Метод сопряженных градиентов c код. Метод сопряженных градиентов — математический аппарат

Введение

Метод сопряжённых градиентов - итерационный метод для безусловной оптимизации в многомерном пространстве. Основным достоинством метода является то, что он решает квадратичную задачу оптимизации за конечное число шагов. Поэтому, сначала описывается метод сопряжённых градиентов для оптимизации квадратичного функционала, выводятся итерационные формулы, приводятся оценки скорости сходимости. После этого показывается, как метод сопряжённых обобщается для оптимизации произвольного функционала, рассматриваются различные варианты метода, обсуждается сходимость.

Постановка задачи оптимизации

Пусть задано множество и на этом множестве определена целевая функция (objective function ) . Задача оптимизации состоит в нахождении на множестве точной верхней или точной нижней грани целевой функции .
Множество точек, на которых достигается нижняя грань целевой функции обозначается .


Если , то задача оптимизации называется безусловной (unconstrained ). Если , то задача оптимизации называется условной (constrained ).

Метод сопряжённых градиентов для квадратичного функционала

Изложение метода

Рассмотрим следующую задачу оптимизации:


Здесь - симметричная положительно определённая матрица размера . Такая задача оптимизации называется квадратичной. Заметим, что . Условие экстремума функции эквивалентно системе Функция достигает своей нижней грани в единственной точке , определяемой уравнением . Таким образом, данная задача оптимизации сводится к решению системы линейных уравнений
Идея метода сопряжённых градиентов состоит в следующем:
Пусть - базис в . Тогда для любой точки вектор раскладывается по базису Таким образом, представимо в виде

Каждое следующее приближение вычисляется по формуле:


Определение. Два вектора и называются сопряжёнными относительно симметричной матрицы B, если

Опишем способ построения базиса в методе сопряжённых градиентов В качестве начального приближения выбираем произвольный вектор. На каждой итерации выбираются по правилу:


Базисные вектора вычисляются по формулам:



Коэффициенты выбираются так, чтобы векторы и были сопряжёнными относительно А.

Если обозначить за , то после нескольких упрощений получим окончательные формулы, используемые при применении метода сопряжённых градиентов на практике:

Анализ метода

Для метода сопряжённых градиентов справедлива следующая теорема:
Теорема Пусть , где - симметричная положительно определённая матрица размера . Тогда метод сопряжённых градиентов сходится не более чем за шагов и справедливы следующие соотношения:

Сходимость метода

Если все вычисления точные, и исходные данные точны то метод сходится к решению системы не более чем за итераций, где - размерность системы. Более тонкий анализ показывает, что число итераций не превышает , где - число различных собственных значений матрицы A. Для оценки скорости сходимости верна следующая (довольно грубая) оценка:

, где

Она позволяет оценить скорость сходимости, если известны оценки для максимального и минимального собственных значений матрицы На практике чаще всего используют следующий критерий останова:

.

Вычислительная сложность

На каждой итерации метода выполняется операций. Такое количество операций требуется для вычисления произведения - это самая трудоёмкая процедура на каждой итерации. Отальные вычисления требуют O(n) операций. Суммарная вычислительная сложность метода не превышает - так как число итераций не больше n.

Численный пример

Применим метод сопряжённых градиентов для решения системы , где

C помощью метода сопряжённых градиентов решение этой системы получается за две итерации. Собственные числа матрицы - 5, 5, -5 - среди них два различных, поэтому, согласно теоретической оценке число итераций не могло превышать двух

Заключение

Метод сопряжённых градиентов - один из наиболее эффективных методов решения СЛАУ с положительно определённой матрицей. Метод гарантирует сходимость за конечное число шагов, а нужная точность может быть достигнута значительно раньше. Основная проблема заключается в том, что из-за накопления погрешностей может нарушаться ортогональность базисных веторов , что ухудшает сходимость

Метод сопряжённых градиентов в общем случае

Расссмотрим теперь модификацию метода сопряжённых градиентов для случая, когда минимизируемый функционал не является квадратичным: Будем решать задачу:

.

Непрерывно дифференцируемая в функция. Чтобы модифицировать метод сопряжённых градиентов для решения этой задачи необходимо получить для формулы, в которые не входит матрица А:

Можно вычислять по одной из трёх формул:

Если функция - квадратичная и строго выпуклая, то все три формулы дают одинаковый результат. Если - произвольная функция, то каждой из формул cоответствует своя модификация метода сопряжённых градиентов. Третья формула используется редко, так как она требует, чтобы функция и вычисления гессиана функции на каждом шаге метода.

Анализ метода

Если функция - не квадратичная, метод сопряжённых градиентов может и не сходиться за конечное число шагов. Кроме того, точное вычисление на каждом шаге возможно только в редких случаях. Поэтому накопление погрешностей приводит к тому, что вектора перестают указывать направление убывания функции . Тогда на каком-то шаге полагают . Совокупность всех номеров , при которых принимается , обозначим за . Номера называются моментами обновления метода . На практике часто выбирают , где - размерность пространства.

