Модель расширяющейся вселенной. Сценарии будущего Вселенной

КОСМОЛОГИЧЕСКИЕ ПАРАДО́КСЫ

затруднения (противоречия), возникающие при распространении законов физики на Вселенную в целом. Классич. К. п. являются фотометрический (или парадокс Шезо–Ольберса) и гравитационный (иначе парадокс Зелигера, или Неймана–Зелигера).

Кажется естественным предположить, что повсюду в бесконечном пространстве Вселенной всегда имеются излучающие звезды и что их средняя пространств. плотность (число звезд на данный объем пространства) в целом отлична от нуля. Однако при этом вся поверхность неба должна была бы быть ослепительно яркой, подобно, напр., поверхности Солнца; на деле поверхностная яркость ночного неба в миллионы раз ниже. Предположения о поглощении света межзвездной средой и др. не устраняют фотометрич. парадокса и могут его даже усиливать.

При аналогичных условиях возникает и гравитационный парадокс. Если повсюду в бесконечной Вселенной имеются тяготеющие массы и средняя плотность распределения их при переходе ко все бóльшим областям пространства не стремится к нулю достаточно быстро, то ньютонов потенциал тяготения от этих масс не имеет определ. конечного значения; абс. ускорения движения тел, вычисленные на основе ньютоновой теории, могут получаться неопределенными или неограниченно большими и т.п.

Из существования этих парадоксов нередко делались выводы о необходимости отказа от применения ко Вселенной известных нам законов физики или даже о необходимости отказа от самой идеи бесконечности Вселенной. Однако оба парадокса могут быть преодолены даже в рамках классич. физики, если только учесть специфику бесконечного. Для конечной области пространства средняя плотность вещества, равная нулю, означает пустоту, отсутствие вещества. Для бесконечной области возможно такое распределение, когда средняя плотность в нек-рой, как угодно большой, но конечной области сколь угодно велика (но конечна), и в то же время для всего бесконечного пространства она равна нулю. Идея подобной схемы распределения была высказана еще в 18 в.

Ламбертом и математически разработана Шарлье в 1908–22.

К числу классич. К. п. можно отнести также термодинамич. парадокс – вывод о неизбежности тепловой смерти Вселенной (см. также Энтропия).

Эти парадоксы, возникающие в рамках дорелятивистских представлений, не имеют места в релятивистской космологии. Гравитационный парадокс с математич. т. зр., по-видимому, обязан своим происхождением характеру уравнений поля ньютоновой теории тяготения (их линейности и эллиптичности). С физич. т. зр. это означает неучет теорией Ньютона нек-рых существ. черт поля тяготения, раскрываемых теорией Эйнштейна (в частности, конечной скорости распространения взаимодействия). Фотометрич. парадокс в принципе преодолевается уже в силу того, что Вселенная, с т. зр. теории относительности, не может быть статической – все ее составные части достаточно больших размеров должны испытывать деформацию (см. Красное смещение). О преодолении термодинамич. парадокса см. Тепловая смерть Вселенной.

К. п. прежде всего являются важным частным случаем физич. парадоксов, но им, несомненно, присуща также природа логич. парадоксов, поскольку они возникают в результате использования посылок, суждений и выводов, границы применимости к-рых на соответств. этапе развития науки еще не выяснены. Свойства движущейся материи бесконечно многообразны, но на каждом данном этапе развития науки мы исходим только из тех свойств и явлений, к-рые уже известны. Незнание нек-рых существ. свойств изв. явлений (напр., конечной скорости распространения взаимодействия в явлениях тяготения) или тех явлений, к-рые обнаруживаются лишь при переходе к большим масштабам (напр., явления "разбегания" галактик), как видно на примере гравитац. и фотометрич. парадоксов, и создает предпосылки для возникновения парадоксов. В конечном счете основу возникновения К. п. следует искать в специфике самого объекта космологии – Вселенной. Она бесконечна в пространстве – времени, и поэтому при распространении любых законов или условий на Вселенную в целом приходится считаться с противоречиями бесконечности, в частности с возможностью нарушения аксиомы "целое больше [своей правильной ] части" (см. также Бесконечность, Вселенная, Космология, Парадокс).

