Методичка по иммунологии главный комплекс гистосовместимости. Главный комплекс гистосовместимости

При первой пересадке сердца человека, сделанной в 1967 г. К. Барнардом, и сотнях последующих хирурги столкнулись с проблемой отторжения трансплантата. Оказалось, что главная трудность заключается не в технике операции, которая сейчас разработана достаточно хорошо, а в несовместимости тканей, обусловленной иммунологическими механизмами. Так, у челове­ка выживание трансплантатов реципиентов, взятых от случайно­го донора, составляет 10,5 дня, тогда как трансплантаты, обме­ненные между однояйцовыми близнецами (изотрансплантаты), приживаются. Это происходит благодаря наличию на поверхнос­ти клеток антигенов, называемых трансплантационными антиге­нами или антигенами гистосовместимости. Большинство транс­плантационных антигенов расположены на лейкоцитах, но они имеются и на всех других ядросодержащих клетках (клетках кожи, легких, печени, почек, кишечника, сердца и т. д.). Гены, кодирующие эти антигены, называются генами тканевой совмес­тимости. Система генов, контролирующая трансплантационные антигены лейкоцитов, названа главным комплексом гистосов­местимости (англ. Major Histocompatibility complex - МНС). Гены гистосовместимости кодоминантны.

Эффективность трансплантации зависит не только от лейко­цитарных и эритроцитарных антигенов, но и от минорной систе­мы гистосовместимости. Трансплантаты между монозиготными близнецами приживаются. Однако у братьев и сестер при совпа­дении по МНС-гаплотипам, но несовпадении по минорным сис­темам гистосовместимости происходит отторжение транспланта­тов кожи.

После иммуноглобулинов и рецепторов Т-клеток белки глав­ного комплекса гистосовместимости самые разнообразные из всех белков. Различают два класса белков МНС. Белки класса I находятся на поверхности почти всех клеток. Молекула белка состоит из двух полипептидных цепей: большой и малой. Белки


МНС класса II имеются на поверхности некоторых клеток (В-" лимфоциты, макрофаги, специализированные эпителиальные., клетки), а их молекула состоит из примерно равных полипептид-* ных цепей. Белки МНС имеют некоторое сходство с иммуногло­булинами. Основная роль белков МНС состоит не в отторжении чужой ткани, а в направлении реакции Т-клеток на антиген. Цитотоксические Т-клетки могут узнавать антиген, если он расположен вместе с белками МНС класса I на поверхности одной клетки. Т-хелперы узнают антиген в комбинации с белками МНС класса П. Такое двойное стимулирование называется МНС-о граничением. Впервые главную систему тканевой совместимости мыши Н-2 открыл П. Горер в 1936 г. Кроме Н-2 найдено много локусов тканевой совместимости, расположенных во всех хромосомах.

В 1980 г. Д. Снелл, Ж. Доссе и Б. Бенацерафф получили Но­белевскую премию за «различные аспекты исследования, привед­шего к современному пониманию системы генов гистосовмести­мости человека». Д. Снелл сформулировал основные генетичес­кие законы совместимости тканей и получил данные о тонком строении локуса Н-2 у мышей.

Система Н-2 довольно хорошо изучена, поэтому она служит хорошей моделью для исследования МНС у других видов живот­ных. Комплекс Н-2 включает несколько тесно сцепленных локу­сов длиной 0,35 сМ, расположенных в 17-й хромосоме. Ком­плекс Н-2 разделен на пять областей: К, I, S, G, D (рис. 56).

Антигены гистосовместимости - это гликопротеины, существующие на поверхности всех клеток. Первоначально были определены как главные антигены-мишени в реакциях на трансплантат. Пересадка ткани взрослого донора особи того же вида (аллотрансплантация) или иного вида (ксенотрансплантация) приводит обычно к ее отторжению. Эксперименты по пересадке кожи между разными линиями мышей показали, что отторжение трансплантата обусловлено иммунной реакцией на чужеродные антигены, находящиеся на поверхности его клеток. Позднее было показано, что в этих реакциях участвуют Т-клетки. Реакции направлены против генетически «чужеродных» вариантов гликопротеинов клеточной поверхности, получивших название молекул гистосовместимости (т.е. совместимости тканей).

Главные молекулы гистосовместимости - семейство гликопротеинов, кодируемое генами, составляющими главный комплекс гистосовместимости (МНС - major histocompatibility complex ). В пределах МНС локализованы гены, контролирующие главные трансплантационные антигены и гены, определяющие интенсивность иммунного ответа на тот или иной конкретный антиген, - так называемые Ir-гены (immune response ). Молекулы МНС имеются на поверхности клеток всех высших позвоночных. Впервые они были найдены у мышей и названы антигенами Н2 (histocompatibility-2 ). У человека они носят название HLA (лейкоцитарных, human leucocyte-associated ), так как были первоначально обнаружены на лейкоцитах.



