Многофакторный корреляционный и регрессионный анализ. О значимости факторов нельзя судить по значению коэффициента регрессии

Как известно, явления общественной жизни складываются под воздействием не одного, а целого ряда факторов.

Многофакторный корреляционный и регрессионный анализ позволяет оценить меру влияния на исследуемый результативный показатель каждого из включенных в модель (уравнение) факторов при фиксированном положении (на среднем уровне) остальных факторов. Он позволяет также при любых возможных сочетаниях факторов с определенной степенью точности найти теоретическое значение этого показателя (важным условием является отсутствие между факторами функциональной связи).

Математически задача формулируется следующим образом. Требуется найти аналитическое выражение, наилучшим образом отражающее установленную теоретическим анализом связь независимых признаков с результативным, т.е. функцию:

В условиях использования ЭВМ выбор аппроксимирующей математической функции осуществляется перебором решений, наиболее часто применяемых в анализе корреляции уравнений регрессии.

После выбора типа аппроксимирующей функции приступают к многофакторному корреляционному и регрессионному анализу, задачей которого является построение уравнения множественной регрессии и нахождение его неизвестных параметров.

Параметры уравнения множественной регрессии, как и в случае парной регрессии, находят по способу наименьших квадратов.

Для расчета параметров простейшего уравнения множественной линейной двухфакторной регрессии, которая имеет вид:

где _ расчетные значения зависимой переменной (результативного признака);

x 1, х 2 _ независимые переменные (факторные признаки);

a 0, a 1, a 2 _ параметры уравнения,

строится следующая система нормальных уравнений:

(8.5)

Параметры этой системы могут быть найдены методом К. Гаусса.

Парные коэффициенты корреляции применяются для измерения тесноты связи между двумя из рассматриваемых переменных (без учета их взаимодействия с другими переменными). Методика расчета таких коэффициентов и их интерпретация аналогичны методике расчета линейного коэффициента корреляции в случае однофакторной связи. Если известны средние квадратические отклонения анализируемых величин, то парные коэффициенты корреляции можно рассчитать проще, по следующим формулам:



(8.6)

(8.7)

. (8.8)

Частные коэффициенты корреляции. Однaкo в реальныx условиях все переменные, как правило, взaимoсвязaны. Тeснота этой связи определяется частными кoэффициентами корреляции, которые характеризуют степень и влияние одного из аргументов на функцию при условии, что остальные независимые переменные закреплены на постоянном уровне. В зависимости от количества переменных, влияние которых исключается, частные коэффициенты корреляции могут быть различного порядка: при исключении влияния одной переменной получаем частный коэффициент корреляции первого порядка; при исключении влияния двух переменных _ второго порядка и т.д. Парный коэффициент корреляции между функцией и аргументом обычно не равен соответствующему частному коэффициенту.

Частный коэффициент корреляции первого порядка между признаками x 1 и y при исключении влияния признака х 2 вычисляют по формуле:

(8.9)

Зависимость y от х 2 при исключенном влиянии x 1 рассчитывают по формуле:

(8.10)

(8.11)

где r _ парные коэффициенты корреляции между соответствующими признаками.

Показателем тесноты связи, устанавливаемой между результативными и двумя или более факторными признаками, является совокупный коэффициент множественной корреляции _ . В случае линейной двухфакторной связи совокупный коэффициент множественной корреляции может быть рассчитан по формуле:

(8.12)

где r _ линейные коэффициенты корреляции (парные); подстрочные индексы показывают, между какими признаками они исчисляются.

Совокупный коэффициент множественной корреляции измеряет одновременное влияние факторных признаков на результативный. Его значения находятся в пределах _1 до +1. Чем меньше наблюдаемые значения изучаемого показателя отклоняются от линии множественной регрессии, тем корреляционная связь является более интенсивной, а следовательно, значение R ближе к единице.

Совокупный коэффициент множественной детерминации. Величина R 2 называется совокупным коэффициентом множественной детерминации . Она показывает, какая доля вариации изучаемого показателя объясняется влиянием факторов, включенных в уравнение множественной регрессии. Значение совокупного коэффициента множественной детерминации находится в пределах от 0 до 1. Поэтому, чем ближе R 2 к единице, тем вариация изучаемого показателя в большей мере характеризуется влиянием отобранных факторов.

Динамические ряды

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://сайт

Многофакторная модель корреляционно-регрессионного ан а лиза

С помощью корреляционно-регрессионного анализа мы сможем определить динамику стоимости недвижимости, и влияние отдельных факторов на стоимость недвижимости, а так же установим, какие из этих факторов оказывают наибольшее влияние на стоимость недвижимости.

Система факторов всегда формируется на стадии логического анализа. Конкретное построение модели осуществляется на основе собранной исходной информации с количественными оценками факторов.

Показатели, включаемые в статистическую модель, должны быть качественно однородны, независимы друг от друга, достаточны по количеству измерителей для статистической обоснованности результатов регрессионного анализа. Количество измерений должно превосходить число факторов не менее чем в 2 раза.

Этапы выполнения работы:

1. Ввод исходных данных;

2. Расчет корреляционной матрицы;

3. Определить коллинеарность;

4. Определить параметры уравнения регрессии;

5. Анализ факторов по коэффициенту эластичности;

6. Оценка параметров уравнения регрессии;

7. Оценить значимость показателей тесноты связи r;

8. Оценка значимости коэффициента детерминации R 2 ;

9. Доверительные интервалы для коэффициентов уравнения регрессии;

10. Доверительные интервалы для средних значений факторных признаков;

11. Автокорреляция

Пример расчета

1. Ввод исходных данных

Систему функциональных показателей формируем на стадии логического анализа.