Сходимость метода

Для метода Флетчера - Ривса существует теорема о сходимости, накладывающая не слишком жёсткие условия на минимизируемую функцию :
Теорема .
Пусть и выполняются следующие условия:

множества M: .
Тогда

Для метода Полака-Райбера доказана сходимость в предположении, что - строго выпуклая функция. В общем случае доказать сходимость метода Полака - Райбера невозможно. Напоротив, верна следующая теорема:
Теорема.
Предположим, что в методе Полака-Райбера значения на каждом шаге вычисляются точно. Тогда существует функция , и начальное приближение , такие что %200,%20%5Cforall%20k%20=%200,%201,%202,%20...%20%5Cquad%20%7C%7Cf(x_k)%7C%7C%20>%20%5Cdelta" alt="\exists \delta > 0, \forall k = 0, 1, 2, ... \quad ||f(x_k)|| > \delta">.

Тем не менее, на практике метод Полака-Райбера работает лучше.
Наиболее распространённые критерии останова на практике: Норма градиента становится меньше некоторого порога
Значение функции в течении m последовательных итераций почти не изменилось

Вычислительная сложность

На каждой итерации методов Полака-Райбера или Флетчера-Ривса по одному разу вычисляются функция и её градиент , решается задача одномерной оптимизации . Таким образом, сложность одного шага метода сопряжённых градиентов имеет тот же порядок, что и сложность шага метода скорейшего спуска. На практике метод сопряжённых градиентов показывает лучшую скорость сходимости.

Числовой пример

Будем искать методом сопряжённых градиентов минимум функции . Минимум этой функции равен 1 и достигается в точке (5, 4). Сравним на примере этой функции методы Полака-Райбера и Флетчера-Ривса. Итерации в обоих методах прекращаются, когда на текущем шаге квадрат нормы градиента становится меньше . Для выбора используется метод золотого сечения

Метод Флетчера - Ривса Метод Полака - Райбера
Число итераций Найденное решение Значение функции Число итераций Найденное решение Значение функции
0.01 18 (5.01382198,3.9697932) 1.00110367 15 (5.03942877,4.00003512) 1.00155463
0.001 20 (5.01056482,3.99018026) 1.00020805 18 (4.9915894,3.99999044) 1.00007074
0.0001 24 (4.9979991,4.00186173) 1.00000747 20 (5.00336181,4.0000018) 1.0000113
0.00001 25 (4.99898277,4.00094645) 1.00000193 22 (4.99846808,3.99999918) 1.00000235
0.00001 29 (4.99974658,4.0002358) 1.00000012 26 (4.99955034,3.99999976) 1.0000002

Реализовано два варианта метода сопряжённых градиентов: для минимизации квадратичного функционала, и для минимизации произвольной функции. В первом случае метод реализуется функцией
vector FindSolution(matrix A, vector b)
Здесь A и b - матрица и вектор, фигурирющие в определении квадратичной задачи оптимизации.
Для минимизации произвольного функционала можно использовать одну из двух функций:
vector FletcherRievesMethod(int spaceSize, Function F, vector (*GradF) (vector))
vector PolakRibiereMethod(int spaceSize, Function F, vector (*GradF) (vector))
Параметры для обеих функций совпадают и имеют следующий смысл:
spaceSize - размерность пространства(число переменных, от которых зависит минимизируемый функционал)
F - указатель на минимизируемую функцию. Функция должна иметь вид double <имя функции>(vector)
GradF - указатель на функцию, вычисляющую градиент минимизируемого функционала
Оба метода используют вспомогательную функцию для решения задачи одномерной оптимизации. В программе реализована одномерная оптимизация методом золотого сечения.

Заключение

В методе сопряжённых градиентов используется информация только о линейной части приращения в точке, как и в методах градиентного спуска. При этом метод сопряжённых градиентов позволяет решать квадратичные задачи за конечное число шагов. На многих других задачах метод сопряжённого градиента также превосходит метод градиентного спуска. Сходимость метода градиентов существенно зависит от того, насколько точно решается задача одномерной оптимизации . Возможные зацикливания метода устраняются с помощью обновлений. Тем не менее, если метод попадёт в локальный минимум функции, скорее всего, ему не удастся из него выбраться.

См. также

Список литературы

  • Васильев Ф. П. Методы оптимизации - Издательство «Факториал Пресс», 2002
  • Nocedal J., Wright S.J. Numerical Optimization ,Springer, 1999

f (x )

f (xk ) = f(x0 ) + ∑ α i Api .

i= 1

обе части

этого равенства скалярно на p k

учитывая

исчерпывающего спуска по направлению p k :(f (x k ), p k ) = 0

и A −ортогональность

векторов, получаем

(f (x 0 ),p k )+ α k (Ap k ,p k )= 0.

A положительно определена,

квадратичная

(Ap k , p k ) > 0 и для величины шагаα k получаем выражение (5.17).

Последовательный исчерпывающий спуск

A –ортогональным

направлениям (5.16) приводит к точке минимума квадратичной формы не более чем за n шагов.