Значение К. п. для космологии – прежде всего эвристическое. К. п. сильно суживают круг возможных решений космологич. проблемы. В сущности уже из того простого факта, что ночью темно, следует, что Вселенная не может быть устроена как угодно: из всех мыслимых схем строения Вселенной в счет могут идти только те, к-рые свободны от фотометрического и др. К. п. В ходе развития космологии преодолеваются одни парадоксы и возникают другие; преодоление каждого из них означает шаг вперед в познании общих закономерностей строения Вселенной.

Лит.: Фесенков В. Г., Совр. представления о Вселенной, М.–Л., 1949, гл. 4; Πаренаго П. П., Курс звездной астрономии, 3 изд., М., 1954, §§ 36, 56; Зельманов А. Л., Нерелятивист. гравитац. парадокс и общая теория относительности, "Физико-матем. науки" (Научн. докл. высшей школы), 1958, 2; его же, Фотометрич. парадокс, БСЭ, 2 изд., т. 45; его же, Гравитац. парадокс, Физич. энциклопедич. словарь, т. 1; Ηаан Г. И., О совр. состоянии космологич. науки, § 2, в сб.: Вопросы космогонии, т. 6, М., 1958; Киппер Α. Я., О гравитац. парадоксе, там же, т. 8, М., 1962. См. также лит. при ст. Космология.

Г. Haaн. Таллин.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .

КОСМОЛОГИЧЕСКИЕ ПАРАДОКСЫ

КОСМОЛОГИЧЕСКИЕ ПАРАДО́КСЫ

затруднения (противоречия), возникающие при распространении законов физики на Вселенную в целом. Классич. К. п. являются фотометрический (или Шезо–Ольберса) и гравитационный (иначе парадокс Зелигера, или Неймана–Зелигера).

Кажется естественным предположить, что повсюду в бесконечном пространстве Вселенной всегда имеются излучающие звезды и что их средняя пространств. плотность ( звезд на данный объем пространства) в целом отлична от нуля. Однако при этом вся поверхность неба должна была бы быть ослепительно яркой, подобно, напр., поверхности Солнца; на деле поверхностная яркость ночного неба в миллионы раз ниже. Предположения о поглощении света межзвездной средой и др. не устраняют фотометрич. парадокса и могут его даже усиливать.

При аналогичных условиях возникает и гравитационный парадокс. Если повсюду в бесконечной Вселенной имеются тяготеющие массы и средняя плотность распределения их при переходе ко все бóльшим областям пространства не стремится к нулю достаточно быстро, то ньютонов потенциал тяготения от этих масс не имеет определ. конечного значения; абс. ускорения движения тел, вычисленные на основе ньютоновой теории, могут получаться неопределенными или неограниченно большими и т.п.

Из существования этих парадоксов нередко делались выводы о необходимости отказа от применения ко Вселенной известных нам законов физики или даже о необходимости отказа от самой идеи бесконечности Вселенной. Однако оба парадокса могут быть преодолены даже в рамках классич. физики, если только учесть специфику бесконечного. Для конечной области пространства средняя плотность вещества, равная нулю, означает пустоту, отсутствие вещества. Для бесконечной области возможно такое распределение, когда средняя плотность в нек-рой, как угодно большой, но конечной области сколь угодно велика (но конечна), и в то же для всего бесконечного пространства она равна нулю. Идея подобной схемы распределения была высказана еще в 18 в.

Ламбертом и математически разработана Шарлье в 1908–22.

Эти парадоксы, возникающие в рамках дорелятивистских представлений, не имеют места в релятивистской космологии. Гравитационный парадокс с математич. т. зр., по-видимому, обязан своим происхождением характеру уравнений поля ньютоновой теории тяготения (их линейности и эллиптичности). С физич. т. зр. это означает неучет теорией Ньютона нек-рых существ. черт поля тяготения, раскрываемых теорией Эйнштейна (в частности, конечной скорости распространения взаимодействия). Фотометрич. парадокс в принципе преодолевается уже в силу того, что Вселенная, с т. зр. теории относительности, не может быть статической – все ее составные части достаточно больших размеров должны испытывать деформацию (см. Красное смещение). О преодолении термодинамич. парадокса см. Тепловая Вселенной.

