Методы решения уравнения стационарной теплопроводности. Теплопроводность

Уравнение теплопроводности для нестационарного случая

нестационарным , если температура тела зависит как от положения точки, так и от времени.

Обозначим через и = и (М , t ) температуру в точке М однородного тела, ограниченного поверхностью S , в момент времени t . Известно, что количество теплоты dQ , поглощаемой за время dt , выражается равенством

где dS − элемент поверхности, k − коэффициент внутренней теплопроводности, − производная функции и по направлению внешней нормали к поверхности S . Так как распространяется в направлении понижения температуры, то dQ > 0, если > 0, и dQ < 0, если < 0.

Из равенства (1) следует

Теперь найдем Q другим способом. Выделим элемент dV объема V , ограниченного поверхностью S . Количество теплоты dQ , получаемой элементом dV за время dt , пропорционально повышению температуры в этом элементе и массе самого элемента, т.е.

где плотность вещества, коэффициент пропорциональности, называемый теплоемкостью вещества.

Из равенства (2) следует

Таким образом,

где . Учитывая, что = , , получим

Заменяя правую часть равенства с помощью формулы Остроградского – Грина, получим

для любого объема V . Отсюда получаем дифференциальное уравнение

которое называют уравнением теплопроводности для нестационарного случая .

Если тело есть стержень, направленный по оси Ох , то уравнение теплопроводности имеет вид

Рассмотрим задачу Коши для следующих случаев.

1. Случай неограниченного стержня. Найти решение уравнения (3) (t > 0, ), удовлетворяющее начальному условию . Используя метод Фурье, получим решение в виде

− интеграл Пуассона.

2. Случай стержня , ограниченного с одной стороны. Решение уравнения (3), удовлетворяющее начальному условию и краевому условию , выражается формулой

3. Случай стержня , ограниченного с двух сторон. Задача Коши состоит, чтобы при х = 0 и х = l найти решение уравнения (3), удовлетворяющее начальному условию и двум краевым условиям, например, или .

В этом случае частное решение ищется в виде ряда

для краевых условий ,

и в виде ряда

для краевых условий .

Пример. Найти решение уравнения

удовлетворяющее начальным условиям

и краевым условиям .

□ Решение задачи Коши будем искать в виде

Таким образом,

Уравнение теплопроводности для стационарного случая

Распределение тепла в теле называют стационарным , если температура тела и зависит от положения точки М (х , у , z ), но не зависит от времени t , т.е.


и = и (М ) = и (х , у , z ).

В этом случае 0 и уравнение теплопроводности для стационарного случая обращается в уравнение Лапласа

которое часто записывают в виде .

Чтобы температура и в теле определялась однозначно из этого уравнения, нужно знать температуру на поверхности S тела. Таким образом, для уравнения (1) краевая задача формулируется следующим образом.

Найти функцию и , удовлетворяющую уравнению (1) внутри объема V и принимающую в каждой точке М поверхности S заданные значения

Эта задача называется задачей Дирихле или первой краевой задачей для уравнения (1).

Если на поверхности тела температура неизвестна, а известен тепловой поток в каждой точке поверхности, который пропорционален , то на поверхности S вместо краевого условия (2) будем иметь условие

Задача нахождения решения уравнения (1), удовлетворяющего краевому условию (3), называется задачей Неймана или второй краевой задачей .

Для плоских фигур уравнение Лапласа записывается в виде

Такой же вид имеет уравнение Лапласа и для пространства, если и не зависит от координаты z , т.е. и (М ) сохраняет постоянное значение при перемещении точки М по прямой, параллельной оси Oz .

Заменой , уравнение (4) можно преобразовать к полярным координатам

С уравнением Лапласа связано понятие гармонической функции. Функция называется гармонической в области D , если в этой области она непрерывна вместе со своими производными до второго порядка включительно и удовлетворяет уравнению Лапласа.

Пример. Найти стационарное распределение температуры в тонком стержне с теплоизолированной боковой поверхностью, если на концах стержня , .