□ Доказать самостоятельно. Предположить, что существуют u k ≠ α k , и

получить, что они совпадают. ■

Вопрос о нахождении базиса из A –ортогональных векторов в пространствеE n

решается неоднозначно. В качестве такого базиса можно, например, взять ортогональный базис из собственных векторов матрицы A . Однако их поиск приn > 2 представляет собой самостоятельную и довольно сложную задачу.

и без предварительного построения векторов p 1 , ..., p n , последовательно находя их в процессе минимизации, как это было сделано выше в примере с минимизацией функции двух переменных. И в этом случае для квадратичной функции с положительно определенной матрицейA для нахождения минимума достаточно конечное число шагов. Если не является квадратичной функцией или

вспомогательные задачи одномерной минимизации решаются приближенно, потребуются дополнительные вычисления.

Метод сопряженных направлений, рассмотренный выше, относится к числу наиболее эффективных методов минимизации выпуклых квадратичных функций. Его недостатком является необходимость решать довольно большое количество задач одномерной минимизации.

5.6. Метод сопряженных градиентов

При использовании методов градиентного и наискорейшего спуска в итерационной процедуре

антиградиента: p k = − f (x k ). Однако такой выбор направления убывания не всегда бывает удачным. В частности, для плохо обусловленных задач минимизации направление антиградиента в точкеx k может значительно отличаться от направления к точке минимумаx . В результате траектория приближения к точке минимума имеет зигзагообразный характер. Воспользуемся другим подходом, идея которого была изложена при построении метода сопряженных направлений. Будем определять направления спускаp k не только через вектор антиградиента− f (x k ) ,

в котором величина шага α k находится из условия исчерпывающего спуска по

направлению p k . Далее,

после вычисления очередной точки x k + 1 ,

k = 0, 1, ..., новое

направление поиска p k + 1

находится по формуле, отличной от антиградиента:

pk + 1 = − f(xk + 1 ) + β k pk ,

k = 0, 1, ...,

где коэффициенты

выбираются так, чтобы при минимизации квадратичной

функции f (x ) с

положительно определенной

матрицей

A получалась

последовательность

A −ортогональных

векторов

p 0 ,p 1 , ....

Из условия

(Ap k + 1 ,p k )= 0имеем:

β k=

(A f (x k + 1 ),p k )

(Ap k ,p k )

Ранее, при обсуждении метода сопряженных направлений было показано, что

для квадратичной функции шаг исчерпывающего спуска по направлению p k равен

α k = −

(f (x k ),p k )

(Ap k ,p k )

Утверждение . Итерационный процесс

(5.19)−(5.22) минимизации

квадратичной функции с положительно определенной симметрической матрицей

f (x )

A дает точки

x 0 , ...,x k

и векторы p 0 , ..., p k такие, что если

f (x i )≠ 0при

0 ≤i

то векторы

p 0 , ...,

A −ортогональны,

градиенты

f (x 0 ), ...,f (x i )

взаимно ортогональны.

Так как направления

являются A −ортогональными,

гарантирует нахождение точки минимума сильно выпуклой квадратичной функции не более чем за n шагов.

С учетом взаимной ортогональности градиентов f (x i ) и условий

исчерпывающего спуска по направлениям p k можно упростить выражения (5.21) и

(5.22) для α k

и β k . В результате получим,

что итерационный процесс метода

сопряженных градиентов описывается соотношениями

x k+ 1

X k +α k

p k ,k = 0, 1, ...;

x0 En ,

p0 = − f(x0 ) ,

f (x k + α k p k )= minf (x k

+ αp k ),

k = 0, 1, ...,

α> 0

p k+ 1

= − f (x k + 1 ) +β k

p k ,k = 0, 1, ...,

β k=

f (xk + 1 )

k = 1, 2, ...

f (xk )

Следует отметить, что выражение для коэффициента β k не содержит в явном виде матрицуA квадратичной формы. Поэтому метод сопряженных градиентов может применяться для минимизации неквадратичных функций.

Итерационный процесс (5.23)−(5.26) может не приводить к точке минимума неквадратичной функции за конечное число итераций. Более того, точное

определение α k из условия (5.22) возможно лишь в редких случаях, а вектораp k

на образуют, вообще говоря, A −ортогональную систему относительно какой-либо матрицыA . Поэтому реализация каждой итерации метода будет сопровождаться неизбежными погрешностями. Эти погрешности, накапливаясь, могут привести к

тому, что векторы p k перестанут указывать направление убывания функции и

сходимость метода может нарушаться. Поэтому в методе сопряженных градиентов применяется практический прием − через каждые N шагов производят обновление метода, полагаяβ m N = 0, m = 1, 2, ... . Номераm N называют моментами

обновления метода, или рестарта . Часто полагаютN = n − размерности пространстваE n . ЕслиN = 1 , то получается частный случай метода сопряженных градиентов − метод наискорейшего спуска.