При построении многофакторной модели прогнозирования стоимости недвижимости, могут быть включены следующие факторы:

Результирующий признак: Y -стоимость недвижимости, $;

Факторные признаки:

Х 1 -стоимость одного квадратного метра объекта, $;

Х 2 - валютный курс;

Х 3 - уровень доходности населения, $;

Х 4 - социально-политическое положение, баллы;

Х 5 - инфраструктура, баллы;

Х 6 - состояние объекта, ремонт, баллы;

Х 7 - количество телефонов, штук;

Х 8 - количество телефонов

Так как для статистического анализа требуется ввести факторы за какой-то промежуток времени, то нами была составлена таблица данных факторов для нескольких наблюдений за 10 лет, которая представлена ниже:

2. Расчет корреляционной матрицы

Введем составленную матрицу в Excel. С помощью надстройки Анализ данных в меню Сервис рассчитаем корреляционную матрицу. Для этого в появившемся окне “Анализ данных” в поле “Инструменты анализа” активизируем строку “Корреляция”. В окне “Корреляция” введем входной интервал, выделяя с помощью мыши столбы и строки исходной таблицы, включая заголовки (за исключением столбца годы); установим флаг на “Метки в первой строке”; затем в поле “Выходной интервал” укажем левую верхнюю ячейку, начиная с которой должна появиться матрица результатов - корреляционная матрица.

Корреляционная матрица:

Корреляционная матрица - симметричная матрица, в которой относительно главной диагонали, на пересечении i-ой строки и j-го столбца, расположены коэффициенты парной корреляции между i-мы и j-ми факторами. По главной диагонали коэффициенты равны 1.

В последней строке корреляционной матрицы расположены коэффициенты парной корреляции между факторными и результирующим признаками.

Учитывая, что, при r < 0 связь обратная, при r > 0 - связь прямая.

Анализируя первый столбец корреляционной матрицы, отберем факторы, влияющие на результирующий признак.

Если коэффициент корреляции, то связь между i-ым фактором и результирующим признаком тесная, тогда этот фактор влияет на среднемесячную заработную плату и остается в модели. В соответствии с этим выпишем соответствующие коэффициенты корреляции:

Вывод: Анализ последней строчки корреляционной матрицы показывает, что факторы Х2 , Х4 , Х5 , Х6 , Х8 исключаются из модели, так как коэффициент корреляции, а для дальнейшего рассмотрения в данной модели остаются факторы Х1 , Х3 , Х7 .

3 . Определение колинеарности

Колинеарность - это зависимость факторных признаков между собой. Связь между факторными и результирующим признаками должна быть более тесная, чем связь между самими факторами, то есть для любой пары отобранных факторов должно выполнять отношение:

Если соотношения данной системы выполняются, то оба фактора остаются в модели. Если соотношения не выполняются, то один из факторов нужно исключить из модели. Обычно исключаются факторы с меньшим коэффициентом корреляции, зависимость которых с результирующим меньше. Но при удалении факторов в каждой конкретной задаче необходимо смотреть смысловое содержание факторов. Формальный подход не допустим.

Определяем колинеарность между факторами:

условие выполняется, оба фактора остаются в модели;

условие не выполняется, фактор Х 7 исключается, так как;

Вывод: Таким образом, в результате анализа, для составления прогнозируемой функции оставляем фактор Х 1 , Х 3 . Тогда уравнение регрессии приобретает следующий вид:

Y 0 + a 1 x 1 + a 2 x 3

4 . Определение параметров уравнения регрессии.

В рабочем поле Excel с помощью команды копирования создадим новую таблицу с исходными данными из оставшихся факторов и найдем средние значения по столбцам:

Для решения полученного уравнения регрессии после активизации сервисной программы Анализ данных в меню Сервис воспользуемся инструментом анализа - Регрессия. В данном диалоговом окне введем с помощью мыши входной интервал Y и X-ов; устанавим флаг на Метки; укажем начальную ячейку для выходного интервала и подтвердим начало расчета кнопкой ОК. В третьей из полученных таблиц ВЫВОДА ИТОГОВ найдем коэффициенты Y-пересечения и Х 1 , Х 3 и подставим полученные значения вместе со средними значениями Х-ов в уравнение регрессии:

Описательная статистика

Стандартная ошибка

Стандартное отклонение

Асимметричность

Интервал

Максимум

Дисперсионный анализ

Значимость F

Регрессия

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Y-пересечение

корреляционный регрессия матрица эластичность

Вывод:

1. Уравнение регресс имеет следующий вид:

2. Зависимость между стоимостью недвижимости (У) и стоимостью одного квадратного метра (Х 1), между стоимостью недвижимости (У) и уровнем доходности населения (Х 3), является более тесной, чем между стоимостью недвижимости и остальными факторами.

5 . Анализ факторов по коэффициенту эластичности

О значимости факторов нельзя судить по значению коэффициента регрессии. Анализ осуществляется по коэффициенту эластичности.

Коэффициент эластичности показывает, на сколько процентов изменяется резул ьтирующий признак при изменении факторного признака на 1%. Обычно берется 10%. Знак коэффициента эластичности всегда совпадает со знаком коэффициентов регрессии. Чем больше по модулю значение коэффициента эластичности, тем большее влияние оказывает этот фактор на результирующий признак.

.

Увеличим каждый фактор на 10%:

Подставляя средние значения факторов Х 1 , Х 3, а также их последовательно увеличенные на 10% значения в соответствующие уравнения регрессии, вычислим коэффициенты эластичности:

Коэффициент эластичности принято изображать графически.

Зависимость между Х 1 (стоимостью одного метра квадратного) и Y (стоимостью недвижимости объекта):

Вывод: при увеличении факторного признака Х 1 на 10 % результативный признак увеличивается на 11,91 %.

Зависимость между Х 3 (уровнем доходности населения) и Y (стоимостью недвижимости объекта)

Вывод: при увеличении факторного признака Х 3 на 10 % результативный признак сокращается на 3,42 %.

