию, как только что это сделал я. Нет-нет, я-то в правильном смысле выполнил проверку =)

Как видите, в ходе решения пришлось использовать даже больше двух приемов решения, таким образом, для расправы с подобными интегралами нужны уверенные навыки интегрирования и не самый маленький опыт.

На практике, конечно же, чаще встречается квадратный корень, вот три примера для самостоятельного решения:

Пример 2

Найти неопределенный интеграл

Пример 3

Найти неопределенный интеграл

Пример 4

Найти неопределенный интеграл

Данные примеры однотипны, поэтому полное решение в конце статьи будет только для Примера 2, в Примерах 3-4 – одни ответы. Какую замену применять в начале решений, думаю, очевидно. Почему я подобрал однотипные примеры? Часто встречаются в своем амплуа. Чаще, пожалуй, только что-нибудь вроде .

Но не всегда, когда под арктангенсом, синусом, косинусом, экспонентой и др. функциями находится корень из линейной функции, приходится применять сразу несколько методов. В ряде случаев удается «легко отделаться», то есть сразу после замены получается простой интеграл, который элементарно берётся. Самым легким из предложенных выше заданий является Пример 4, в нём после замены получается относительно несложный интеграл.

Методом сведения интеграла к самому себе

Остроумный и красивый метод. Немедленно рассмотрим классику жанра:

Пример 5

Найти неопределенный интеграл

Под корнем находится квадратный двучлен, и при попытке проинтегрировать данный пример чайник может мучаться часами. Такой интеграл берётся по частям и сводится к самому себе. В принципе не сложно. Если знаешь как.

Обозначим рассматриваемый интеграл латинской буквой и начнем решение:

Интегрируем по частям:

(1) Готовим подынтегральную функцию для почленного деления.

(2) Почленно делим подынтегральную функцию. Возможно, не всем понятно, распишу подробнее:

(3) Используем свойство линейности неопределенного интеграла.

(4) Берём последний интеграл («длинный» логарифм).

Теперь смотрим на самое начало решения:

И на концовку:

Что произошло? В результате наших манипуляций интеграл свёлся к самому себе!

Приравниваем начало и конец:

Переносим в левую часть со сменой знака:

А двойку сносим в правую часть. В результате:

Константу , строго говоря, надо было добавить ранее, но приписал её в конце. Настоятельно рекомендую прочитать, в чём тут строгость:

Примечание: Более строго заключительный этап решения выглядит так:

Таким образом:

Константу можно переобозначить через . Почему можно переобозначить? Потому что всё равно принимает любые значения, и в этом смысле между константами и нет никакой разницы.
В результате:

Подобный трюк с переобозначением константы широко используется в дифференциальных уравнениях . И там я буду строг. А здесь такая вольность допускается мной только для того, чтобы не путать вас лишними вещами и акцентировать внимание именно на самом методе интегрирования.

Пример 6

Найти неопределенный интеграл

Еще один типовой интеграл для самостоятельного решения. Полное решение и ответ в конце урока. Разница с ответом предыдущего примера будет!

Если под квадратным корнем находится квадратный трехчлен, то решение в любом случае сводится к двум разобранным примерам.

Например, рассмотрим интеграл . Всё, что нужно сделать – предварительно выделить полный квадрат :
.
Далее проводится линейная замена, которая обходится «без всяких последствий»:
, в результате чего получается интеграл . Нечто знакомое, правда?

Или такой пример, с квадратным двучленом:
Выделяем полный квадрат:
И, после линейной замены , получаем интеграл , который также решается по уже рассмотренному алгоритму.

Рассмотрим еще два типовых примера на приём сведения интеграла к самому себе:
– интеграл от экспоненты, умноженной на синус;
– интеграл от экспоненты, умноженной на косинус.

В перечисленных интегралах по частям придется интегрировать уже два раза:

Пример 7

Найти неопределенный интеграл

Подынтегральная функция – экспонента, умноженная на синус.

Дважды интегрируем по частям и сводим интеграл к себе:


В результате двукратного интегрирования по частям интеграл свёлся к самому себе. Приравниваем начало и концовку решения:

Переносим в левую часть со сменой знака и выражаем наш интеграл:

Готово. Попутно желательно причесать правую часть, т.е. вынести экспоненту за скобки, а в скобках расположить синус с косинусом в «красивом» порядке.