Значение К. п. для космологии – прежде всего эвристическое. К. п. сильно суживают круг возможных решений космологич. проблемы. В сущности уже из того простого факта, что ночью темно, следует, что Вселенная не может быть устроена как угодно: из всех мыслимых схем строения Вселенной в счет могут идти только те, к-рые свободны от фотометрического и др. К. п. В ходе развития космологии преодолеваются одни парадоксы и возникают другие; преодоление каждого из них означает шаг вперед в познании общих закономерностей строения Вселенной.

Лит.: Фесенков В. Г., Совр. представления о Вселенной, М.–Л., 1949, гл. 4; Πаренаго П. П., Курс звездной астрономии, 3 изд., М., 1954, §§ 36, 56; Зельманов А. Л., Нерелятивист. гравитац. парадокс и общая , "Физико-матем. науки" (Научн. докл. высшей школы), 1958, 2; его же, Фотометрич. парадокс, БСЭ, 2 изд., т. 45; его же, Гравитац. парадокс, Физич. энциклопедич. словарь, т. 1; Ηаан Г. И., О совр. состоянии космологич. науки, § 2, в сб.: Вопросы космогонии, т. 6, М., 1958; Киппер Α. Я., О гравитац. парадоксе, там же, т. 8, М., 1962. См. также лит. при ст. Космология .

Г. Haaн. Таллин.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .


Смотреть что такое "КОСМОЛОГИЧЕСКИЕ ПАРАДОКСЫ" в других словарях:

    Затруднения (противоречия), возникающие при распространении законов физики на Вселенную в целом или достаточно большие её области. Содержание 1 Фотометрический парадокс 2 Гравитационный парадокс … Википедия

    Затруднения (противоречия), возникающие при распространении законов физики на Вселенную (См. Вселенная) в целом или достаточно большие её области. Так, при распространении на Вселенную второго начала термодинамики (См. Второе начало… …

    - (от Космос и...Логия учение о Вселенной (См. Вселенная) как едином целом и о всей охваченной астрономическими наблюдениями области Вселенной как части целого; раздел астрономии. Выводы К. (модели Вселенной) основываются на законах физики … Большая советская энциклопедия

    - (от греч. parádoxes неожиданный, странный) неожиданное, непривычное (хотя бы по форме) суждение (высказывание, предложение), резко расходящееся с общепринятым, традиционным мнением по данному вопросу. В этом смысле эпитет «парадоксальный» … Большая советская энциклопедия

    - (греч. antinomia противоречие в законе) форма существования и развития противоречия в познании: противоречие, образуемое двумя суждениями (умозаключениями, законами), каждое из которых признается истинным. Употребление термина А. первоначально… … Новейший философский словарь

    - (парадокс Неймана Зеелигера) вывод о том, что ньютоновская теория тяготения приводит, вообще говоря, к бесконечным значениям гравитационного потенциала и тем самым не позволяет однозначно определить абсолютные и относительные значения… … Википедия

    Содержание понятия всего существующего; все то, что существует. Философский энциклопедический словарь. 2010. ВСЕЛЕННАЯ весь мир, бесконеч … Философская энциклопедия

    Гравитационный парадокс (парадокс Неймана Зеелигера) вывод о том, что ньютоновская теория тяготения приводит, вообще говоря, к бесконечным значениям гравитационного потенциала и тем самым не позволяет однозначно определить абсолютные и… … Википедия

    Один из космологических парадоксов (См. Космологические парадоксы) … Большая советская энциклопедия

К концу XIX в. появились серьезные сомнения в классической космологической модели. Они приняли форму так называемых космологических парадоксов - фотометрического, гравитационного и термодинамического.

Фотометрический парадокс. Еще в XVIII в. швейцарский астроном Р. Шезо высказал сомнения в пространственной бесконечности Вселенной. Если предположить, утверждал Шезо, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит. Независимо от Шезо к аналогичным же выводам пришел известный немецкий астроном Ф. Ольберс. Это парадоксальное утверждение получило в астрономии наименование фотометрического парадокса Шезо-Ольберса. Таков был первый космологический парадокс, поставивший под сомнение пространственную бесконечность Вселенной.