ВЫВОД: Анализ факторов по коэффициенту эластичности показал, что наибольшее влияние на стоимость недвижимости оказывает стоимость одного метра квадратного (фактор Х 1), затем уровень доходности населения (фактор Х 3).

6 . Оценка параметров уравнения регрессии

Для того, чтобы оценить параметры уравнения регрессии используется t- критерий Стьюдента. В таблице «дисперсионный анализ», в графе «t- статистика» содержатся рассчитанные на компьютере данные:

Эти значения сравниваются t - критическим, учитывая принятый уровень значимости б = 0,05 и k - число степеней свободы k = n-m-1; k=10-2-1=7, затем по таблице Стьюдента определяем, что: t кр = 2,365, либо рассчитываем это значение в Excel с помощью вставки функции < fx > в поле «Категория» выбираем Статистические в поле «выберите функцию» активизируем строку СТЮДРАСПОБР , с помощью которой компьютер возвращает t-значение распределения Стьюдента как функцию вероятности и числа степеней свободы, затем нажимаем «ОК». Компьютер запрашивает аргументы функции: в поле вероятность ставим значение 0,05, а в поле степень свободы -7

Параметры уравнения регрессии признаются типичными, если выполняются неравенства:

Подставим имеющие данные для сравнения:

Условие не выполняется

Условие не выполняется.

Вывод: Анализ параметров уравнения регрессии показал, что рассчитанные на компьютере данные не удовлетворяют условию сравнения. Поэтому математическая формула регрессии не может быть использована для прогнозирования стоимости недвижимости, а может быть использована только для практических расчетов.

7. Оценить значимость показателей тесноты связи r

Для этого применяется t- критерий Стьюдента. Расчетные значения t r для факторов Х 1 , Х 3 определяется по формуле:

где r - значения, рассчитанные в корреляционной матрице (столбец У) для объясняющих факторов

n - количество наблюдений.

Подставляя имеющиеся данные в формулу, получаем:

Рассчитанные значения надо сравнить с t- критическим равное 2,365. Показатели тесноты связи признаются типичными, если

Подставляя полученные данные, получим:

Условие выполняется

Условие выполняется

Вывод: все коэффициенты корреляции, соответствующие оставшимся факторам, признаются типичным, так как условие неравенства выполняется.

8 . Оценка значимости коэффициента детерминации R 2

Для этого используется F- критерий Фишера, величина которого берется из таблицы Фишера со степенями свободы:

к 1 = m = 2 - число объясняющих факторов.

к 2 = n-m-1= 10-2-1=7

Либо рассчитываем это значение в Excel с помощью вставки функции < fx > в поле «Категория» выбираем Статистические в поле «выберите функцию» активизируем строку F РАСПОБР , с помощью которой компьютер возвращает обратное значение для F-распределения вероятностей, затем нажимаем «ОК». Компьютер запрашивает аргументы функции: в поле вероятность ставим значение 0,05, в поле степень свободы1 ставим число объясняющих факторов, т.е. 2, а в поле степень свободы2 вводим к 2 = 7

Для определения статистической значимости коэффициента детерминации R 2 используется неравенство:

Значение F R рассчитывается по формуле:

Подставляя данные в неравенство получим: F расч =337,55 F крит. =4,737

Вывод:

Коэффициент детерминации R 2 является значимым, так как неравенство выполняется;

Величина R 2 =0,990- это означает, что 99 % общей вариации результативного признака объясняется изменением факторных признаков Х 1 ,Х 3 , а 1 % объясняется изменениями других факторов.

9. Доверительные интервалы для коэффициентов уравнения регрессии

Доверительные интервалы для коэффициентов множественной регрессии определяются:

а=499,986; Sa=29,254; tкрит.= 2,365

a 2 =-779,762; Sa 2 =644,425; tкрит.= 2,365

Вывод:

95% коэффициента регрессии а 1 лежит в интервале, а 5% вне этого интервала.

95% коэффициента регрессии а 2 лежит в интервале, а 5% вне этого интервала.

10 . Доверительные интервалы для средних значений факторных призн а ков

Доверительные интервалы для средних значений факторных признаков определяются:

где -стандартное отклонение (среднеквадратическое отклонение);

n - число наблюдений;

t находится по функции таблицы Лапласа

95% факторного признака (стоимость 1 м 2) лежит в интервале, а 5% вне этого интервала.

95% факторного признака (уровень доходности населения) лежит в интервале, а 5% вне этого интервала.

1 1 . Автокорреляция

А) Для определения величины коэффициента автокорреляции используются значения остатков, которые имеют следующий вид:

ВЫВОД ОСТАТКА

Дополнительные расчеты

Наблюдение

Предсказанное Y

Остатки i

Для определения величины коэффициента автокорреляции используется формула Дарвина - Оутсона:

использование, которой связано с дополнительными расчетами. Подставим данные в формулу и получим:

Коэффициент корреляции изменяется в пределах 0?dw?4.

Значит и размер автокорреляционного поля должен иметь эти же пределы.

Б) В автокорреляции содержатся (слева направо):

1. Зона положительной автокорреляции

2. Зона неопределенности

3. Зона отсутствия автокорреляции

4. Зона неопределенности

5. Зона отрицательной автокорреляции.

Размер зон неопределенности зависят от показателей таблицы Дарвина-Оутсона.

Для того чтобы найти в таблице нужные показатели надо знать номер столбца и строки.

Номер нужного столбца - это число объясняющих факторов уравнения регрессии: k=m=2;

Номер строки- это количество наблюдений: n=10.

В таблице находятся показатели d l и d u:

В левой половине автокорреляционного поля:

Нижняя граница зоны равна d l =0,697

Верхняя граница зоны равна d u = 1,641

Для правой половины автокорреляционного поля границы неопределенности надо рассчитать:

Верхняя граница зоны равна 4-d u = 4-1,641= 2,359

Нижняя граница зоны равна 4-d l =4-0,697= 3,303

Общая картина автокорреляционного поля может быть представлена в виде:

В) Коэффициент автокорреляции, его значение соответствует зоне отсутствия автокорреляции.