□ Имеем одномерный случай. Требуется найти функцию и , удовлетворяющую уравнению и краевым условиям , . Общее уравнение указанного уравнения имеет вид . Учитывая краевые условия, получим

Таким образом, распределение температуры в тонком стержне с теплоизолированной боковой поверхностью линейно. ■

Задача Дирихле для круга

Пусть дан круг радиуса R с центром в полюсе О полярной системы координат. Надо найти функцию , гармоническую в круге и удовлетворяющую на его окружности условию , где − заданная функция, непрерывная на окружности. Искомая функция должна удовлетворять в круге уравнению Лапласа

Используя метод Фурье, можно получить

− интеграл Пуассона.

Пример. Найти стационарное распределение температуры на однородной тонкой круглой пластинке радиуса R , верхняя половина поддерживается при температуре , а нижняя – при температуре .

□ Если , то , а если , то . Распределение температуры выражается интегралом

Пусть точка расположеиа в верхнем полукруге, т.е. ; тогда изменяется от до , и этот интервал длины не содержит точек . Поэтому введем подстановку , откуда , . Тогда получим

Так правая часть отрицательна, то и при удовлетворяет неравенствам . Для этого случая получаем решение

Если же точка расположена в нижнем полукруге, т.е. , то интервал изменения содержит точку , но не содержит 0, и можно сделать подстановку , откуда , , Тогда для этих значений имеем

Проведя аналогичные преобразования, найдем

Так как правая часть теперь положительна , то . ■

Метод конечных разностей для решения уравнения теплопроводности

Пусть требуется найти решение уравнения

удовлетворяющее:

начальному условию

и краевым условиям

Итак, требуется найти решение уравнения (1), удовлетворяющее условиям (2), (3), (4), т.е. требуется найти решение в прямоугольнике, ограниченном прямыми , , , , если заданы значения искомой функции на трех его сторонах , , .

Построим прямоугольную сетку, образованную прямыми

− шаг вдоль оси Ох ;

− шаг вдоль оси Оt .

Введем обозначения:

Из понятия конечных разностей можно записать

аналогично

Учитывая формулы (6), (7) и введенные обозначения, запишем уравнение (1) в виде

Отсюда получим расчетную формулу

Из (8) следует, что если известны три значения к k -ом слое сетки: , , , то можно определить значение в (k + 1)-ом слое.

Начальное условие (2) позволяет найти все значения на прямой ; краевые условия (3), (4) позволяют найти значения на прямых и . По формуле (8) находим значения во всех внутренних точках следующего слоя, т.е. для k = 1. Значения искомой функции в крайных точках известны из граничных условий (3), (4). Переходя от одного слоя сетки к другому, определяем значения искомого решения во всех узлах сетки. ;

Изучение любого физического явления сводится к установлению зависимости между величинами, характеризующими это явление. Для сложных физических процессов, в которых определяющие величины могут существенно изменяться в пространстве и времени, установить зависимость между этими величинами достаточно сложно. В таких случаях используют методы математической физики, которые заключаются в том, что ограничивается промежуток времени и из всего пространства рассматривается некоторый элементарный объем. Это позволяет в пределах выбранного объема и данного промежутка времени пренебречь изменениями величин, характеризующих процесс, и существенно упростить зависимость.

Выбранные таким образом элементарный объем dV и элементарный промежуток времени , в пределах которых рассматривается процесс, с математической точки зрения являются величинами бесконечно малыми, а с физической точки зрения – величинами еще достаточно большими, чтобы в их пределах можно было считать среду как сплошную, пренебрегая ее дискретным строением. Полученная таким образом зависимость является общим дифференциальным уравнением процесса. Интегрируя дифференциальные уравнения, можно получить аналитическую зависимость между величинами для всей области интегрирования и всего рассматриваемого промежутка времени.

Для решения задач, связанных с нахождением температурного поля, необходимо иметь дифференциальное уравнение теплопроводности.

Примем следующие допущения:

    тело однородно и изотропно;

    физические параметры постоянны;

    деформация рассматриваемого объема, связанная с изменением температуры, очень мала по сравнению с самим объемом;

    внутренние источники теплоты в теле, распределены равномерно.

В основу вывода дифференциального уравнения теплопроводности положим закон сохранения энергии, который сформулируем так:

Количество теплоты dQ , введенное в элементарный объем dV извне за время вследствие теплопроводности, а также от внутренних источников, равно изменению внутренней энергии или энтальпии вещества, содержащегося в элементарном объеме.