Гравитационный парадокс. В конце XIX в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также неизбежно вытекавший из представлений о бесконечности Вселенной. Он получил название гравитационного парадокса. Нетрудно подсчитать, что в бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной. Результат зависит от способа вычисления. Поскольку этого не происходит, Зеелигер сделал вывод, что количество небесных тел во Вселенной ограничено, а значит, и сама Вселенная не бесконечна.

Термодинамический парадокс. Третий, термодинамический, парадокс также был сформулирован в XIX в. Он вытекает из второго начала термодинамики - принципа возрастания энтропии. Мир полон энергии, которая подчиняется важнейшему закону природы - закону сохранения энергии. Казалось бы, из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. В самом деле, если в природе при всех изменениях материи она не исчезает и не возникает из ничего, а лишь переходит из одной формы суще-


ствования в другую, то Вселенная вечна, а материя, ее составляющая, пребывает в вечном круговороте. Таким образом, погасшие звезды снова превращаются в источник света и тепла. Никто, конечно, не знал, как это происходит, но убеждение в том, что Вселенная в целом всегда одна и та же, было в то время почти всеобщим.

Тем неожиданнее прозвучал вывод из второго начала термодинамики, открытого в середине XIX в. англичанином Кельвином и немецким физиком Клаузиусом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое, будучи предоставлено себе, стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся и Вселенная превратится в мрачное замерзшее кладбище. Наступит тепловая смерть Вселенной.


Встать на позицию Клаузиуса - значит признать, что Вселенная имела когда-то начало и неизбежно будет иметь конец. Действительно, если бы в прошлом Вселенная существовала вечно, то в ней давно наступило бы состояние тепловой смерти, а так как этого нет, то, по убеждению Клаузиуса и многих других его современников, Вселенная была сотворена сравнительно недавно, а в будущем, если не случится какого-нибудь чуда, Вселенную ждет тепловая смерть.

Таким образом, концепция тепловой смерти Вселенной, термодинамический парадокс подставили под сомнение вопрос о вечности Вселенной во времени. Три космологических парадокса заставили ученых усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.

На каждом этапе развития космологии находились ученые, которые полагали, что в основном в космологическом учении все основные проблемы решены, и осталось уточнить только некоторые детали. Но дальнейшие исследования открывали все новые обстоятельства и появлялись новые проблемы. Нечто аналогичное произошло и с классической космогонией, основанной на простых ньютонианских представлениях астрономов о пространстве и времени.

Фотометрический парадокс

Первая брешь в этой спокойной классической космогонии была пробита еще в XVIII в. В 1744 г. швейцарский астроном Ж.Шезо, известный открытием «пятихвостой» кометы, высказал сомнение в пространственной бесконечности Вселенной. В ту пору о существовании звездных систем и не подозревали, а потому рассуждения Шезо касались только звезд.

Если предположить, рассуждал Шезо, что в бесконечной Вселенной существует бесчисленное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался на какую-нибудь звезду. Легко подсчитать, что небосвод, сплошь непрерывно усеянный звездами, имел бы такую поверхностную яркость, что даже Солнце на его фоне выглядело бы черным пятном! Независимо от Шезо в 1826 г. к таким же выводам пришел немецкий астроном Г.Ольберс. Это парадоксальное утверждение получило в астрономии наименование фотометрического парадокса Шезо-Ольберса. Таков был первый космологический парадокс, поставивший под сомнение бесконечность Вселенной .

Избавиться от него пытались по-разному. Можно допустить, например, что звезды распределены в пространстве неравномерно. Но тогда в некоторых направлениях на звездном небе было бы видно мало звезд, а в других, если звезд бесчисленное множество, их совокупная яркость создавал бы бесконечно яркие пятна, чего, как известно, нет. Когда открыли, что межзвездное пространство не пусто, а заполнено газово-пылевыми облаками, некоторые ученые стали считать, что такие облака, поглощая свет, избавляют нас от фотометрического парадокса. Однако в 1938 г. академик В.Г.Фесенков доказал, что поглотив свет звезд, газово-пулевые туманности вновь переизлучают поглощенную ими энергию, а это не избавляет нас от фотометрического парадокса. Таким образом, вопрос на многие годы оставался открытым.