Размещено на сайт

Подобные документы

    Сущность корреляционно-регрессионного анализа и его использование в сельскохозяйственном производстве. Этапы проведения корреляционно-регрессионного анализа. Области его применения. Анализ объекта и разработка числовой экономико-математической модели.

    курсовая работа , добавлен 27.03.2009

    Расчет стоимости оборудования с использованием методов корреляционного моделирования. Метод парной и множественной корреляции. Построение матрицы парных коэффициентов корреляции. Проверка оставшихся факторных признаков на свойство мультиколлинеарности.

    задача , добавлен 20.01.2010

    Расчёт параметров линейного уравнения регрессии. Оценка регрессионного уравнения через среднюю ошибку аппроксимации, F-критерий Фишера, t-критерий Стьюдента. Анализ корреляционной матрицы. Расчёт коэффициентов множественной детерминации и корреляции.

    контрольная работа , добавлен 29.08.2013

    Сущность корреляционно-регрессионного анализа и экономико-математической модели. Обеспечение объема и случайного состава выборки. Измерение степени тесноты связи между переменными. Составление уравнений регрессии, их экономико-статистический анализ.

    курсовая работа , добавлен 27.07.2015

    Построение регрессионных моделей. Смысл регрессионного анализа. Выборочная дисперсия. Характеристики генеральной совокупности. Проверка статистической значимости уравнения регрессии. Оценка коэффициентов уравнения регрессии. Дисперсии случайных остатков.

    реферат , добавлен 25.01.2009

    Построение математической модели выбранного экономического явления методами регрессионного анализа. Линейная регрессионная модель. Выборочный коэффициент корреляции. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы.

    курсовая работа , добавлен 22.05.2015

    Ознакомление с основами модели простой регрессии. Рассмотрение основных элементов эконометрической модели. Характеристика оценок коэффициентов уравнения регрессии. Построение доверительных интервалов. Автокорреляция и гетероскедастичность остатков.

    лекция , добавлен 23.12.2014

    Статистический анализ по выборке. Проведение регрессионного анализа исходных данных и выбор аналитической формы записи производственной функции. Выполнение экономического анализа в выбранной регрессионной модели на основе коэффициентов эластичности.

    курсовая работа , добавлен 22.07.2015

    Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.

    контрольная работа , добавлен 29.06.2013

    Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.

– это один из самых распространенных методов изучения отношений между численными величинами. Его основная цель состоит в нахождении зависимости между двумя параметрами и ее степени с последующим выведением уравнения. Например, у нас есть студенты, которые сдали экзамен по математике и английскому языку. Мы можем использовать корреляцию для того, чтобы определить, влияет ли успешность сдачи одного теста на результаты по другому предмету. Что касается регрессионного анализа, то он помогает предсказать оценки по математике, исходя из баллов, набранных на экзамене по английскому языку, и наоборот.

Что такое корреляционная диаграмма?

Любой анализ начинается со сбора информации. Чем ее больше, тем точнее полученный в конечном итоге результат. В вышеприведенном примере у нас есть две дисциплины, по которым школьникам нужно сдать экзамен. Показатель успешности на них – это оценка. Корреляционно-регрессионный анализ показывает, влияет ли результат по одному предмету на баллы, набранные на втором экзамене. Для того чтобы ответить на этот вопрос, необходимо проанализировать оценки всех учеников на параллели. Но для начала нужно определиться с зависимой переменной. В данном случае это не так важно. Допустим, экзамен по математике проходил раньше. Баллы по нему – это независимая переменная (откладываются по оси абсцисс). Английский язык стоит в расписании позже. Поэтому оценки по нему – это зависимая переменная (откладываются по оси ординат). Чем больше полученный таким образом график похож на прямую линию, тем сильнее линейная корреляция между двумя избранными величинами. Это означает, что отличники в математике с большой долей вероятности получат пятерки на экзамене по английскому.

Допущения и упрощения

Метод корреляционно-регрессионного анализа предполагает нахождение причинно-следственной связи. Однако на первом этапе нужно понимать, что изменения обеих величин могут быть обусловлены какой-нибудь третьей, пока не учтенной исследователем. Также между переменными могут быть нелинейные отношения, поэтому получение коэффициента, равного нулю, это еще не конец эксперимента.

Линейная корреляция Пирсона

Данный коэффициент может использоваться при соблюдении двух условий. Первое – все значения переменных являются рациональными числами, второе – ожидается, что величины изменяются пропорционально. Данный коэффициент всегда находится в пределах между -1 и 1. Если он больше нуля, то имеет место быть прямо пропорциональная зависимость, меньше – обратно, равен – данные величины никак не влияют одна на другую. Умение вычислить данный показатель – это основы корреляционно-регрессионного анализа. Впервые данный коэффициент был разработан Карлом Пирсоном на основе идеи Френсиса Гальтона.

Свойства и предостережения

Коэффициент корреляции Пирсона является мощным инструментом, но его также нужно использовать с осторожностью. Существуют следующие предостережения в его применении:

  1. Коэффициент Пирсона показывает наличие или отсутствие линейной зависимости. Корреляционно-регрессионный анализ на этом не заканчивается, может оказаться, что переменные все-таки связаны между собой.
  2. Нужно быть осторожным в интерпретировании значения коэффициента. Можно найти корреляцию между размером ноги и уровнем IQ. Но это не означает, что один показатель определяет другой.
  3. Коэффициент Пирсона не говорит ничего о причинно-следственной связи между показателями.