Вблизи точки минимума дважды дифференцируемая функция с положительно определенной матрицей Гессе H (x ) , как правило, достаточно хорошо

аппроксимируется квадратичной функцией. Поэтому можно надеяться на хороший результат применения метода сопряженных градиентов для функций такого вида.

Пример 5.7. Методом сопряженных градиентов найти точку минимума

функции f (x ) = 4 x 2 + 3 x 2 − 4 x x

из начальной точки x 0 = (0, 0) T .

□ Итерация 1.

Шаг 1. Положим ε = 0,01,

= (0, 0)T ,

и найдем f (x 0 ) = (1, 0) T . Перейдем к

Шаг 2. Положим k = 0,

= − f (x 0 ) = (− 1, 0) T . Перейдем к шагу 3.

f (x0

+ α p 0 )→ min.Получим

α 0 = 1/ 8 . – Здесь применили формулуα 0 = −

(f (x 0 ),p 0 )

(Ax 0 + b ,p 0 )

Перейдем

(Ap 0 ,p 0 )

(Ap 0 ,p 0 )

Шаг 4. Найдем

x 1= x 0

+ α 0 p 0 = (− 1/ 8,

и f (x 1 ) = (0, 1/ 2) T . Точность не

достигнута, прейдем к шагу 5.

Шаг 5. Условие k + 1 = n не выполняется (нет рестарта), перейдем к шагу 6.

Шаг 6. Найдем коэффициент β 0 = 1/ 4 и новое направление спуска

p 1 = − f (x 1 ) + β 0 p 0 = (− 1/ 4, − 1/ 2) T . Перейдем к следующей итерации.

Поскольку x 1 , f (x 1 ) иp 1

= − f (x 1 ) +β 0

уже вычислены на итерации 1, то

итерацию 2 начинаем с шага 3.

Итерация 2.

Шаг 3. Решим задачу одномерной минимизации

f (x 1 + α p 1 ) → min . Получим

α = 1/ 4 . Перейдем к шагу 4.

Шаг 4. Найдем x 2

X 1 +α 1

p 1 = (− 3 /16,− 1/ 8)T и f (x 2 )= (0, 0)T − задача решена

Рассмотренные выше градиентные методы отыскивают точку минимума функции в общем случае лишь за бесконечное число итераций. Метод сопряженных градиентов формирует направления поиска, в большей мере соответствующие геометрии минимизируемой функции. Это существенно увеличивает скорость их сходимости и позволяет, например, минимизировать квадратичную функцию

f(x) = (х, Нх) + (b, х) + а

с симметрической положительно определенной матрицей Н за конечное число шагов п, равное числу переменных функции. Любая гладкая функция в окрестности точки минимума хорошо аппроксимируется квадратичной, поэтому методы сопряженных градиентов успешно применяют для минимизации и неквадратичных функций. В таком случае они перестают быть конечными и становятся итеративными.

По определению, два n-мерных вектора х и у называют сопряженными по отношению к матрице H (или H-сопряженными), если скалярное произведение (x, Ну) = 0. Здесь Н - симметрическая положительно определенная матрица размером пхп.

Одной из наиболее существенных проблем в методах сопряженных градиентов является проблема эффективного построения направлений. Метод Флетчера-Ривса решает эту проблему путем преобразования на каждом шаге антиградиента -f(x[k]) в направление p[k], H-сопряженное с ранее найденными направлениями р, р, ..., р. Рассмотрим сначала этот метод применительно к задаче минимизации квадратичной функции.

Направления р[k] вычисляют по формулам:

p[k] = -f’(x[k])+k-1p, k >= 1; p = -f’(x).

Величины k-1 выбираются так, чтобы направления p[k], р были H-сопряженными:

(p[k], Hp)= 0.

В результате для квадратичной функции

итерационный процесс минимизации имеет вид

x =x[k] +akp[k],

где р[k] - направление спуска на k-м шаге; аk - величина шага. Последняя выбирается из условия минимума функции f(х) по а в направлении движения, т. е. в результате решения задачи одномерной минимизации:

f(х[k] + аkр[k]) = f(x[k] + ар [k]).

Для квадратичной функции

Алгоритм метода сопряженных градиентов Флетчера-Ривса состоит в следующем.

1. В точке х вычисляется p = -f’(x).

2. На k-м шаге по приведенным выше формулам определяются шаг аk. и точка х.



3. Вычисляются величины f(x) и f’(x).

4. Если f’(x) = 0, то точка х является точкой минимума функции f(х). В противном случае определяется новое направление p из соотношения

и осуществляется переход к следующей итерации. Эта процедура найдет минимум квадратичной функции не более чем за п шагов. При минимизации неквадратичных функций метод Флетчера-Ривса из конечного становится итеративным. В таком случае после (п+1)-й итерации процедуры 1-4 циклически повторяются с заменой х на х[п+1] , а вычисления заканчиваются при , где - заданное число. При этом применяют следующую модификацию метода:

x = x[k] +akp[k],

p[k] = -f’(x[k])+k-1p, k >= 1;

f(х[k] + akp[k]) = f(x[k] + ap[k];

Здесь I- множество индексов: I = {0, n, 2п, Зп, ...}, т. е. обновление метода происходит через каждые п шагов.