Существует два основных класса молекул МНС, каждый из которых представляет собой набор гликопротеинов клеточной поверхности. Молекулы МНС класса I экспрессируются практически на всех клетках, молекулы класса II - на клетках, участвующих в иммунных ответах (лимфоцитах, макрофагах). Молекулы класса I узнаются цитотоксическими Т-клетками (киллерами), которые должны взаимодействовать с любой клеткой организма, оказавшейся зараженной вирусом, тогда как молекулы класса II узнаются Т-хелперами (Тх), которые взаимодействуют в основном с другими клетками, участвующими в иммунных ответах, такими как В-лимфоциты и макрофаги (антигенпредставляющие клетки).

Согласно клонально-селекционной теории иммунитета , в организме существуют многочисленные группы (клоны) лимфоцитов, генетически запрограммированные реагировать на один или несколько антигенов. Поэтому каждый конкретный антиген оказывает избирательное действие, стимулируя только те лимфоциты, которые имеют сродство к его поверхностным детерминантам.

При первой встрече с антигеном (т.н. первичный ответ ) лимфоциты стимулируются и подвергаются трансформации в бластные формы, которые способны к пролиферации и дифференцировке в иммуноциты. В результате пролиферации увеличивается число лимфоцитов соответствующего клона, «узнавших» антиген. Дифференцировка приводит к появлению двух типов клеток - эффекторных и клеток памяти . Эффекторные клетки непосредственно участвуют в ликвидации или обезвреживании чужеродного материала. К эффекторным клеткам относятся активированные лимфоциты и плазматические клетки. Клетки памяти - это лимфоциты, возвращающиеся в неактивное состояние, но несущие информацию (память) о встрече с конкретным антигеном. При повторном введении данного антигена они способны обеспечивать быстрый иммунный ответ большей интенсивности (т.н.вторичный ответ ) вследствие усиленной пролиферации лимфоцитов и образования иммуноцитов.

В зависимости от механизма уничтожения антигена различают клеточный иммунитет и гуморальный иммунитет.

При клеточном иммунитете эффекторными клетками являются цитотоксические Т-лимфоциты, или лимфоциты-киллеры (убийцы). Они непосредственно участвуют в уничтожении чужеродных клеток других органов или патологических собственных (например, опухолевых) клеток, и выделяют литические вещества. Такая реакция лежит в основе отторжения чужеродных тканей в условиях трансплантации или при действии на кожу химических (сенсибилизирующих) веществ, вызывающих повышенную чувствительность (т.н. гиперчувствительность замедленного типа) и другие реакции.

При гуморальном иммунитете эффекторными клетками являются плазматические клетки, которые синтезируют и выделяют в кровь антитела.

Некоторые термины из практической медицины:

· агаммаглобулинемия (agammaglobulinaemia ; а- + гаммаглобулины + греч. haima кровь; син.: гипогаммаглобулинемия, синдром дефицита антител) -- общее название группы болезней, характеризующихся отсутствием или резким снижением уровня иммуноглобулинов в сыворотке крови;

· аутоантигены (ауто- + антигены) -- собственные нормальные антигены организма, а также антигены, возникающие под действием различных биологических и физико-химических факторов, по отношению к которым образуются аутоантитела;

· аутоиммунная реакция -- иммунная реакция организма на аутоантигены;

· аллергия (allergia ; греч. allos другой, иной + ergon действие) -- состояние измененной реактивности организма в виде повышения его чувствительности к повторным воздействиям каких-либо веществ или к компонентам собственных тканей; в основе аллергии лежит иммунный ответ, протекающий с повреждением тканей;

· иммунитет активный иммунитет, возникающий в результате иммунного ответа организма на введение антигена;

· Основными клетками, осуществляющими иммунные реакции, являются Т- и В-лимфоциты (и производные последних – плазмоциты), макрофаги, а также ряд взаимодействующих с ними клеток (тучные клетки, эозинофилы и др.).

· Лимфоциты

· Популяция лимфоцитов функционально неоднородна. Различают три основных вида лимфоцитов: Т-лимфоциты , В-лимфоциты и так называемые нулевые лимфоциты (0-клетки). Лимфоциты развиваются из недифференцированных лимфоидных костномозговых предшественников и при дифференцировке получают функциональные и морфологические признаки (наличие маркеров, поверхностных рецепторов), выявляемые иммунологическими методами. 0-лимфоциты (нулевые) лишены поверхностных маркеров и рассматриваются как резервная популяция недифференцированных лимфоцитов.