Гравитационный парадокс

В конце XIX в. немецкий астроном Х.Зелигер обратил внимание и на другой парадокс, неизбежно вытекающий из представления о бесконечности Вселенной. Нетрудно подсчитать, если опираться на Закон всемирного тяготения Ньютона, что в бесконечной Вселенной с равномерно распределенными в ней небесными телами энергия тяготения (гравитационный потенциал) со стороны всех тел Вселенной на данное тело оказывается бесконечно большой. Результат зависит от способа вычисления, причем в этом случае относительные скорости небесных тел могли бы быть бесконечно большими .

Одно время казалось, что выход из затруднения найден. Если звезды образуют звездные системы, те – галактики, галактики, в свою очередь, сверхгалактики, и так до бесконечности, то в такой модели Вселенной, предложенной Ламбертом и Шарлье, мироздание будет состоять из иерархии материальных систем разных масштабов. Можно показать, что в такой «иерархической» Вселенной, несмотря на ее беспредельность, гравитационный парадокс, так же как и фотометрический, будет отсутствовать.

Однако наблюдения показали, что, по крайней мере, в пределах доступной нам части мироздания Вселенная не соответствует схеме Ламберта-Шарлье и, таким образом, гравитационный парадокс разрешен не был.

Термодинамический парадокс

В середине XIX в. был открыт великий закон природы – Закон сохранения энергии: при всех своих превращениях из одного вида в другой энергия не исчезает и не возникает из ничего. Общее количество энергии остается постоянным. Этот закон, множество раз проверенный опытом, практикой, и ныне считается основным законом природы.

Термодинамика – раздел физики, изучающий природу тепловых процессов и различные превращения тепловой энергии. То, что тепловая энергия, как и другие виды энергии, не исчезает при своих превращениях и не возникает из ничего, есть частное выражение Первого закона («Первого начала») термодинамики. Но в термодинамике существует Второй закон, говорящий не о количестве энергии, а об ее качестве.

Второй закон термодинамики состоит в том, что при всех превращениях различные виды энергии, в конечном счете, переходят в тепло, которое, будучи предоставлено само себе, рассеивается в мировом пространстве. Тепло может переходить только от более нагретого тела к менее нагретому телу. И когда все температуры уравняются, все процессы остановятся и наступит всеобщая смерть. Ее так и назвали – «Тепловая смерть».

В ходе рассуждений о «Тепловой смерти» немецкий физик Рудольф Клаузиус, сформулировавший проблему в 1850 г., ввел некоторую математическую величину, названную им энтропией. В буквальном переводе с греческого «энтропия» означает «обращение внутрь», то есть замыкание в себе, не использование. По существу же энтропия есть мера беспорядка в какой-либо системе тел. Чем больше беспорядок, тем больше и энтропия. По утверждению Клаузиуса, энтропия всюду в мире, в конечном счете, только возрастает. Мир неуклонно стремится к полному беспорядку, его энтропия стремится к максимуму.

«Чем больше Вселенная приближается к этому предельному состоянию, в котором энтропия достигнет своего максимума, тем меньше поводов к дальнейшим изменениям, – писал Клаузиус. – А если бы состояние было, наконец, достигнуто, то прекратились бы все изменения, и Вселенная застыла бы среди вечного покоя» .

Ошеломляющее впечатление, произведенное Вторым законом термодинамики на естествоиспытателей, было особенно сильным еще и потому, что вокруг себя в окружающей нас природе они не видели фактов, его опровергающих. Наоборот, казалось, все подтверждало мрачные прогнозы Клаузиуса.

Ни один материалист, твердо знающий, что Вселенная не может иметь конца, не мог согласиться с подобной точкой зрения. На опровержение Второго закона термодинамики были брошены силы всех материалистически мыслящих крупных ученых. Шведский ученый С.Аррениус писал, что «…если бы Второй закон имел универсальный характер, ведущий к тепловому вырождению всей Вселенной, то эта «смерть тепла» за бесконечно долгое время существования мира давно бы уже наступила, чего, однако, не случилось. Или нужно допустить, что мир существует не бесконечно долго и что он имел свое начало, это, однако, противоречит первой части положения Клаузиуса, устанавливающей, что энергия мира постоянна, ибо тогда пришлось бы допустить, что вся энергия возникла в момент творения. Но это для нас совершенно непонятно, и мы должны поискать случая, для которого формула энтропии Клаузиуса не приложима».