Коэффициент ранговой корреляции Спирмана

Если изменение величины одного показателя приводит к увеличению или уменьшению значения другого, то это означает, что они являются связанными. Корреляционно-регрессионный анализ, пример которого будет приведен ниже, как раз и связан с такими параметрами. Ранговый коэффициент позволяет упростить расчеты.

Корреляционно-регрессионный анализ: пример

Предположим, происходит оценка эффективности деятельности десяти предприятий. У нас есть двое судей, которые выставляют им баллы. Корреляционно-регрессионный анализ предприятия в этом случае не может быть проведен на основе линейного коэффициента Пирсона. Нас не интересует взаимосвязь между оценками судей. Важны ранги предприятий по оценке судей.

Данный тип анализа имеет следующие преимущества:

  • Непараметрическая форма отношений между исследуемыми величинами.
  • Простота использования, поскольку ранги могут приписываться как в порядке возрастания значений, так и убывания.

Единственное требование данного типа анализа – это необходимость конвертации исходных данных.

Проблемы применения

В основе корреляционно-регрессионного анализа лежат следующие предположения:

  • Наблюдения считаются независимыми (пятикратное выпадение «орла» никак не влияет на результат следующего подбрасывания монетки).
  • В корреляционном анализе обе переменные рассматриваются как случайные. В регрессионном – только одна (зависимая).
  • При проверке гипотезы должно соблюдаться нормальное распределение. Изменение зависимой переменной должно быть одинаковым для каждой величины на оси абсцисс.
  • Корреляционная диаграмма – это только первая проверка гипотезы о взаимоотношениях между двумя рядами параметров, а не конечный результат анализа.

Зависимость и причинно-следственная связь

Предположим, мы вычислили коэффициент корреляции объема экспорта и ВВП. Он оказался равным единице по модулю. Провели ли мы корреляционно-регрессионный анализ до конца? Конечно же нет. Полученный результат вовсе не означает, что ВВП можно выразить через экспорт. Мы еще не доказали причинно-следственную связь между показателями. Корреляционно-регрессионный анализ – прогнозирование значений одной переменной на основе другой. Однако нужно понимать, что зачастую на параметр влияет множество факторов. Экспорт обуславливает ВВП, но не только он. Есть и другие факторы. Здесь имеет место быть и корреляция, и причинно-следственная связь, хотя и с поправкой на другие составляющие валового внутреннего продукта.

Гораздо опаснее другая ситуация. В Великобритании был проведен опрос, который показал, что дети, родители которых курили, чаще являются правонарушителями. Такой вывод сделан на основе сильной корреляции между показателя. Однако правилен ли он? Во-первых, зависимость могла быть обратной. Родители могли начать курить из-за стресса от того, что их дети постоянно попадают в переделки и нарушают закон. Во-вторых, оба параметра могут быть обусловлены третьим. Такие семьи принадлежат к низким социальным классам, для которых характерны обе проблемы. Поэтому на основе корреляции нельзя сделать вывод о наличии причинно-следственной связи.

Зачем использовать регрессионный анализ?

Корреляционная зависимость предполагает нахождение отношений между величинами. Причинно-следственная связь в этом случае остается за кадром. Задачи корреляционного и регрессионного анализа совпадают только в плане подтверждения наличия зависимости между значениями двух величин. Однако первоначально исследователь не обращает внимания на возможность причинно-следственной связи. В регрессионном анализе всегда есть две переменные, одна и которых является зависимой. Он проходит в несколько этапов:

  1. Выбор правильной модели с помощью метода наименьших квадратов.
  2. Выведение уравнения, описывающего влияние изменения независимой переменной на другую.

Например, если мы изучаем влияние возраста на рост человека, то регрессионный анализ может помочь предсказать изменения с течением лет.

Линейная и множественная регрессия

Предположим, что X и Y – это две связанные переменные. Регрессионный анализ позволяет предсказать величину одной из них на основе значений другой. Например, зрелость и возраст – это зависимые признаки. Зависимость между ними отражается с помощью линейной регрессии. Фактически можно выразить X через Y или наоборот. Но зачастую только одна из линий регрессии оказывается правильной. Успех анализа во многом зависит от правильности определения независимой переменной. Например, у нас есть два показателя: урожайность и объем выпавших осадков. Из житейского опыта становится ясно, что первое зависит от второго, а не наоборот.

Множественная регрессия позволяет рассчитать неизвестную величину на основе значений трех и более переменных. Например, урожайность риса на акр земли зависит от качества зерна, плодородности почвы, удобрений, температуры, количества осадков. Все эти параметры влияют на совокупный результат. Для упрощения модели используются следующие допущения:

  • Зависимость между независимой и влияющими на нее характеристиками является линейной.
  • Мультиколлинеарность исключена. Это означает, что зависимые переменные не связаны между собой.
  • Гомоскедастичность и нормальность рядов чисел.

Применение корреляционно-регрессионного анализа

Существует три основных случая использования данного метода:

  1. Тестирование казуальных отношений между величинами. В этом случае исследователь определяет значения переменной и выясняет, влияют ли они на изменение зависимой переменной. Например, можно дать людям разные дозы алкоголя и измерить их артериальное давление. В этом случае исследователь точно знает, что первое является причиной второго, а не наоборот. Корреляционно-регрессионный анализ позволяет обнаружить прямо-пропорциональную линейную зависимость между данными двумя переменными и вывести формулу, ее описывающую. При этом сравниваться могут величины, выраженные в совершенно различных единицах измерения.
  2. Нахождение зависимости между двумя переменными без распространения на них причинно-следственной связи. В этом случае нет разницы, какую величину исследователь назовет зависимой. При этом в реальности может оказаться, что на их обе влияет третья переменная, поэтому они и изменяются пропорционально.
  3. Расчет значений одной величины на основе другой. Он осуществляется на основе уравнения, в которое подставляются известные числа.