Геометрический смысл метода сопряженных градиентов состоит в следующем (Рис. 1.19). Из заданной начальной точки х осуществляется спуск в направлении р = -f"(x). В точке х определяется вектор-градиент f"(x ). Поскольку х является точкой минимума функции в направлении р, то f’(х) ортогонален вектору р. Затем отыскивается вектор р , H-сопряженный к р . Далее отыскивается минимум функции вдоль направления р и т. д.



Рис. 1.19. Траектория спуска в методе сопряженных градиентов

Методы сопряженных направлений являются одними из наиболее эффективных для решения задач минимизации. Однако следует отметить, что они чувствительны к ошибкам, возникающим в процессе счета. При большом числе переменных погрешность может настолько возрасти, что процесс придется повторять даже для квадратичной функции, т. е. процесс для нее не всегда укладывается в п шагов.

Численные методы безусловной оптимизации второго порядка, варианты алгоритмов метода Ньютона

Особенности методов второго порядка. Методы безусловной оптимизации второго порядка используют вторые частные производные минимизируемой функции f(х). Суть этих методов состоит в следующем.

Необходимым условием экстремума функции многих переменных f(x) в точке х* является равенство нулю ее градиента в этой точке:

Разложение f’(х) в окрестности точки х[k] в ряд Тейлора с точностью до членов первого порядка позволяет переписать предыдущее уравнение в виде

f"(x) f’(x[k]) + f"(x[k]) (х - х[k]) 0.

Здесь f"(x[k]) Н(х[k]) - матрица вторых производных (матрица Гессе) минимизируемой функции. Следовательно, итерационный процесс для построения последовательных приближений к решению задачи минимизации функции f(x) описывается выражением

x x[k] - H-1(x[k]) f’(x[k]) ,

где H-1(x[k]) - обратная матрица для матрицы Гессе, а H-1(x[k])f’(x[k]) р[k] - направление спуска.

Полученный метод минимизации называют методом Ньютона. Очевидно, что в данном методе величина шага вдоль направления р[k] полагается равной единице. Последовательность точек {х[k]}, получаемая в результате применения итерационного процесса, при определенных предположениях сходится к некоторой стационарной точке х* функции f(x). Если матрица Гессе Н(х*) положительно определена, точка х* будет точкой строгого локального минимума функции f(x). Последовательность x[k] сходится к точке х* только в том случае, когда матрица Гессе целевой функции положительно определена на каждой итерации.

Если функция f(x) является квадратичной, то, независимо от начального приближения х и степени овражности, с помощью метода Ньютона ее минимум находится за один шаг. Это объясняется тем, что направление спуска р[k] H-1(x[k])f’(x[k]) в любых точках х всегда совпадает с направлением в точку минимума х*. Если же функция f(x) не квадратичная, но выпуклая, метод Ньютона гарантирует ее монотонное убывание от итерации к итерации. При минимизации овражных функций скорость сходимости метода Ньютона более высока по сравнению с градиентными методами. В таком случае вектор р[k] не указывает направление в точку минимума функции f(x), однако имеет большую составляющую вдоль оси оврага и значительно ближе к направлению на минимум, чем антиградиент.

Существенным недостатком метода Ньютона является зависимость сходимости для невыпуклых функций от начального приближения х. Если х находится достаточно далеко от точки минимума, то метод может расходиться, т. е. при проведении итерации каждая следующая точка будет более удаленной от точки минимума, чем предыдущая. Сходимость метода, независимо от начального приближения, обеспечивается выбором не только направления спуска р[k] H-1(x[k])f’(x[k]), но и величины шага а вдоль этого направления. Соответствующий алгоритм называют методом Ньютона с регулировкой шага. Итерационный процесс в таком случае определяется выражением

x x[k] - akH-1(x[k])f’(x[k]).

Величина шага аk выбирается из условия минимума функции f(х) по а в направлении движения, т. е. в результате решения задачи одномерной минимизации:

f(x[k] – ak H-1(x[k])f’(x[k]) (f(x[k] - aH-1(x[k])f’(x[k])).

Такой вариант алгоритма называют также методом Ньютона-Рафсона. Графическая интерпретация этого варианта метода Ньютона представлена на рис. 1.20. На выносных элементах рисунка приведены графики одномерных функций, подлежащих оптимизации с целью определения шага.

Рис. 1.20. Геометрическая интерпретация метода Ньютона-Рафсона

Алгоритм метода Ньютона-Рафсона состоит в следующем. Часть действий выполняется до начала итерационного процесса. А именно необходимо получить вектор формул, составляющих градиент f’([x]) (т.е. вектор первых частных производных) и матрицу формул, составляющих матрицу Гессе H(x) (т.е. матрицу вторых частных производных). Далее в итерационном цикле в эти формулы подставляются значения компонент вектора х и эти массивы становятся массивами чисел.

1. В начальной точке х вычисляется вектор, определяющий направление спуска p - H-1(x)f’(). Тем самым задача многомерная сводится к задаче одномерной оптимизации.