где dQ 1 – количество теплоты, введенное в элементарный объем dV путем теплопроводности за время ;

dQ 2 – количество теплоты, которое за время выделилось в элементарном объеме dV за счет внутренних источников;

dQ – изменение внутренней энергии (изохорный процесс) или энтальпии вещества (изобарный процесс), содержащегося в элементарном объеме dV за время .

Для получения уравнения рассмотрим элементарный объем в виде кубика со сторонами dx , dy , dz (см. рис.1.2.). Кубик расположен так, чтобы его грани были параллельны соответствующим координатным плоскостям. Количество теплоты, которое подводится к граням элементарного объема за время в направлении осей x , y , z обозначим соответственно dQ x , dQ y , dQ z .

Количество теплоты, которое будет отводиться через противоположные грани в тех же направлениях, обозначим соответственно dQ x + dx , dQ y + dy , dQ z + dz .

Количество теплоты, подведенное к грани dxdy в направлении оси x за время , составляет:

где q x – проекция плотности теплового потока на направление нормали к указанной грани. Соответственно количество теплоты, отведенное через противоположную грань будет:

Разница между количеством теплоты, подведенном к элементарному объему, и количеством теплоты, отведенного от него, представляет собой теплоту:

Функция q является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора:

Если ограничиться двумя первыми слагаемыми ряда, то уравнение запишется в виде:

Аналогичным образом можно найти количество теплоты, подводимое к объему в направлении двух других координатных осей y и z .

Количество теплоты dQ , подведенное в результате теплопроводности к рассматриваемому объему, будет равно:

Второе слагаемое определим, обозначив количество теплоты, выделяемое внутренними источниками в единице объема среды в единицу времени q v и назовем его мощностью внутренних источников теплоты [Вт/м 3 ], тогда:

Третья составляющая в нашем уравнении найдется в зависимости от характера ТД процесса изменения системы.

При рассмотрении изохорного процесса вся теплота, подведенная к элементарному объему, уйдет на изменение внутренней энергии вещества, заключенного в этом объеме, т.е. dQ = dU .

Если рассматривать внутреннюю энергию единицы объема u = f (t , v ) , то можно записать:

, Дж/м 3

, Дж/кг

где c v изохорная теплоемкость или единицы объема или единицы массы, [Дж/м 3 ];

ρ – плотность, [кг/м 3 ].

Соберем полученные выражения:

Полученное выражение является дифференциальным уравнением энергии для изохорного процесса переноса теплоты .

Аналогично выводится уравнение для изобарного процесса. Вся теплота, подведенная к объему уйдет на изменение энтальпии вещества, заключенного в объеме.

Полученное соотношение является дифференциальным уравнением энергии для изобарного процесса.

В твердых телах перенос теплоты осуществляется по закону Фурье
, значение теплоемкости можно принять
. Напомним, что проекция вектора плотности теплового потока на координатные оси определяются выражениями:



Последнее выражение называют дифференциальным уравнением теплопроводности. Оно устанавливает связь между временным и пространственным изменениями температуры в любой точке тела, в котором происходит процесс теплопроводности.

Наиболее общее дифференциальное уравнение теплопроводности в частных производных имеет такую же форму, но в нем величины ρ , , с являются функциями времени и пространства. Это уравнение описывает большое количество задач теплопроводности, представляющих практический интерес. Если принять теплофизические параметры постоянными, то уравнение будет проще:

Обозначим
, тогда:

Коэффициент пропорциональности а [м 2 /с] называется коэффициентом температуропроводности и является физическим параметром вещества. Он существенен для нестационарных тепловых процессов характеризует скорость изменения температуры. Если коэффициент теплопроводности характеризует способность тел проводить теплоту, то коэффициент температуропроводности является мерой теплоинерционных свойств тела. Например, жидкости и газы обладают большей тепловой инерционностью и, следовательно, малым коэффициентом температуропроводности, а металлы наоборот имеют малую тепловую инерционность.

Если имеются внутренние источники теплоты, а температурное поле является стационарным, то мы получаем уравнение Пуассона:

Наконец, при стационарной теплопроводности и отсутствии внутренних источников теплоты мы получаем уравнение Лапласа:

Условия однозначности для теплопроводности.

Так как дифференциальное уравнение теплопроводности выведено из общих законов физики, то оно описывает целый класс явлений. Для его решения необходимо задать граничные условия или условия однозначности.