· Т-лимфоциты - самая многочисленная популяция лимфоцитов, составляющая 70-90% лимфоцитов крови. Они дифференцируются в вилочковой железе - тимусе (отсюда их название), поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы - лимфатических узлах (глубокая часть коркового вещества), селезенке(периартериальные влагалища лимфоидных узелков), в одиночных и множественных фолликулах различных органов, в которых под влиянием антигенов образуются Т-иммуноциты (эффекторные) и Т-клетки памяти. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. Эти рецепторы являются продуктами генов иммунного ответа . Т-лимфоциты обеспечивают клеточный иммунитет, участвуют в регуляции гуморального иммунитета, осуществляют продукцию цитокинов при действии антигенов.

· В популяции Т-лимфоцитов различают несколько функциональных групп клеток: цитотоксические лимфоциты (Тц), или Т-киллеры (Тк), Т-хелперы (Тх), Т-супрессоры (Тс). Тк участвуют в реакциях клеточного иммунитета, обеспечивая разрушение (лизис) чужеродных клеток и собственных измененных клеток (например, опухолевых клеток). Рецепторы позволяют им распознавать белки вирусов и опухолевых клеток на их поверхности. При этом активизация Тц (киллеров) происходит под влиянием антигенов гистосовместимости на поверхности чужеродных клеток.

· Кроме того, Т-лимфоциты участвуют в регуляции гуморального иммунитета с помощью Тх и Тс. Тх стимулируют дифференцировку В-лимфоцитов, образование из них плазмоцитов и продукцию иммуноглобулинов (Ig). Tx имеют поверхностные рецепторы, которые связываются с белками на плазмолемме В-клеток и макрофагов, стимулируя Тх и макрофаги к пролиферации, продукции интерлейкинов (пептидных гормонов), а В-клетки - к продукции антител.

· Таким образом, главной функцией Тх является распознавание чужеродных антигенов (представляемых макрофагами), секреция интерлейкинов, стимулирующих В-лимфоциты и другие клетки для участия в иммунных реакциях.

· Снижение в крови числа Тх ведет к ослаблению защитных реакций организма (эти лица более подвержены инфекциям). Отмечено резкое снижение числа Тх у лиц, инфицированных вирусом СПИДа.

· Тс способны ингибировать активность Тх, В-лимфоцитов и плазмоцитов. Они участвуют в аллергических реакциях, реакциях гиперчувствительности. Тс подавляют дифференцировку В-лимфоцитов.

· Одной из основных функций Т-лимфоцитов является продукция цитокинов , которые оказывают стимулирующее или тормозящее влияние на клетки, участвующие в иммунном ответе (хемотаксические факторы, макрофаги ингибирующий фактор - МИФ, неспецифические цитотоксические вещества и др.).

· Натуральные киллеры . Среди лимфоцитов в крови, кроме вышеописанных Тц, выполняющих функцию киллеров, имеются так называемые натуральные киллеры (Нк, NK ), которые также участвуют в клеточном иммунитете. Они образуют первую линию защиты против чужеродных клеток, действуют немедленно, быстро разрушая клетки. Нк в собственном организме разрушают опухолевые клетки и клетки, инфицированные вирусом. Тц образуют вторую линию защиты, так как для их развития из неактивных Т-лимфоцитов требуется время, поэтому они вступают в действие позже Нк. Нк - это большие лимфоциты диаметром 12-15 мкм, имеют дольчатое ядро и азурофильные гранулы (лизосомы) в цитоплазме.

· Развитие Т- и В-лимфоцитов

· Родоначальником всех клеток иммунной системы является кроветворная стволовая клетка (СКК). СКК локализуются в эмбриональном периоде в желточном мешке, печени, селезенке. В более поздний период эмбриогенеза они появляются в костном мозге и продолжают пролиферировать в постнатальной жизни. Из СКК в костном мозге образуется клетка-предшественник лимфопоэза (лимфоидная мультипотентная родоначальная клетка), которая генерирует два типа клеток: пре-Т-клетки (предшественники Т-клеток) и пре-В-клетки (предшественники В-клеток).

· Дифференцировка Т-лимфоцитов

· Пре-Т-клетки мигрируют из костного мозга через кровь в центральный орган иммунной системы - вилочковую железу (тимус). Еще в период эмбрионального развития в вилочковой железе создается микроокружение, имеющее значение для дифференцировки Т-лимфоцитов. В формировании микроокружения особая роль отводится ретикулоэпителиальным клеткам этой железы, способным к продукции ряда биологически активных веществ. Мигрирующие в вилочковую железу пре-Т-клетки приобретают способность реагировать на стимулы микроокружения. Пре-Т-клетки в вилочковой железе пролиферируют, трансформируются в Т-лимфоциты, несущие характерные мембранные антигены (CD4+, CD8+). Т-лимфоциты генерируют и «поставляют» в кровообращение и в тимусзависимые зоны периферических лимфоидных органов 3 типа лимфоцитов: Тц, Тх и Тс. Мигрирующие из вилочковой железы «девственные» Т-лимфоциты (виргильные Т-лимфоциты) являются короткоживущими. Специфическое взаимодействие с антигеном в периферических лимфоидных органах служит началом процессов их пролиферации и дифференцировки в зрелые и долгоживущие клетки (Т-эффекторные и Т-клетки памяти), составляющие большую часть рециркулирующих Т-лимфоцитов.