Теперь вернемся к началу примера, а точнее – к интегрированию по частям:

За мы обозначили экспоненту. Возникает вопрос, именно экспоненту всегда нужно обозначать за ? Не обязательно. На самом деле в рассмотренном интеграле принципиально без разницы , что обозначать за , можно было пойти другим путём:

Почему такое возможно? Потому что экспонента превращается сама в себя (и при дифференцировании, и при интегрировании), синус с косинусом взаимно превращаются друг в друга (опять же – и при дифференцировании, и при интегрировании).

То есть, за можно обозначить и тригонометрическую функцию. Но, в рассмотренном примере это менее рационально, поскольку появятся дроби. При желании можете попытаться решить данный пример вторым способом, ответы обязательно должны совпасть.

Пример 8

Найти неопределенный интеграл

Это пример для самостоятельного решения. Перед тем как решать, подумайте, что выгоднее в данном случае обозначить за , экспоненту или тригонометрическую функцию? Полное решение и ответ в конце урока.

И, конечно, не забывайте, что большинство ответов данного урока достаточно легко проверить дифференцированием!

Примеры были рассмотрены не самые сложные. На практике чаще встречаются интегралы, где константа есть и в показателе экспоненты и в аргументе тригонометрической функции, например: . Попутаться в подобном интеграле придется многим, частенько путаюсь и я сам. Дело в том, что в решении велика вероятность появления дробей, и очень просто что-нибудь по невнимательности потерять. Кроме того, велика вероятность ошибки в знаках, обратите внимание, что в показателе экспоненты есть знак «минус», и это вносит дополнительную трудность.

На завершающем этапе часто получается примерно следующее:

Даже в конце решения следует быть предельно внимательным и грамотно разобраться с дробями:

Интегрирование сложных дробей

Потихоньку подбираемся к экватору урока и начинаем рассматривать интегралы от дробей. Опять же, не все они суперсложные, просто по тем или иным причинам примеры были немного «не в тему» в других статьях.

Продолжаем тему корней

Пример 9

Найти неопределенный интеграл

В знаменателе под корнем находится квадратный трехчлен плюс за пределами корня «довесок» в виде «икса». Интеграл такого вида решается с помощью стандартной замены.

Решаем:

Замена тут проста:

Смотрим на жизнь после замены:

(1) После подстановки приводим к общему знаменателю слагаемые под корнем.
(2) Выносим из-под корня.
(3) Числитель и знаменатель сокращаем на . Заодно под корнем я переставил слагаемые в удобном порядке. При определенном опыте шаги (1), (2) можно пропускать, выполняя прокомментированные действия устно.
(4) Полученный интеграл, как вы помните из урока Интегрирование некоторых дробей , решается методом выделения полного квадрата . Выделяем полный квадрат.
(5) Интегрированием получаем заурядный «длинный» логарифм.
(6) Проводим обратную замену. Если изначально , то обратно: .
(7) Заключительное действие направлено на прическу результата: под корнем снова приводим слагаемые к общему знаменателю и выносим из-под корня .

Пример 10

Найти неопределенный интеграл

Это пример для самостоятельного решения. Здесь к одинокому «иксу» добавлена константа, и замена почти такая же:

Единственное, что нужно дополнительно сделать – выразить «икс» из проводимой замены:

Полное решение и ответ в конце урока.

Иногда в таком интеграле под корнем может находиться квадратный двучлен, это не меняет способ решения, оно будет даже еще проще. Почувствуйте разницу:

Пример 11

Найти неопределенный интеграл

Пример 12

Найти неопределенный интеграл

Краткие решения и ответы в конце урока. Следует отметить, что Пример 11 является в точности биномиальным интегралом , метод решения которого рассматривался на уроке Интегралы от иррациональных функций .

Интеграл от неразложимого многочлена 2-й степени в степени

(многочлен в знаменателе)

Более редкий, но, тем не менее, встречающий в практических примерах вид интеграла.

Пример 13

Найти неопределенный интеграл

Но вернёмся к примеру со счастливым номером 13 (честное слово, не подгадал). Этот интеграл тоже из разряда тех, с которыми можно изрядно промучиться, если не знаешь, как решать.

Решение начинается с искусственного преобразования:

Как почленно разделить числитель на знаменатель, думаю, уже все понимают.

Полученный интеграл берётся по частям:

Для интеграла вида ( – натуральное число) выведена рекуррентная формула понижения степени:
, где – интеграл степенью ниже.

Убедимся в справедливости данной формулы для прорешанного интеграла .
В данном случае: , , используем формулу:

Как видите, ответы совпадают.