2. На k-й итерации определяется шаг аk (по схеме, изображенной на рис. 1.20, для этого решается задача одномерной оптимизации) и точка х.

3. Вычисляется величина f(х).

4. Проверяются условия выхода из подпрограммы, реализующей данный алгоритм. Эти условия аналогичны условиям выхода из подпрограммы при методе наискорейшего спуска. Если эти условия выполняются, осуществляется прекращение вычислений. В противном случае вычисляется новое направление

р –H-1(x[k])f’([k])

и осуществляется переход к следующей итерации, т. е. на шаг 2.

Количество вычислений на итерации методом Ньютона, как правило, значительно больше, чем в градиентных методах. Это объясняется необходимостью вычисления и обращения матрицы вторых производных целевой функции (или решения системы уравнений, что требует меньше трудозатрат). Однако на получение решения с достаточно высокой степенью точности с помощью метода Ньютона обычно требуется намного меньше итераций, чем при использовании градиентных методов. В силу этого метод Ньютона существенно более эффективен. Он обладает сверхлинейной или квадратичной скоростью сходимости в зависимости от требований, которым удовлетворяет минимизируемая функция f(x). Тем не менее в некоторых задачах трудоемкость итерации методом Ньютона может оказаться очень большой за счет необходимости вычисления матрицы вторых производных минимизируемой функции, что потребует затрат значительного количества машинного времени.

В ряде случаев целесообразно комбинированное использование градиентных методов и метода Ньютона. В начале процесса минимизации, когда точка х находится далеко от точки экстремума х*, можно применять какой-либо вариант градиентных методов. Далее, при уменьшении скорости сходимости градиентного метода можно перейти к методу Ньютона. Или вследствие накопления ошибок в процессе счета матрица Гессе на некоторой итерации может оказаться отрицательно определенной или ее нельзя будет обратить. В таких случаях в подпрограммах оптимизации полагается H-1(x[k]) Е, где Е - единичная матрица. Итерация при этом осуществляется по методу наискорейшего спуска.

В другой модификации метода Ньютона, получившей название метод Левенберга - Маркардта (метод Ньютона с регулировкой матрицы) для обеспечения положительной определенности матрицы Гессе в точках последовательности используется регуляризация этой матрицы. В методе Левенберга - Маркардта точки строятся по закону: , где - последовательность положительных чисел, обеспечивающих положительную определенность матрицы . Обычно в качестве берется значение на порядок больше наибольшего элемента матрицы . Так в ряде стандартных программ полагается . Если, то , в противном случае Очевидно, что если , то метод Левенберга - Маркардта представляет собой метод Ньютона, а если велико, то поскольку при больших метод Левенберга - Маркардта близок к градиентному методу. Поэтому, подбирая значения параметра , можно добиться, чтобы метод Левенберга - Маркардта сходился

Метод предназначен для решения задачи (5.1) и принадлежит классу методов первого порядка. Метод представляет собой модификацию метода наискорейшего спуска (подъема) и автоматически учитывает особенности целевой функции, ускоряя сходимость.

Описание алгоритма

Шаг 0 . Выбирается точка начального приближения , параметр длины шага , точность решения и вычисляется начальное направление поиска .

Шаг k . На k -м шаге находится минимум (максимум) целевой функции на прямой, проведенной из точки по направлению . Найденная точка минимума (максимума) определяет очередное k -е приближение , после чего определяется направление поиска

Формула (5.4) может быть переписана в эквивалентном виде

.

Алгоритм завершает свою работу, как только выполнится условие ; в качестве решения принимается значение последнего полученного приближения .

Метод Ньютона

Метод предназначен для решения задачи (5.1) и принадлежит классу методов второго порядка. В основе метода лежит разложение Тейлора целевой функции и то, что в точке экстремума градиент функции равен нулю, то есть .

Действительно, пусть некоторая точка лежит достаточно близко к точке искомого экстремума . Рассмотрим i -ю компоненту градиента целевой функции и разложим ее в точке по формуле Тейлора с точностью до производных первого порядка:

. (5.5)

Формулу (5.5) перепишем в матричной форме, учитывая при этом, что :

где матрица Гессе целевой функции в точке .

Предположим, что матрица Гессе невырождена. Тогда она имеет обратную матрицу . Умножая обе части уравнения (5.6) на слева, получим , откуда

. (5.7)

Формула (5.7) определяет алгоритм метода Ньютона: пересчет приближений на k



Алгоритм заканчивает свою работу, как только выполнится условие

,

где заданная точность решения; в качестве решения принимается значение последнего полученного приближения .

Метод Ньютона-Рафсона

Метод является методом первого порядка и предназначен для решения систем n нелинейных уравнений c n неизвестными:

В частности, этот метод может быть применен при поиске стационарных точек целевой функции задачи (5.1), когда необходимо решить систему уравнений из условия .