Условия однозначности включают:

    геометрические условия – характеризуют форму и размеры тела;

    физические условия – характеризуют физические свойства среды и тела;

    начальные (временные) условия – характеризуют распределение температур в теле в начальный момент времени, задаются при исследовании нестационарных процессов;

    граничные условия – характеризуют взаимодействие рассматриваемого тела с окружающей средой.

Граничные условия могут быть заданы несколькими способами.

Граничные условия первого рода. Задается распределение температуры на поверхности тела для каждого момента времени:

t c = f (x , y , z , τ )

где t c – температура на поверхности тела;

x , y , z – координаты поверхности тела.

В частном случае, когда температура на поверхности является постоянной на протяжении всего времени протекания процессов теплообмена, уравнение упрощается:

t c = const

Граничные условия второго рода. Задаются значения теплового потока для каждой точки поверхности тела и любого момента времени. Аналитически выглядит так:

q c = f (x , y , z , τ )

В простейшем случае плотность теплового потока по поверхности тела остается постоянной. Такой случай имеет место при нагревании металлических изделий в высокотемпературных печах.

Граничные условия третьего рода. При этом задаются температура окружающей среды t ср и закон теплообмена между поверхностью тела и средой. Для описания процесса теплообмена используется закон Ньютона-Рихмана. Согласно этому закону количество теплоты, отдаваемое или принимаемое единицей поверхности тела в единицу времени, пропорционально разности температур поверхности тела и среды:

где α коэффициент пропорциональности, называется коэффициентом теплоотдачи [Вт/(м 2 ·К)], характеризует интенсивность теплообмена. Численно он равен количеству теплоты, отдаваемому единицей поверхности тела в единицу времени при разности температур равной одному градусу. Согласно закону сохранения энергии количество теплоты, которое отводится окружающей среде, должно равняться теплу, подводимому вследствие теплопроводности из внутренних частей тела, то есть:

Последнее уравнение является граничным условием третьего рода.

Встречаются более сложные технические задачи, когда ни одно из перечисленных условий задать невозможно, и тогда приходится решать задачу методом сопряжения. При решении такой задачи должны выполняться условия равенства температур и тепловых потоков по обе стороны от границы раздела. В общем случае условия сопряженности можно записать:

Решение сопряженной задачи связано с нахождением температурных полей по обе стороны границы раздела.

Решение алгебраических уравнений методом Ньютона

Достаточно популярным методом решения уравнений является метод касательных , или метод Ньютона . В этом случае уравнение вида f (x ) = 0 решается следующим образом. Сначала выбирается нулевое приближение (точка x 0). В этой точке строится касательная к графику y = f (x ). Точка пересечения этой касательной с осью абсцисс является следующим приближением для корня (точка x 1). В этой точке снова строится касательная и т.д. Последовательность точек x 0 , x 1 , x 2 … должна привести к истинному значению корня. Условием сходимости является .

Так как уравнение прямой, проходящей через точку x 0 , f (x 0) (а это и есть касательная), записывается в виде

а в качестве следующего приближения x 1 для корня исходного уравнения принимается точка пересечения этой прямой с осью абсцисс, то следует положить в этой точке y = 0:

откуда немедленно следует уравнение для нахождения следующего приближения через предыдущее:

На Рис. 3 показана реализация метода Ньютона средствами Excel. В ячейку B3 вводится начальное приближение (x 0 = -3), а затем остальных ячейках столбца вычисляются все промежуточные величины вплоть до вычисления x 1 . Для выполнения второго шага в ячейку C3 вводится значение из ячейки B10 и процесс вычислений повторяется в столбце C. Затем, выделив ячейки C2:C10 можно, потянув за маркер в правом нижнем углу выделенной области, распространить его на столбцы D:F. В итоге в ячейке F6 получено значение 0, т.е. значение в ячейке F3 есть корень уравнения.

Этот же результат можно получить, используя циклические вычисления. Тогда после заполнения первого столбца и получения первого значения x 1 следует ввести в ячейку H3 формулу =H10. При этом вычислительный процесс будет зациклен и для того, чтобы он выполнялся, в меню Сервис | Параметры на вкладке Вычисления необходимо установить флажок Итерации и указать предельное число шагов итерационного процесса и относительную погрешность (установленное по умолчанию число 0,001 явно недостаточно во многих случаях), по достижении которой вычислительный процесс остановится.