Пример 14

Найти неопределенный интеграл

Это пример для самостоятельного решения. В образце решения дважды последовательно использована вышеупомянутая формула.

Если под степенью находится неразложимый на множители квадратный трехчлен, то решение сводится к двучлену путем выделения полного квадрата, например:

Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Но в моей практике такого примера не встречалось ни разу , поэтому я пропустил данный случай в статье Интегралы от дробно-рациональной функции , пропущу и сейчас. Если такой интеграл все-таки встретится, смотрите учебник – там всё просто. Не считаю целесообразным включать материал (даже несложный), вероятность встречи с которым стремится к нулю.

Интегрирование сложных тригонометрических функций

Прилагательное «сложный» для большинства примеров вновь носит во многом условный характер. Начнем с тангенсов и котангенсов в высоких степенях. С точки зрения используемых методов решения тангенс и котангенс – почти одно и тоже, поэтому я больше буду говорить о тангенсе, подразумевая, что продемонстрированный прием решения интеграла справедлив и для котангенса тоже.

На вышеупомянутом уроке мы рассматривали универсальную тригонометрическую подстановку для решения определенного вида интегралов от тригонометрических функций. Недостаток универсальной тригонометрической подстановки заключается в том, что при её применении часто возникают громоздкие интегралы с трудными вычислениями. И в ряде случаев универсальной тригонометрической подстановки можно избежать!

Рассмотрим еще один канонический пример, интеграл от единицы, деленной на синус:

Пример 17

Найти неопределенный интеграл

Здесь можно использовать универсальную тригонометрическую подстановку и получить ответ, но существует более рациональный путь. Я приведу полное решение с комментами к каждому шагу:

(1) Используем тригонометрическую формулу синуса двойного угла .
(2) Проводим искусственное преобразование: В знаменателе делим и умножаем на .
(3) По известной формуле в знаменателе превращаем дробь в тангенс.
(4) Подводим функцию под знак дифференциала.
(5) Берём интеграл.

Пара простых примеров для самостоятельного решения:

Пример 18

Найти неопределенный интеграл

Указание: Самым первым действием следует использовать формулу приведения и аккуратно провести аналогичные предыдущему примеру действия.

Пример 19

Найти неопределенный интеграл

Ну, это совсем простой пример.

Полные решения и ответы в конце урока.

Думаю, теперь ни у кого не возникнет проблем с интегралами:
и т.п.

В чём состоит идея метода? Идея состоит в том, чтобы с помощью преобразований, тригонометрических формул организовать в подынтегральной функции только тангенсы и производную тангенса . То есть, речь идет о замене: . В Примерах 17-19 мы фактически и применяли данную замену, но интегралы были настолько просты, что дело обошлось эквивалентным действием – подведением функции под знак дифференциала .

Аналогичные рассуждения, как я уже оговаривался, можно провести для котангенса.

Существует и формальная предпосылка для применения вышеуказанной замены:

Сумма степеней косинуса и синуса – целое отрицательное ЧЁТНОЕ число , например:

для интеграла – целое отрицательное ЧЁТНОЕ число.

! Примечание :если подынтегральная функция содержит ТОЛЬКО синус или ТОЛЬКО косинус, то интеграл берётся и при отрицательной нечётной степени (простейшие случаи – в Примерах №№17, 18).

Рассмотрим пару более содержательных заданий на это правило:

Пример 20

Найти неопределенный интеграл

Сумма степеней синуса и косинуса : 2 – 6 = –4 – целое отрицательное ЧЁТНОЕ число, значит, интеграл можно свести к тангенсам и его производной:

(1) Преобразуем знаменатель.
(2) По известной формуле получаем .
(3) Преобразуем знаменатель.
(4) Используем формулу .
(5) Подводим функцию под знак дифференциала.
(6) Проводим замену . Более опытные студенты замену могут и не проводить, но все-таки лучше заменить тангенс одной буквой – меньше риск запутаться.

Пример 21

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Держитесь, начинаются чемпионские раунды =)

Зачастую в подынтегральной функции находится «солянка»:

Пример 22

Найти неопределенный интеграл

В этом интеграле изначально присутствует тангенс, что сразу наталкивает на уже знакомую мысль:

Искусственное преобразование в самом начале и остальные шаги оставлю без комментариев, поскольку обо всем уже говорилось выше.

Пара творческих примеров для самостоятельного решения:

Пример 23

Найти неопределенный интеграл

Пример 24

Найти неопределенный интеграл

Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы. Полное решение и ответы в конце урока