· Из вилочковой железы мигрируют не все клетки. Часть Т-лимфоцитов погибает. Существует мнение, что причиной их гибели служит присоединение антигена к антигенспецифическому рецептору. В вилочковой железе нет чужеродных антигенов, поэтому данный механизм может служить для удаления Т-лимфоцитов, способных реагировать с собственными структурами организма, т.е. выполнять функцию защиты от аутоиммунных реакций. Гибель части лимфоцитов является генетически запрограммированной (апоптоз).

· Дифференцировочные антигены Т-клеток . В процессе дифференцировки лимфоцитов на их поверхности появляются специфические мембранные молекулы гликопротеидов. Такие молекулы (антигены) можно обнаружить с помощью специфических моноклональных антител. Получены моноклональные антитела, которые реагируют лишь с одним антигеном клеточной мембраны. С помощью набора моноклональных антител можно идентифицировать субпопуляции лимфоцитов. Имеются наборы антител к дифференцировочным антигенам лимфоцитов человека. Антитела составляют относительно немного групп (или «кластеров»), каждая из которых узнает один единственный белок клеточной поверхности. Создана номенклатура дифференцировочных антигенов лейкоцитов человека, выявляемых моноклональными антителами. Эта CD-номенклатура (CD - cluster of differentiation - кластер дифференцировки) базируется на группах моноклональных антител, реагирующих с одними и теми же дифференцировочными антигенами.

· Получены многоклональные антитела к ряду дифференцировочных антигенов Т-лимфоцитов человека. При определении общей популяции Т-клеток могут быть использованы моноклональные антитела специфичностей CD (CD2, CD3, CDS, CD6, CD7).

· Известны дифференцировочные антигены Т-клеток, которые характерны либо для определенных стадий онтогенеза, либо для различающихся по функциональной активности субпопуляций. Так, CD1 - маркер ранней фазы созревания Т-клеток в вилочковой железе. В процессе дифференцировки тимоцитов на их поверхности экспрессируются одновременно маркеры CD4 и CD8. Однако в последующем маркер CD4 исчезает с части клеток и сохраняется только на субпопуляции, переставшей экспрессировать антиген CD8. Зрелые CD4+ клетки являются Тх. Антиген CD8 экспрессируется примерно на ⅓ периферических Т-клеток, которые созревают из CD4+/CD8+ Т-лимфоцитов. Субпопуляция CD8+ Т-клеток включает цитотоксические и супрессорные Т-лимфоциты. Антитела к гликопротеинам CD4 и CD8 широко используются для того, чтобы различать и разделять Т-клетки соответственно на Тх и Тц.

· Кроме дифференцировочных антигенов, известны специфические маркеры Т-лимфоцитов.

· Т-клеточные рецепторы для антигенов представляют собой антителоподобные гетеродимеры, состоящие из полипептидных α- и β-цепей. Каждая из цепей имеет длину в 280 аминокислот, большая внеклеточная часть каждой цепи свернута в два Ig-подобных домена: один вариабельный (V) и один константный (С). Антителоподобный гетеродимер кодируется генами, которые собираются из нескольких генных сегментов в процессе развития Т-клеток в вилочковой железе.

· Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов.

· Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфический тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совершается в центральных органах иммунитета (тимус, костный мозг или фабрициева сумка у птиц) под влиянием специфических факторов, вырабатываемых клетками, формирующими микроокружение (ретикулярная строма или ретикулоэпителиальные клетки в тимусе).

· Антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов происходят при встрече с антигенами в периферических лимфоидных органах, при этом образуются эффекторные клетки и клетки памяти (сохраняющие информацию о действовавшем антигене).

· Образующиеся Т-лимфоциты составляют пул долгоживущих , рециркулирующих лимфоцитов, а В-лимфоциты - короткоживущих клеток.

66. Хар-ка В-лимфоцитов.

В-лимфоциты являются основными клетками, участвующими в гуморальном иммунитете. У человека они образуются из СКК красного костного мозга, затем поступают в кровь и далее заселяют В-зоны периферических лимфоидных органов - селезенки, лимфатических узлов, лимфоидные фолликулы многих внутренних органов. В крови их содержится 10-30% от всей популяции лимфоцитов.

Для В-лимфоцитов характерно наличие на плазмолемме поверхностных иммуноглобулиновых рецепторов (SIg или MIg) для антигенов. Каждая В-клетка содержит 50000...150000 антигенспецифических молекул SIg. В популяции В-лимфоцитов находятся клетки с различными SIg: большинство (⅔) содержат IgM, меньшее число (⅓) - IgG и около 1-5 % - IgA, IgD, IgE. В плазмолемме В-лимфоцитов имеются также рецепторы для комплемента (С3) и Fc-рецепторы.