Как известно, такие физические процессы, как перенос тепла, перенос массы в процессе диффузии, подчиняются закону Фика

где l - коэффициент теплопроводности (диффузии), а T – температура (концентрация), а – поток соответствующей величины. Из математики известно, что дивергенция потока равна объемной плотности источника Q этой величины, т.е.

или, для двухмерного случая, когда исследуется распределение температуры в одной плоскости, это уравнение может быть записано в виде:

Решение этого уравнения аналитически возможно только для областей простой формы: прямоугольник, круг, кольцо. В остальных ситуациях точное решение этого уравнения невозможно, т.е. невозможно и определить распределение температуры (или концентрации вещества) в сложных случаях. Тогда приходится использовать приближенные методы решения таких уравнений.

Приближенное решение уравнения (4) в области сложной формы состоит из нескольких этапов: 1) построение сетки; 2) построение разностной схемы; 3) решение системы алгебраических уравнений. Рассмотрим последовательно каждый из этапов и их реализацию с помощью пакета Excel.

Построение сетки. Пусть область имеет форму, показанную на рис. 4. При такой форме точное аналитическое решение уравнения (4), например, методом разделения переменных, невозможно. Поэтому будем искать приближенное решение этого уравнения в отдельных точках. Нанесем на область равномерную сетку, состоящую из квадратов со стороной h . Теперь, вместо того, чтобы искать непрерывное решение уравнения (4), определенное в каждой точке области, будем искать приближенное решение, определенное только в узловых точках сетки, нанесенной на область, т.е. в углах квадратов.

Построение разностной схемы. Для построения разностной схемы рассмотрим произвольный внутренний узел сетки Ц (центральный) (рис.5). С ним соседствуют четыре узла: В (верхний), Н (нижний), Л (левый) и П (правый). Напомним, расстояние между узлами в сетке равно h . Тогда, используя выражение (2) для приближенной записи вторых производных в уравнении (4), можно приближенно записать:

откуда легко получить выражение, связывающее значение температуры в центральной точке с ее значениями в соседних точках:

Выражение (5) позволяет нам, зная значения температуры в соседних точках, вычислить ее значение в центральной точке. Такая схема, в которой производные заменяются конечными разностями, а для поиска значений в точке сетки используются только значения в ближайших соседних точках, называется цетрально-разностной схемой, а сам метод – методом конечных разностей.

Нужно понимать, что уравнение, аналогичное (5), мы получаем ДЛЯ КАЖДОЙ точки сетки, которые, таким образом, оказываются связанными друг с другом. То есть мы имеем систему алгебраических уравнений, в которой число уравнений равно числу узлов сетки. Решать такую систему уравнений можно различными методами.

Решение системы алгебраических уравнений. Метод итераций. Пусть в граничных узлах температура задана и равна 20, а мощность теплового источника равна 100. Размеры нашей области заданы и равны по вертикали 6, а по горизонтали 8, так что сторона квадрата сетки (шаг) h = 1. Тогда выражение (5) для вычисления температуры во внутренних точках принимает вид


Поставим в соответствие каждому УЗЛУ ячейку на листе Excel. В ячейках, соответствующих граничным точкам, введем число 20 (на рис. 6 они выделены серым цветом). В остальных ячейках запишем формулу (6). Например в ячейке F2 она будет выглядеть следующим образом: =(F1 + F3 + E2 + G2)/4 + 100*(1^2)/4. Записав эту формулу в ячейку F2, можно ее скопировать и вставить в остальные ячейки области, соответствующие внутренним узлам. При этом Excel будет сообщать о невозможности проведения вычислений из-за зацикливания результатов:

Нажмите «Отмена» и перейдите в окно Сервис|Параметры|Вычисления , где установите флажок в разделе «Итерации», указав при этом в качестве относительной погрешности величину 0,00001, а в качестве предельного количества итераций 10000:

Такие значения обеспечат нам малую СЧЁТНУЮ погрешность и гарантируют, что итерационный процесс дойдет до заданной погрешности.