Таким образом корреляционный анализ предполагает нахождение связи (не причинно-следственной) между переменными, а регрессионный – ее объяснение, зачастую с помощью математической функции.

Линейный многофакторный регрессионный анализ На практике при анализе результатов научных исследований часто имеет место ситуация, когда количественное изменение изучаемого явления (функции отклика) зависит не от одного, а от нескольких причин (факторов). При проведении экспериментов в такой множественной ситуации исследователь записывает показания приборов о состоянии функции отклика (y) и всех факторов, от которых она зависит (x). Результатами наблюдений являются уже не два вектор-столбца (x и y), как при проведении однофакторного регрессионного анализа, а матрица результатов наблюдений. где yi – значение функции отклика в i-ом эксперименте, Xij – значение j-го фактора на i-ом эксперименте, n – количество экспериментов, p – количество факторов Задача многофакторного линейного регрессионного анализа состоит в построении такого уравнении плоскости в (p+1)-мерном пространстве, отклонения результатов наблюдений yi от которой были бы минимальными.

Или, другими словами, следует вычислить значения коэффициентов b 0, bj в уравнении на которых достигается минимум Для отыскания минимума необходимо найти частные производные по всем неизвестным b 0, bj и приравнять их нулю. Полученные уравнения образуют систему нормальных уравнений, которая в матричной форме имеет вид где Из этого уравнения можем найти вектор-столбец коэффициентов регрессии: , каждый элемент которого можно найти по формуле: В которой cij – элементы обратной матрицы (XTX)-1.

Проверка значимости коэффициентов регрессии Проверка значимости уравнения регрессии мало отличается от соответствующей проверки однофакторной регрессии. Вычисляют остаточную дисперсию по формуле: которую сравнивают с дисперсией среднего Фишера: с помощью критерия с числом степеней свободы в числителе (n-1) и в знаменателе (n-р-1). Значимость коэффициентов регрессии b 0, bj проверяют по критерию Стьюдента: (, где - диагональные элементы матрицы).

Парные коэффициенты корреляции Корреляционный анализ начинают с вычисления парных коэффициентов корреляции, характеризующих тесноту связи между двумя величинами. В многофакторной ситуации вычисляют два типа парных коэффициентов корреляции: 1) - коэффициенты, определяющие тесноту связи между функцией отклика и одним из факторов; 2) - коэффициенты, показывающие тесноту связи между одним из факторов и фактором (). , где Значимость парных коэффициентов корреляции можно проверить по критерию Стьюдента: , где

Корреляционная матрица Значение парного коэффициента корреляции изменяется от - 1 до +1. Если, например, коэффициент - величина отрицательная, то это значит, что уменьшается с увеличением. Если положителен, то увеличивается с увеличением. Если один из коэффициентов окажется равным 1, то это означает, что факторы и функционально связаны между собой и тогда целесообразно один из них исключить из рассмотрения, причем оставляют тот фактор, у которого коэффициент больше. После вычисления всех парных коэффициентов корреляции и исключения из рассмотрения того или иного фактора можно построить матрицу коэффициентов корреляции вида:

Частные коэффициенты корреляции Используя парных коэффициентов корреляции матрицу, можно вычислить частные коэффициенты корреляции, которые показывают степень влияния одного из факторов на функцию отклика при условии, что остальные факторы закреплены на постоянном уровне. Частные коэффициенты корреляции вычисляются по формуле где - определитель матрицы, образованной из матрицы парных коэффициентов корреляции вычеркиванием 1 -й строки j-го столбца, определитель - j-ой строки j-го столбца. Как и парные коэффициенты, частные коэффициенты корреляции изменяются от -1 до +1. Значимость и доверительный интервал для коэффициентов частной корреляции определяются так же, как для коэффициентов парной корреляции с числом степеней свободы v = n – k - 2, где k = р - 1 - порядок частного коэффициента парной корреляции.

Коэффициент множественной корреляции и его значимость Для изучения тесноты связи между функцией отклика и несколькими факторами используют коэффициент множественной корреляции R. Коэффициент множественной корреляции служит и для оценки качества предсказания; R всегда положителен и изменяется от 0 до 1. Чем больше R, тем лучше качество предсказаний данной моделью опытных данных. Коэффициент множественной корреляции вычисляется по формуле Значимость коэффициента множественной корреляции проверяют по критерию Стьюдента: , где - среднеквадратическая погрешность коэффициента множественной корреляции: Значимость R можно проверить также и по критерию Фишера: Полученное значение сравнивают с табличным при выбранном уровне значимости и числах степеней свободы v 1 = n - р - 1 и v 2 = p. Если расчетное значение превышает табличное, то гипотезу o равенстве коэффициента множественной корреляции нулю отвергают и связь считают статистически значимой.

Многофакторный нелинейный регрессионный анализ Первый этап нелинейного многофакторного регрессионного анализа - получение полной квадратичной формы. Для этого определяют коэффициенты регрессии b 0, bk и bjk в полиноме Степень уравнения можно повышать до тех пор, пока уменьшается остаточная дисперсия. Задача нелинейной регрессии сводится к задаче линейной регрессии заменой переменных и т. д. Мерой тесноты связи в нелинейной зависимости служит множественное корреляционное отношение, но используя для вычисления у нелинейную форму уравнения. Сравнение множественного корреляционного отношения с коэффициентом множественной корреляции, вычисленным по линейной форме, дает некоторое представление о «кривизне» изучаемой зависимости.

Выбор оптимальной формы регрессии 1) метод полного перебора 2) метод отсеивания факторов При использовании метода исключения переменных уравнение регрессии расширяют сразу до полной квадратичной или, если возможно, до полной кубической формы. Исключение начинают с фактора, имеющего наименьший критерий Стьюдента. На каждом этапе после исключения каждого фактора для нового уравнения регрессии вычисляют множественный коэффициент корреляции, остаточную дисперсию и F-критерий Фишера. Наибольшую трудность представляет решение вопроса, на каком этапе прекратить исключение факторов. Здесь возможны следующие подходы: a) прекратить исключение факторов, когда остаточная дисперсия начнет увеличиваться; b) назначить уровень значимости (0. 05) при вычислении t-критерия Стьюдента для последнего оставляемого фактора. Во втором случае перед началом отсева факторов строят диаграмму ранжирования t-критериев Стьюдента для всех факторов расширенной модели.