При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые поступают в кровь, лимфу и тканевую жидкость.

Дифференцировка В-лимфоцитов

Предшественники В-клеток (пре-В-клетки) развиваются в дальнейшем у птиц в фабрициевой сумке (bursa), откуда произошло название В-лимфоциты, у человека и млекопитающих - в костном мозге.

Сумка Фабрициуса (bursa Fabricii) - центральный орган иммунопоэза у птиц, где происходит развитие В-лимфоцитов, находится в области клоаки. Для ее микроскопического строения характерно наличие многочисленных складок, покрытых эпителием, в которых расположены лимфоидные узелки, ограниченные мембраной. В узелках содержатся эпителиоциты и лимфоциты на различных стадиях дифференцировки. В период эмбриогенеза в центре фолликула формируется мозговая зона, а на периферии (снаружи от мембраны) - корковая зона, в которую, вероятно, мигрируют лимфоциты из мозговой зоны. В связи с тем что в сумке Фабрициуса у птиц образуются исключительно В-лимфоциты, она является удобным объектом для изучения строения и иммунологических характеристик этого вида лимфоцитов. Для ультрамикроскопического строения В-лимфоцитов характерно наличие в цитоплазме групп рибосом в виде розеток. Эти клетки имеют более крупные ядра и менее плотный хроматин, чем у Т-лимфоцитов, в связи с увеличением содержания эухроматина.

В-лимфоциты отличаются от других типов клеток способностью синтезировать иммуноглобулины. Зрелые В-лимфоциты экспрессируют Ig на клеточной мембране. Такие мембранные иммуноглобулины (MIg) функционируют как антигенспецифические рецепторы.

Пре-В-клетки синтезируют внутриклеточный цитоплазматический IgM, но не имеют поверхностных иммуноглобулиновых рецепторов. Костномозговые виргильные В-лимфоциты имеют IgM-рецепторы на своей поверхности. Зрелые В-лимфоциты несут на своей поверхности иммуноглобулиновые рецепторы различных классов - IgM, IgG и др.

Дифференцированные В-лимфоциты поступают в периферические лимфоидные органы, где при действии антигенов происходят пролиферация и дальнейшая специализация В-лимфоцитов с образованием плазмоцитов и В-клеток памяти (ВП).

В ходе своего развития многие В-клетки переключаются с выработки антител одного класса на выработку антител других классов. Этот процесс называется переключением класса. Все В-клетки начинают свою деятельность по синтезу антител с выработки молекул IgM, которые встраиваются в плазматическую мембрану и служат рецепторами для антигена. Затем, еще до взаимодействия с антигеном, большая часть В-клеток переходит к одновременному синтезу молекул IgM и IgD. Когда виргильная В-клетка переходит от выработки одного лишь мембраносвязанного IgM к одновременному синтезу мембраносвязанных IgM и IgD, переключение происходит, вероятно, благодаря изменению процессинга РНК.

При стимуляции антигеном некоторые из этих клеток активируются и начинают выделять антитела IgM, преобладающие в первичном гуморальном ответе.

Другие стимулированные антигеном клетки переключаются на выработку антител классов IgG, IgE или IgA; В-клетки памяти несут эти антитела на своей поверхности, а активные В-клетки их секретируют. Молекулы IgG, IgE и IgA в совокупности называются антителами вторичных классов, так как они, по-видимому, образуются только после антигенной стимуляции и преобладают во вторичных гуморальных ответах.

При помощи моноклональных антител удалось выявить определенные дифференцировочные антигены, которые еще до появления цитоплазматических µ-цепей позволяют отнести несущий их лимфоцит к В-клеточной линии. Так, антиген CD19 является самым ранним маркером, позволяющим отнести лимфоцит к В-клеточному ряду. Он присутствует на пре-В-клетках в костном мозге, на всех периферических В-клетках.

Антиген, выявляемый моноклональными антителами группы CD20, специфичен для В-лимфоцитов и характеризует более поздние стадии дифференцировки.

На гистологических срезах антиген CD20 выявляется на В-клетках герминативных центров лимфоидных узелков, в корковом веществе лимфатических узлов. В-лимфоциты несут также ряд других (например, CD24, CD37) маркеров.

67. Макрофаги играют важную роль как в естественном, так и в приобретенном иммунитете организма. Участие макрофагов в естественном иммунитете проявляется в их способности к фагоцитозу и в синтезе ряда активных веществ - пищеварительных ферментов, компонентов системы комплемента, фагоцитина, лизоцима, интерферона, эндогенного пирогена и др., являющихся основными факторами естественного иммунитета. Их роль в приобретенном иммунитете заключается в пассивной передаче антигена иммунокомпетентным клеткам (Т- и В-лимфоцитам), в индукции специфического ответа на антигены. Макрофаги также участвуют в обеспечении иммунного гомеостаза путем контроля над размножением клеток, характеризующихся рядом отклонений от нормы (опухолевые клетки).