Пусть точка есть решение системы (5.9), а точка расположена вблизи . Разлагая функцию в точке по формуле Тейлора, имеем

откуда (по условию ) вытекает

, (5.11)

где матрица Якоби вектор-функции . Предположим, что матрица Якоби невырождена. Тогда она имеет обратную матрицу . Умножая обе части уравнения (5.11) на слева, получим , откуда

. (5.12)

Формула (5.12) определяет алгоритм метода Ньютона-Рафсона: пересчет приближений на k -й итерации выполняется в соответствии с формулой

В случае одной переменной, когда система (5.9) вырождается в единственное уравнение , формула (5.13) принимает вид

, (5.14)

где значение производной функции в точке .

На рис. 5.2 показана схема реализации метода Ньютона-Рафсона при поиске решения уравнения .

Замечание 5.1. Сходимость численных методов, как правило, сильно зависит от начального приближения.

Замечание 5.2. Методы Ньютона и Ньютона-Рафсона требуют большого объема вычислений (надо на каждом шаге вычислять и обращать матрицы Гессе и Якоби).

Замечание 5.3. При использовании методов обязательно следует учитывать возможность наличия многих экстремумов у целевой функции (свойство мультимодальности ).


ЛИТЕРАТУРА

1. Афанасьев М.Ю. , Суворов Б.П. Исследование операций в экономике: Учебное пособие. – М.: Экономический факультет МГУ, ТЕИС, 2003 – 312 с.

2. Базара М, Шетти К. Нелинейное программирование. Теория и алгоритмы: Пер. с англ. – М.: Мир, 1982 – 583 с.

3. Берман Г .Н . Сборник задач по курсу математического анализа: Учебное пособие для вузов. – СПб: «Специальная Литература», 1998. – 446 с.

4. Вагнер Г. Основы исследования операций: В 3-х томах. Пер. с англ. – М.: Мир, 1972. – 336 с.

5. Вентцель Е. С. Исследование операций. Задачи, принципы, методология – М.: Наука, 1988. – 208 с.

6. Демидович Б.П. Сборник задач и упражнений по математическому анализу. – М.: Наука, 1977. – 528 с.

7. Дегтярев Ю.И. Исследование операций. – М.: Высш. шк., 1986. – 320 с.

8. Нуреев Р.М. Сборник задач по микроэкономике. – М.: НОРМА, 2006. – 432 с.

9. Солодовников А. С., Бабайцев В.А., Браилов А.В. Математика в экономике: Учебник: В 2-х ч. – М.:Финансы и статистика, 1999. – 224 с.

10. Таха Х. Введение в исследование операций, 6-е изд.: Пер. с англ. – М.: Издательский дом «Вильямс», 2001. – 912 с.

11. Химмельблау Д. Прикладное нелинейное программирование: Пер. с англ. – М.: Мир, 1975 – 534 с.

12. Шикин Е. В., Шикина Г.Е. Исследование операций: Учебник – М.: ТК Велби, Изд-во Проспект, 2006. – 280 с.

13. Исследование операций в экономике : Учебн. пособие для вузов/ Н.Ш.Кремер, Б.А.Путко, И.М.Тришин, М.Н.Фридман; Под ред. проф. Н.Ш.Кремера. – М.: Банки и биржи, ЮНИТИ, 1997. – 407 с.

14. Матрицы и векторы : Учебн. пособие/ Рюмкин В.И. – Томск: ТГУ, 1999. – 40 с.

15. Системы линейных уравнений : Учебн. пособие / Рюмкин В.И. – Томск: ТГУ, 2000. – 45 с.


ВВЕДЕНИЕ……………………………………...................................
1. ОСНОВЫ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ………………...
1.1. Постановка задачи математического программирования...............................
1.2. Разновидности ЗМП…………….…………..........................................
1.3. Базовые понятия математического программирования................................
1.4. Производная по направлению. Градиент………….........................................
1.5. Касательные гиперплоскости и нормали…………..........................................
1.6. Разложение Тейлора……………………………...............................................
1.7. ЗНЛП и условия существования ее решения...................................................
1.8. Задачи ……………..……...................................................................................
2. РЕШЕНИЕ ЗАДАЧИ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ БЕЗ ОГРАНИЧЕНИЙ................................................................................................................
2.1. Необходимые условия решения ЗНЛП без ограничений...............................
2.2. Достаточные условия решения ЗНЛП без ограничений.................................
2.3. Классический метод решения ЗНЛП без ограничений...................................
2.4. Задачи……………..............................................................................................
3. РЕШЕНИЕ ЗАДАЧИ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ПРИ ОГРАНИЧЕНИЯХ-РАВЕНСТВАХ.................................................................................
3.1. Метод множителей Лагранжа…………………………...................................
3.1.1. Назначение и обоснование метода множителей Лагранжа……………
3.1.2. Схема реализации метода множителей Лагранжа……………………...
3.1.3. Интерпретация множителей Лагранжа…………………………………
3.2. Метод подстановки…………………………….................................................
3.3. Задачи…………………………..........................................................................
4. РЕШЕНИЕ ЗАДАЧИ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ПРИ ОГРАНИЧЕНИЯХ-НЕРАВЕНСТВАХ………………………………………………..
4.1. Обобщенный метод множителей Лагранжа…………………………………
4.2. Условия Куна-Таккера…………………………..............................................
4.2.1. Необходимость условий Куна-Таккера…………………………………
4.2.2. Достаточность условий Куна-Таккера…………………………………..
4.2.3. Метод Куна-Таккера………………………...............................................
4.3. Задачи…………………………..........................................................................
5. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ …………………………...……………………………………
5.1. Понятие алгоритма…………………………....................................................
5.2. Классификация численных методов…………………………………………
5.3. Алгоритмы численных методов……………………………………………...
5.3.1. Метод наискорейшего спуска (подъема)…………………………………
5.3.2. Метод сопряженных градиентов………………………….........................
5.3.3. Метод Ньютона………………………….....................................................
5.3.4. Метод Ньютона-Рафсона………………………………………………...
ЛИТЕРАТУРА………………………………..............................................................