3) метод включения факторов При использовании метода включения факторов в уравнение регрессии последовательно включаются факторы (наиболее значимые) пока остаточная дисперсия не увеличивается.

Пример регрессионного анализа Рассмотрим пример многофакторного регрессионного и корреляционного анализа с выбором оптимальной формы регрессии методом исключения эффектов (факторов и парных взаимодействий) на примере построения модели для вычисления ползучести бетона. В этой задаче строится зависимость удельных относительных деформаций ползучести бетона С(t, т) от десяти факторов: . В матрицу исходных данных включены результаты 367 опытов над бетонными образцами, в которых фиксировались значения у = С(t, т) , и следующих 10 факторов: -отношение массы цемента к массе заполнителя в 1 м 3 бетона (Ц/3); - расход цемента на 1 м 3 бетона (Ц); - влажность среды (W); - масштабный фактор (М); - водоцементное отношение (В/Ц); - возраст бетона в момент загружения (т); - время действия нагрузки (t - т); - нормальная густота цементного теста (НГ); - значение напряжений (); - модуль упругости заполнителя (E 3).

Решение Коэффициент корреляции близок к единице, поэтому фактор исключен из рассмотрения; На первом этапе была построена полная квадратичная модель с 54 эффектами. Критерий Фишера для этой модели получился: Затем был произведен 11 -ступенчатый отсев незначимых эффектов, в процессе которого было исключено 28 статистически незначимых по критерию Стьюдента эффектов, в результате была получена модель с 26 эффектами, для которой критерий Фишера возрос незначительно: а остальные параметры оказались хорошими Значимые, связи для наглядности удобно изображать в виде графа. Используя методы теории графов, можно построить таблицу, наглядно показывающую количество статистически значимых связей между функцией отклика и факторами. Такую таблицу называют еще матрицей смежности вершин.

В подразд. 10.2 была рассмотрена однофакторная линейная модель. Но чаще всего изучаемые нами природные и общественные явления зависят не от одного, а от целого ряда факторов. Корреляционная зависимость результативного признака от нескольких факторных признаков называется уравнением множественной регрессии. Рассмотрим линейную многофакторную модель, к ней часто можно свести криволинейные модели.

Главные задачи, которые стоят при построении уравнения множественной регрессии таковы:

  • 1) надо отобрать те факторные признаки, которые оказывают наибольшее влияние на признак следствия;
  • 2) правильно выбрать регрессионную модель.

Если данные пункты выполнены правильно, то все остальное дело техники. Мы рассматриваем пока линейную многофакторную регрессию, поэтому задача выбора модели перед нами не стоит, нужно только определиться с количеством факторных признаков, влияющих на признак следствие. Решение первой задачи основано на рассмотрении матрицы парных коэффициентов корреляции (о ней будет сказано ниже). Принимаются во внимание и частные коэффициенты детерминации для каждого факторного признака. Их значения говорят об объясняющей способности каждого из факторных признаков. Заметим, что уравнение многофакторной регрессии должно быть как можно проще. Чем проще тип уравнения, тем очевиднее интерпретация параметров, входящих в него, и лучше его использование с целью анализа и прогноза. Поэтому чаще всего используют линейное уравнение множественной регрессии, которое имеет вид

Параметры а р а 2 , ..., а т, Ъ уравнения множественной регрессии (10.55) можно находить по МНЕ. Затем с помощью корреляционного анализа делают проверку адекватности полученной модели и, если модель адекватна, делают ее интерпретацию. Так поступают в том случае, если заранее известно, например на основании предшествующих исследований, что все основные признаки-факторы, оказывающие влияние на результативный признак, учтены (мы не говорим о выборе типа модели, так как пока рассматриваем только линейную модель).

Если мы не уверены в том, что учтены все факторные признаки, или, наоборот, учтены лишние, сначала проводим корреляционный анализ (находим парные коэффициенты корреляции, частные коэффициенты корреляции, совокупный коэффициент множественной корреляции), а потом, уточнив модель, строим уравнение множественной линейной регрессии по МНК.

Покажем, как находятся параметры a v а 2 , ..., а т, Ъ уравнения регрессии (10.55) по МНК. Условие МНК в этом случае имеет вид

Теперь подставляем (10.55) в (10.56) и получаем

Теперь записываем необходимые условия экстремума функции, содержащей (m + 1) переменных (a v а 2 ,..., а т, Ъ).

Находим частные производные функции F по неизвестным параметрам а 1 ,а 2 ,а т,Ъ и получаем следующее:

После преобразования системы (10.59) получаем так называемую систему нормальных уравнений:

Решая систему нормальных уравнений (10.60) (они линейные), определяем неизвестные параметры множественной линейной регрессионной модели: a v а 2 , ..., а т, Ъ. Разумеется, решение системы проводят на ПЭВМ, например, методом Гаусса или одной из его модификаций (в том случае, если количество неизвестных параметров не превышает нескольких сотен). В том случае, если количество искомых параметров несколько тысяч, можно использовать итерационные методы решения системы нормальных уравнений (10.60), например, методом Якоби или методом Зейделя.

После нахождения неизвестных параметров уравнения множественной линейной регрессии надо провести проверку ее адекватности с помощью корреляционного анализа.

Так как на изучаемый результативный признак влияет не один факторный признак, а несколько факторных признаков), то появляется задача изолированного измерения тесноты связи результативного признака с каждым из признаков- факторов, а также задача определения тесноты связи между результативным признаком и всеми факторными признаками, включенными в модель множественной регрессии.