Для оптимального развития иммунных реакций при действии большинства антигенов необходимо участие макрофагов как в первой индуктивной фазе иммунитета, когда они стимулируют лимфоциты, так и в его конечной фазе (продуктивной), когда они участвуют в выработке антител и разрушении антигена. Антигены, фагоцитированные макрофагами, вызывают более сильный иммунный ответ по сравнению с теми, которые не фагоцитированы ими. Блокада макрофагов введением в организм животных взвеси инертных частиц (например, туши) значительно ослабляет иммунный ответ. Макрофаги способны фагоцитировать как растворимые (например, белки), так и корпускулярные антигены. Корпускулярные антигены вызывают более сильный иммунный ответ.

Некоторые виды антигенов, например пневмококки, содержащие на поверхности углеводный компонент, могут быть фагоцитированы лишь после предварительнойопсонизации . Фагоцитоз значительно облегчается, если антигенные детерминанты чужеродных клеток опсонизированы, т.е. соединены с антителом или комплексом антитела и комплемента. Процесс опсонизации обеспечивается присутствием на мембране макрофага рецепторов, которые связывают часть молекулы антитела (Fc-фрагмент) или часть комплемента (С3). С мембраной макрофага у человека непосредственно могут связываться только антитела класса IgG, когда они находятся в комбинации с соответствующим антигеном. IgM могут связываться с мембраной макрофага в присутствии комплемента. Макрофаги способны «распознавать» растворимые антигены, например гемоглобин.

В механизме распознавания антигена выделяют два этапа, тесно связанных друг с другом. Первый этап заключается в фагоцитозе и переваривании антигена. Во втором этапе в фаголизосомах макрофага накапливаются полипептиды, растворимые антигены (сывороточные альбумины) и корпускулярные бактериальные антигены. В одних и тех же фаголизосомах может быть обнаружено несколько введенных антигенов. Изучение иммуногенности различных субклеточных фракций выявило, что наиболее активное антителообразование вызывает введение в организм лизосом. Антиген обнаруживается также в мембранах клеток. Выделяемая макрофагами большая часть переработанного материала антигенов оказывает стимулирующее влияние на пролиферацию и дифференцировку клонов Т- и В-лимфоцитов. Небольшое количество антигенного материала может длительное время сохраняться в макрофагах в виде химических соединений, состоящих не менее чем из 5 пептидов (возможно, в связи с РНК).

В В-зонах лимфатических узлов и селезенки имеются специализированные макрофаги (дендритные клетки), на поверхности многочисленных отростков которых сохраняются многие антигены, попадающие в организм и передающиеся соответствующим клонам В-лимфоцитов. В Т-зонах лимфатических фолликулов расположены интердигитирующие клетки, влияющие на дифференцировку клонов Т-лимфоцитов.

Таким образом, макрофаги принимают непосредственное активное участие в кооперативном взаимодействии клеток (Т- и В-лимфоцитов) в иммунных реакциях организма.

Является регионом с одной из самых высоких плотностей локализации генов. Гены комплекса кодируют белки , локализующиеся на клеточной мембране . Они обеспечивают представление (презентацию) фрагментов антигенов микроорганизмов, попадающих в организм, T-лимфоцитам , которые уничтожают зараженные клетки или стимулируют другие клетки (В-клетки и макрофаги), что обеспечивает координацию действий различных клеток иммунной системы в подавлении инфекции. У человека главный комплекс гистосовместимости находится в хромосоме 6 и называется Человеческий лейкоцитарный антиген .

ГКГ и выбор сексуального партнёра

Ряд независимых исследований 1970-1990-х гг. показали, что на выбор полового партнёра влияет главный комплекс гистосовместимости. Эксперименты, проведенные первоначально на мышах и рыбах , затем на добровольных участниках-людях, показали, что женщины имели склонность выбирать партнёров с ГКГ, отличным от собственного, однако их выбор менялся на противоположный в случае использования гормональных оральных контрацептивов - в этом случае женщины скорее выбирали партнёра с подобным ГКГ

См. также

Примечания

Ссылки

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Главный комплекс гистосовместимости" в других словарях:

    - (МНС major histocompability complex) сем. генов, кодирующих молекулы 3 классов. У человека это комплекс HLA, расположенный в 6 й хромосоме. Обеспечивает соматическую индивидуальность и иммунореактивность индивида. Гены / класса экспрессируются на … Словарь микробиологии

    главный комплекс гистосовместимости - — Тематики биотехнологии EN major histocompatibility complex … Справочник технического переводчика

    Major histocompatibility complex, MHC главный комплекс гистосовместимости. Oтносительно небольшой участок генома, в котором сосредоточены многочисленные гены, продукты которых выполняют функции, связанные с иммунным ответом