Однако эти значения НЕ ОБЕСПЕЧИВАЮТ малую погрешность самого метода, так как последняя зависит от погрешности при замене вторых производных конечными разностями. Очевидно, что эта погрешность тем меньше, чем меньше шаг сетки, т.е. размер квадрата, на котором строится наша разностная схема. Это означает, что точно ВЫЧИСЛЕННОЕ значение температуры в узлах сетки, представленное на рис. 6, на самом деле может оказаться совсем не соответствующим действительности. Существует единственный метод проверить найденное решение: найти его на более мелкой сетке и сравнить с предыдущим. Если эти решения отличаются мало, то можно считать, что найденное распределение температуры соответствует действительности.

Уменьшим шаг вдвое. Вместо 1 он станет равным ½. Число узлов у нас соответственно изменится. По вертикали вместо 7 узлов (было 6 шагов, т.е. 7 узлов) станет 13 (12 квадратов, т.е. 13 узлов), а по горизонтали вместо 9 станет 17. При этом не следует забывать, что величина шага уменьшилась вдвое и теперь в формуле (6) вместо 1 2 нужно в правой части подставлять (1/2) 2 . В качестве контрольной точки, в которой будем сравнивать найденные решения, возьмем точку с максимальной температурой, отмеченную на рис. 6 желтым цветом. Результат вычислений показан на рис. 9:

Видно, что уменьшение шага привело к существенному изменению значения температуры в контрольной точки: на 4%. Для повышения точности найденного решения следует ещё уменьшить шаг сетки. Для h = ¼ получим в контрольной точке 199,9, а для h = 1/8 соответствующее значение равно 200,6. Можно построить график зависимости найденной величины от величины шага:

Из рисунка можно сделать вывод, что дальнейшее уменьшение шага не приведет к существенному изменению температуры в контрольной точке и точность найденного решения можно считать удовлетворительной.

Используя возможности пакета Excel, можно построить поверхность температуры, наглядно представляющую ее распределение в исследуемой области.

Теплопроводность - это один из видов теплопередачи. Передача тепла может осуществляться с помощью различных механизмов.

Все тела излучают электромагнитные волны. При комнатной температуре это в основном излучение инфракрасного диапазона. Так происходит лучистый теплообмен .

При наличии поля тяжести еще одним механизмом теплопередачи в текучих средах может служить конвекция . Если к сосуду, содержащему жидкость или газ, тепло подводится через днище, в первую очередь прогреваются нижние порции вещества, их плотность уменьшается, они всплывают вверх и отдают часть полученного тепла верхним слоям.

При теплопроводности перенос энергии осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией.

В нашем курсе будет рассматриваться передача теплоты путем теплопроводности.

Рассмотрим сначала одномерный случай, когда температура зависит только от одной координаты х . Пусть две среды разделены плоской перегородкой толщины l (рис. 23.1). Температуры сред Т 1 и Т 2 поддерживаются постоянными. Опытным путем можно установить, что количество тепла Q , переданное через участок перегородки площадью S за время t равно

, (23.1)

где коэффициент пропорциональности k зависит от материала стенки.

При Т 1 > Т 2 тепло переносится в положительном направлении оси х , при Т 1 < Т 2 – в отрицательном. Направление распространения тепла можно учесть, если в уравнении (23.1) заменить (Т 1 - Т 2)/l на (- dT /dx ). В одномерном случае производная dT /dx представляет собой градиент температуры . Напомним, что градиент – это вектор, направление которого совпадает с направлением наиболее быстрого возрастания скалярной функции координат (в нашем случае Т ), а модуль равен отношению приращения функции при малом смещении в этом направлении к расстоянию, на котором это приращение произошло.

Чтобы придать уравнениям, описывающим перенос тепла, более общий и универсальный вид, ведем в рассмотрение плотность потока тепла j - количество тепла, переносимое через единицу площади в единицу времени

Тогда соотношение (23.1) можно записать в виде

Здесь знак «минус» отражает тот факт, что направление теплового потока противоположно направлению градиента температуры (направлению ее возрастания). Таким образом, плотность потока тепла является векторной величиной. Вектор плотности потока тепла направлен в сторону уменьшения температуры.

Если температура среды зависит от всех трех координат, то соотношение (23.3) принимает вид

где , - градиент температуры (е 1 , е 2 , е 3 - орты осей координат).