При рассмотрении линейной однофакторной модели мы находим один парный коэффициент корреляции (вернее его оценку) между признаком-следствием и факторным признаком. В случае множественной линейной модели число парных коэффициентов корреляции будет равно:

где C (2 m+1) - число сочетаний из (m + 1) по два, а (га +1)! - читается (га + 1) факториал и равно: (га + 1)! = 1-2-...-га(га + 1). Заметим, что 0! = 1. Все коэффициенты парной корреляции рассчитываются по формуле (10.15) (их называют еще коэффициентами нулевого порядка).

Найденные коэффициенты парной корреляции удобно записывать в виде матрицы коэффициентов парной корреляции. Напомним, что матрица - это прямоугольная таблица, содержащая некоторые математические объекты, в данном случае коэффициенты парной корреляции. Число строк и столбцов матрицы коэффициентов парной корреляции будет равно, т. е. она будет квадратной. Так как коэффициент парной корреляции - это симметричная мера связи (f i; - = при i*j), то матрица коэффициентов корреляции записывается или как верхняя, или как нижняя треугольная, на главной диагонали которой расположены единицы, так как и т. д. Поэтому матрица коэффициентов парной корреляции (коэффициентов нулевого порядка) имеет вид:


На основе коэффициентов нулевого порядка (см. (10.61)) можно найти коэффициенты частной корреляции первого порядка, если элиминируется (устраняется) корреляция с одной переменной. Например,

В формуле (10.62) исключаем влияние признака х.

На основе коэффициентов частной корреляции первого порядка определяют коэффициенты частной корреляции второго порядка. В этом случае элиминируется корреляция с двумя переменными, например,

В формуле (10.63) исключили влияние факторов х 2 и х 3 . На основе коэффициентов частной корреляции второго порядка находят коэффициенты частной корреляции третьего порядка и т. д. Коэффициенты частной корреляции являются мерами линейной зависимости и принимают значения от -1 до 1. Квадрат коэффициента частной корреляции называется коэффициентом частной детерминации.

Показателем тесноты связи, которая устанавливается между признаком-следствием и факторными признаками факторных признаков) является совокупный коэффициент множественной корреляции К уХ]Х2 ... Хт. Если известны парные коэффициенты корреляции, то его можно найти по формуле:

Квадрат совокупного коэффициента множественной корреляции Ry X X х , который называется совокупным коэффициентом множественной детерминации, показывает, какая доля вариации результативного признака объясняется влиянием факторных признаков, которые включены в уравнение множественной регрессии. Возможные значения -R yX]X2 ... Xm и Щ х х х могут находиться в пределах отрезка . Следовательно, чем ближе Щ Хг х 2 _ х к единице, тем вариация результативного признака в большей мере характеризуется влиянием учтенных факторных признаков.

Подробно рассмотрим частный случай линейной множественной регрессии - двухфакторную линейную регрессию и приведем конкретный числовой пример.

Уравнение двухфакторной линейной регрессии записывается следующим образом:

где - расчетные значения результативного признака;

х и, х 2 . - полученные в результате проведения статистического наблюдения значения факторных признаков;

a v а 2 , Ъ - параметры уравнения регрессии, подлежащие определению.

Для нахождения параметров уравнения регрессии вида (10.65) используем МНК. Условие МНК в данном случае имеет вид:

Функция (10.66) - функция трех независимых аргументов: a v а 2 , Ъ. Запишем необходимое условие экстремума этой функции:

После нахождения частных производных имеем:

После преобразования системы (10.68) получаем систему нормальных уравнений:

Для решения системы (10.69) используем метод Крамера (о методе Крамера можно причитать, например, в ). Для нахождения решения системы (10.69) можно применить и метод Гаусса.

Сначала находим определитель системы, который не должен равняться нулю:

Определители A v A , А 3 расписываются так же, как определитель А (эти разложения не приведены, чтобы не загромождать вывод).

Зная значение определителей А, А х, Д 2 , А, находим искомые параметры уравнения регрессии по следующим формулам:

Теперь найдем коэффициенты парной корреляции (коэффициенты нулевого порядка), их количество будет равно

Поэтому матрица коэффициентов парной корреляции (10.61) в данном случае будет иметь вид:

В нашем случае парные коэффициенты корреляции находятся по формулам:

А ковариации (корреляционные моменты) находятся из выражений:


Коэффициенты частной корреляции первого порядка в данном случае находятся по следующим формулам:

г определяется по уже приведенной формуле (10.62)


(в этой формуле исключено влияние факторного признака а^).


(в этой формуле исключено влияние результативного признака у).

Теперь по формуле (10.64) определяем совокупный коэффициент множественной корреляции. Для случая двухфакторной линейной модели формула (10.64) примет вид:

Как уже говорилось, величина Щ Х]Х. 2 называется совокупным коэффициентом множественной детерминации. Он показывает, какая часть дисперсии результативного признака у объясняется за счет двух учтенных факторных признаков и х 2 . Заметим, что на основе парных коэффициентов корреляции и средних квадратических отклонений можно определить параметры линейной двухфакторной регрессионной модели вида (10.65) (см. например ).

Теперь приведем конкретный числовой пример. Для этого используем исходные данные примера 10.2. Поместим эти данные в табл. 10.12.

По данным табл. 10.12 вычисляем коэффициенты системы нормальных уравнений (10.69):


Таблица 10.12

Преступления (у {)

Хищения оружия

Административные правонарушения (х,.)

Следовательно, система нормальных уравнений (10.69) имеет вид:

Решаем полученную систему (10.76) методом Крамера:

Теперь по формулам (10.70) находим искомые параметры уравнения регрессии:

Поэтому получаем следующее уравнение двухфакторной линейной регрессии.