    ГЛАВНЫЙ КОМПЛЕКС ГИСТОСОВМЕСТИМОСТИ (ГКГ) - Комплекс генов, кодирующий группу белков, обеспечивающих распознавание в организме чужеродных антигенов, т.е. веществ, генетически не свойственных данному организму. Обозначение ГКГ разных видов животных следующее: HLA человека; BoLA крупного… … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

    Ряд генов, расположенных на хромосоме № 6, которые кодируют некоторые антигены, в том числе HLA антигены; эти гены играют важную роль в процессе определения гистосовместимости у человека. Источник: Медицинский словарь … Медицинские термины

    КОМПЛЕКС ГИСТОСОВМЕСТИМОСТИ ГЛАВНЫЙ - (major histocompatibility complex, MHC) ряд генов, расположенных на хромосоме № 6, которые кодируют некоторые антигены, в том числе HLA антигены; эти гены играют важную роль в процессе определения гистосовместимости у человека … Толковый словарь по медицине

    гистосовместимости антиген - * гістасумяшчальнасці антыген * histocompatibility antigen генетически кодируемый аллоантиген, находящийся на поверхности клеток, который контролирует ответ иммуной системы на трансплантат, вследствие чего он отторгается или нет (см.).… …

    Комплекс лейкоцитарных антигенов КЛГ - Комплекс лейкоцитарных антигенов, КЛГ * комплекс лейкацытарных антыгенаў, КЛГ * human leukocyte antigen complex or HLA c. главный генный комплекс гистосовместимости (см.) у человека, занимающий в ДНК участок длиной в 3500 кб на коротком плече 6 й … Генетика. Энциклопедический словарь

    H2-Комплекс - * H2 комплекс * H2 complex главный комплекс гистосовместимости мышей. Локализован на хромосоме 17. Представлен большой группой гаплотипов … Генетика. Энциклопедический словарь

    H2 complex H2 комплекс. Главный комплекс гистосовместимости мышей; локализован на хромосоме 17, представлен большой группой гаплотипов среди них одними из наиболее изученных являются t гаплотипы Молекулярная биология и генетика. Толковый словарь.

Книги

  • , Хаитов Рахим Мусаевич. В учебном пособии представлены органные, тканевые, клеточные и молекулярные аспекты строения и функционирования системы иммунитета, рассмотрены компоненты иммунной системы, популяции…
  • Иммунология. Структура и функции иммунной системы. Учебное пособие , Хаитов Рахим Мусаевич. В учебном пособии изложены современные иммунологические знания, приемлемые для биологов, начинающих изучать предмет, а также и для опытных специалистов и преподавателей. Представлены…

Для реализации корректного иммунного ответа необходимо отличать «свое» от «чужого». Это свойство связано с системой генов, которые детерминируют синтез специфических для каждого организма молекул. Такие молекулы были открыты в конце 50-х годов прошлого века французским исследователем Жаном Доссе благодаря их способности вызывать реакцию отторжения трансплантата при пересадке ткани в пределах одного вида животных. Поэтому они были на-званы антигенами гистосовместимости, или трансплантационными антигенами. Поскольку у человека такие молекулы были впервые выявлены на лейкоцитах крови , система человеческих антигенов гистосовместимости получила название лейкоцитарных антигенов человека (Human Leukocyte Antigens), сокращенно — HLA. Соответствующий участок на 6-й хромосоме, где расположены гены, ко-дирующие антигены гистосовместимости, называется HLA-комплексом. У всех млекопитающих главный комплекс гистосовместимости называется MHC (англ. — Major Histocompatibility Complex).

Различают три класса генов главного комплекса гистосовместимости (рис. 25). Антигены HLA I и II классов отличаются по структуре., но в дальнейшем имеют разную судьбу.

I класс HLA

I класс включает локусы А, В, С, Е, О, F. Локусы А, В и С называются «клас-сическими», поскольку кодируют хорошо изученные антигены гистосовместимости. Классические антигены I класса размещены на поверхности всех клеток организма, кроме нитей трофобласта. Именно они свидетельствуют об организменной принадлежности клеток. Для генов I класса присущ огромный поли-морфизм. Так, локус А содержит 40 аллелей, В — 60 аллелей, а С — около 20. С этим связана беспрецедентная уникальность набора HLA у каждого человека.

Роль антигенов I класса, которые кодируются локусами Е, G и F, полностью не изучена. Известно, что на клетках трофобласта присутствуют молекулы, ко-дируемые только локусом G. Это считается одним из механизмов поддержания иммунной толерантности организма матери к антигенам фетоплацентарного комплекса.

Структура

Молекулы 1 класса состоят из одной тяжелой пели, которая содержит 3 до-мена, и одной легкой, образованной лишь одним доменом. При этом только тяжелая цепь имеет цитоплазматический участок и формирует пептидсвязывающую бороздку.