Соотношения (23.3) и (23.4) представляют основной закон теплопроводности (закон Фурье): плотность потока тепла пропорциональна градиенту температуры. Коэффициент пропорциональности k называется коэффициентом теплопроводности (или просто теплопроводностью). Т.к. размерность плотности потока тепла [j ] = Дж/(м 2 с), а градиента температуры [dT/dx ] = К/м, то размерность коэффициента теплопроводности [k] = Дж/(м×с×К).

В общем случае температура в различных точках неравномерно нагретого вещества меняется с течением времени. Рассмотрим одномерный случай, когда температура зависит только от одной пространственной координаты х и времени t ,и получим уравнение теплопроводности - дифференциальное уравнение, которому удовлетворяет функция T = T (x ,t ).

Выделим мысленно в среде малый элемент объема в виде цилиндра или призмы, образующие которого параллельны оси х , а основания перпендикулярны (рис 23.2). Площадь основания S , а высота dx . Масса этого объема dm = rSdx , а его теплоемкость c×dm где r - плотность вещества, с - удельная теплоемкость. Пусть за малый промежуток времени dt температура в этом объеме изменилась на dT . Для этого вещество в объеме должно получить количество тепла, равное произведению его теплоемкости на изменение температуры: . С другой стороны, dQ можно может поступить в объем только через основания цилиндра: (плотности потоков тепла j могут быть как положительными, так и отрицательными). Приравнивая выражения для dQ , получим

.

Заменяя отношения малых приращений соответствующими производными, придем к соотношению

. (23.5)

Подставим в формулу (23.5) выражение (23.3) для плотности потока тепла

. (23.6)

Полученное уравнение называется уравнением теплопроводности . Если среда однородна, и теплопроводность k не зависит от температуры, уравнение принимает вид

, (23.7)

где постоянная называется коэффициентом температуропроводности среды.

Уравнениям (23.6) – (23.8) удовлетворяет бесчисленное множество функций T = T (x ,t ).

Для выделения единственного решения уравнения теплопроводности необходимо к уравнению присоединить начальные и граничные условия.

Начальное условие состоит в задании распределения температуры в среде Т (х ,0) в начальный момент времени t = 0.

Граничные условия могут быть различными в зависимости от температурного режима на границах. Чаще всего встречаются ситуации, когда на границах заданы температура или плотность потока тепла как функции времени.

В ряде случаев в среде могут оказаться источники тепла. Теплота может выделяться в результате прохождения электрического тока, химических или ядерных реакций. Наличие источников тепла можно учесть введением объемной плотности энерговыделения q (x ,y ,z ), равной количеству теплоты, выделяемому источниками в единице объема среды за единицу времени. В этом случае в правой части уравнения (23.5) появится слагаемое q :

.

Вывод уравнения теплопроводности

Представим однородное тело и вычленим из него элементарный объем со сторонами, (рисунок 1).

Рисунок 1. Контрольный объем в прямоугольной системе координат

Входящие потоки тепла, расположенные перпендикулярно к поверхностям обозначим как, . Потоки на противоположных поверхностях выразим из рядов Тейлора:

Внутри тела так же могут быть внутренние источники тепла, если и стоки, если:

Изменение внутренней энергии:

Подставим уравнения (1.1.1) в получившееся уравнение (1.1.5):

Подставив их в уравнение (1.1.6), получим уравнение теплопроводности в общем виде для трехмерного пространства:

Введем коэффициент температуропроводности:

и опустим внутренние источники тепла. Получим уравнение теплопроводности в трехмерном пространстве без внутренних источников тепла:

Условия однозначности

Уравнение (1.1) описывает процесс в общем виде. Для ее применения к конкретной задаче необходимы дополнительные условия, называемые условиями однозначности. Данные условия включают в себя геометрические(форма и размеры тела), физические (физические свойства тела), временные(начальное распределение температуры) и граничные условия(описывают процесс теплообмена с окружающей средой).

Граничные условия можно разделить на три основных рода :

1. Граничные условия Дирихле: задано значение функции на границе.

В случае задачи теплопроводности задают значения температуры на поверхности тела.

2. Граничные условия Неймана: задана нормальная производная функции на границе.

Задают плотность теплового потока на поверхности тела.

3. Граничные условия Робена: задана линейная комбинация значения функции и ее производной на границе.

Описывают теплообмен между поверхностью тела и окружающей средой по закону Ньютона-Рихмана.

В данной работе будут использованы только граничные условия Дирихле, в силу сложности реализации остальных граничных условий.