Определения линейной и нелинейной функций см. в разделе 1.2

Далее будет изложен метод сопряженных градиентов, относящейся к группе методов сопряженных направлений. Этот метод как и метод градиентного спуска, является методом первого порядка т. е. Использует информацию только первой производной минимизируемой функции.

Однако метод сопряженных градиентов отличается от градиентных методов более высокой скоростью сходимости, которая при определенных предположениях относительно целевой функции, приближается к скорости сходимости метода Ньютона.

Два вектора x и y называют Н - сопряженными (или сопряженными по отношению к матрице Н) или Н - ортогональными, если

(x, H·y) = 0. (9)

f (x) = a + (x,b) + ½ (x, H·x). (10)

с положительно определенной n·n матрицей. Оказывается, что квадратичная функция (10) может быть минимизирована методом сопряженных направлений не более чем за n шагов.

Чтобы воспользоваться этим методом минимизации квадратичной функции (10) нужно знать n - взаимно сопряженных направлений S 0 , S 1 ,…,S n-1 . Эффективность таких направлений – самостоятельная проблема. Существует много взаимно сопряженных направлений S 0 , S 1 ,…,S n-1 и способов их построения. Ниже излагается метод сопряженных градиентов Флетчера - Ривса, в котором выбор Н - сопряженных направлений осуществляется совместно с одномерной минимизацией f (х) по α..

Метод Флетчера – Ривса.

Этот метод использует последовательность направлений поиска, каждая из которых является линейной комбинацией антиградиента в текущей точке и предыдущего направления спуска. Метод изменяется к квадратичной целевой функции f (x) = a + (x,b) + ½ (x, H·x).

При минимизации ее методом Флетчера - Ривса векторы S k вычисляются по формулам

S 0 = – f " (x 0), S k = – f "(x k) + β k-1 ·S k-1 , при k ≥ 1.

Величины β k-1 выбираются так, чтобы направления S k , S k-1 были Н – сопряженными.

Точка х k-1 ,определяется в результате минимизации функции f (х) в направлении S k , исходящем из точки x k , т.е.

х k+1 = x k + α k ·S k , где α k доставляет минимум по α k функции f (x k , α ·S k).

Итак, предлагаемая процедура минимизации функции f (x) выглядит следующим образом. В заданной точке x 0 вычисляется антиградиент

S 0 = – f " (x 0). Осуществляется одномерная минимизация в этом направлении и определяется точка x 1 . В точке x 1 сново вычисляется антиградиент – f " (x 1). Так как эта точка доставляет минимум функции f (x) вдоль направления S 0 = – f " (x 0), вектор f " (x 1) ортогонален f " (x 0). Затем по известному значению f " (x 1) по формуле (11) вычисляется вектор S 1 , который за счет выбора β 0 будет Н – сопряженным к S 0 . Далее отыскивается минимум функции f (х) вдоль направления S 1 и т.д.

шаг 4:

Это и есть окончательный вид алгоритма Флетчера-Ривса.

Как было замечено ранее, он найдет минимум квадратичной функции не более чем за n шагов.

Минимизация неквадратичной целевой функции.

Метод Флетчера-Ривса может применятся для минимизации и неквадратичных функций. Он является методом первого порядка и в тоже время скорость его сходимости квадратична. Разумеется, если целевая функция не квадратична, метод уже не будет конечным. Поэтому после (n+1)-й итерации процедура повторяется с заменой x 0 на x n +1 , а счет заканчивается при ||f "(x k+1)|| £ ε, где ε – заданное число. При минимизации неквадратичных функций обычно применяется следующая модификация метода Флетчера-Ривса.

Схема алгоритма для неквадратичных целевых функций.

Здесь I – множество индексов, I = {0, n, 2n, 3n, …}. Значения k, для которых β k = 0, называют моментами обновления метода. Таким образом, обновление метода происходит через каждые n шагов.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме Метод сопряженных градиентов:

  1. 26. Отыскание экстремумов функций многих переменных. метод сопряженных градиентов, метод переменных направлений, метод переменной метрики.