Синтез

Молекулы HLA I класса синтезируются на гранулярном эндоплазма-тическом ретикулуме.

HLA 1 поступа-ют в протеосомы, где пептиды, сформированные за счет деятельности LMP, загружаются в их пептидсвязывающую борозду молекулами-транспортерами (ТАР). После этого комплекс HLA-пептид по внутриклеточным коммуника-циям поступает в комплекс Гольджи и в везикулах, которые отшнуровываются от этой органеллы, перемещается в сторону внешней плазматической мемб-раны. Содержимое везикулы высвобождается наружу (экзоцитоз), а фрагмент мембраны, в который встроены новообразованные HLA I, входит в состав цитолеммы. Следует отметить, что пептиды для молекул гистосовместимости I класса всегда есть в наличии, поскольку формируются они из аутоантигенов, часть которых расщепляется LMP еще до начала выполнения своих функцио-нальных обязанностей в клетке.

II класс HLA

II класс содержит «классические» локусы DR, DQ, DP, кодирующие синтез соответствующих по названию молекул. Обычно антигены II класса находят-ся только на мембранах профессиональных антигенпрезентирующих клеток, к которым принадлежат дендритные клетки , макрофаги и В-лимфоциты. Но под влиянием интерлейкина-2 и γ-интерферона они могут дополнительно по-являться и на других клетках (в частности, на Т-лимфоцит ах и клетках эндотелия сосудов). Антигены II класса также довольно полиморфны, особенно кодируемые локусом DR. Кроме перечисленных «классических» локусов, ге-ны II класса включают еще 3 других — LMP (Large multifunctional proteasa, большая многофункциональная протеаза), ТАР (Transporter for antigen presentation, транспортер для антигенной презентации; и локус DM. Локусы LMP кодируют протеазы, осуществляющие «разрезание» макромолекулы антигена и опреде-ляющие тем самым размер образованных иммуногенных пептидов. Локус ТАР обеспечивает синтез транспортных белков, которые осуществляют доставку и «загрузку» таких иммуногенных пептидов в пептидсвязывающую бороздку молекулы HLA (в так называемый карман Беркмана). Интересно, что оба гена обслуживают синтез молекул HLA 1 класса. Локус DM кодирует синтез бел-ков, катализирующих замену «временного пептида» на специфический пептид, загружаемый в пептидсвязывающую бороздку HLA II класса в случае захвата антигенпрезентирующей клеткой антигена.

Структура

HLA II класса формируют две одинаковые по молекулярной массе цепи, каждая из которых имеет контакт с цитоплазмой и принимает учас-тие в формировании общей пептидсвязывающей борозды.

Синтез

Молекулы HLA II класса синтезируются на гранулярном эндоплазма-тическом ретикулуме.

Молекулы HLA II синтезируются в комплексе с так называемой инвариант-ной цепью, которая образует «временный пептид» (без пептида любая молеку-ла гистосовместимости нежизнеспособна). В дальнейшем образованный ком-плекс поступает в лизосомы, где разрушается гидролитическими ферментами, а сформированные мономеры используются для повторного синтеза HLA II. Так происходит до тех пор, пока антигенпрезентирующая клетка (АПК) не за-хватит антиген. В таком случае образуется фаголизосома и именно сюда пос-тупает комплекс HLA II — временный пептид. Под влиянием активированных белков DM временный пептид оставляет молекулу гистосовместимости, а на его место загружается иммуногенный пептид, образованный путем процес-синга захваченного антигена. В дальнейшем фрагменты разрушенного антиге-на удаляются из клетки путем экзоцитоза. При этом мембрана экзоцитарной вакуоли, в которую встроены комплексы HLA II — иммуногенный пептид, сливается с цитолеммой и указанные комплексы оказываются на поверхности клетки. В таком состоянии АПК готова к осуществлению антигенной презен-тации. Материал с сайта

Описанные постоянное разрушение и ресинтез молекул HLA II класса про-исходят в дендритных клетках. Хотя последние тратят энергию на, казалось бы, бессмысленную рециркуляцию HLA, они в любой момент времени пребывают в полной готовности к презентации антигена . Учитывая это, дендритные клет-ки можно сравнить с автомобилем с включенным мотором — следует лишь нажать на газ и он сразу же тронется. Макрофаги, в отличие от дендритных клеток, начинают синтез HLA II только после фагоцитоза объекта, поэто-му они более медленно включаются в процесс антигенной презентации. Сэкономленную энергию макрофаг использует для синтеза целого ряда белков, необходимых для выполнения эффекторных функций. Напомним, что макро-фаги совмещают функции антигенпрезентирующей клетки, фагоцита и клет-ки-эффектора в реакциях антителозависимой клеточно-опосредованной цито-токсичности.