Мрачная гипотеза хотя и подвергла сомнению всеобщность и строгую обязательность «Второго начала», но она не смогла удовлетворить оптимистически мыслящих ученых. Поэтому поиски были продолжены, но они были направлены не на пересмотр исходных положений, приведших к космологическим «парадоксам», а на изыскание таких построений, которые бы, не затрагивая исходных моментов, дали бы все же вариант выхода из создавшегося тупика.

Возникла альтернатива: либо отказаться от одного из начал термодинамики, либо в той или иной форме признать возможность парадокса. От начал термодинамики не стали отказываться, ибо они представляют законы, регулирующие процессы, которые протекают в материальном мире.

Парадокс же, связанный с утверждениями о далеком прошлом, не представляет «прямой угрозы» известным тогда законам науки, и его разрешение можно было отодвинуть на неопределенное будущее.

В 1895 г. немецкий физик Л.Больцман предложил вероятностную трактовку «Второго начала». Больцман не сомневался, что Вселенная бесконечна в пространстве и во времени. Он полагал, что, в основном, она почти всегда и пребывает в состоянии «Тепловой смерти». Однако иногда в некоторых ее районах возникают крайне маловероятные отклонения (флуктуации) от обычного состояния Вселенной. К одной из них принадлежит Земля с ее населением и весь видимый нами космос. На Земле, а может быть и где-то еще в космосе, создались условия, благоприятные для возникновения и развития жизни вплоть до стадии «мыслящих существ». Но это лишь случайное и крайне маловероятное отклонение от нормы. В целом же, по Больцману, Вселенная это безбрежный мертвый океан с некоторым количеством островков жизни.

Уже в 20-м столетии последователи теории относительности Эйнштейна нашли иное объяснение вечности Вселенной. Поскольку Вселенная расширяется, чему свидетельством является «Красное смещение» спектров отдаленных галактик, то мы имеем дело с незамкнутыми процессами, поэтому, пока Вселенная расширяется, то «Тепловой смерти» не будет. Правда, затем она начнет сжиматься, но тогда она сожмется в безразмерную сингулярную точку, в которой сосредоточится вся масса Вселенной, и все процессы остановятся. Это, конечно, не та «Тепловая смерть», которую предсказал Р.Клаузиус, но некоторый ее эквивалент, который нас не должен особенно волновать, поскольку нас тоже к этому времени, наверное, не будет . Но такое объяснение тоже мало кого удовлетворило.

В середине 19-го столетия среди естествоиспытателей состоялась крупная дискуссия о том, что должно являться мерой движения – количество движения L = mv , т.е. произведение массы движущегося тела на скорость в первой степени, или энергия W = mv 2 /2, в формульное выражение которой скорость входит во второй степени.

Разбираясь с мерами движения, Ф.Энгельс в своей известной работе «Диалектика природы»

Энгельс показал, что у всякого движения есть две составляющие – не уничтожаемая и уничтожаемая. Не уничтожаемая часть способна воспроизводиться в явном движении. А уничтожаемая, это та часть, которая переходит в тепло и уже воспроизвестись в явном движении не может. Это и есть «потери», но потери не абсолютные, поскольку движение вообще не уничтожается, а потери лишь с точки зрения поставленной цели.

Сегодня этот переход можно оценить как переход части движения с макроуровня на микроуровень, внутрь движущихся тел. Поэтому, когда тела обмениваются энергией, это значит, что они обмениваются той частью энергии, которая способна перейти из формы явного движения в форму тепловую. Эта вторая часть в большинстве случаев оказывается необратимой, тогда это потери.

Однако здесь нашлось некоторое исключение из всех процессов, связанное с формированием эфирных (газовых) вихрей, в которых потенциальная энергия окружающей вихрь газовой среды способна самопроизвольно перейти в форму кинетической энергии вращения вихря, а затем в процессе диффузии вихря самопроизвольно же возвратиться обратно в тепловую форму энергии окружающей среды.

В свое время советский ученый П.К.Ощепков, открывший в печати дискуссию по холодильникам, показал, что отношение к коэффициенту полезного действия, сложившееся в мировой науке, не корректно. Это отношение о невозможности получения кпд больше единицы в любой системе нужно пересмотреть, исходя из следующих соображений .

1. Энергию, т.е. движение материи в пространстве и времени нельзя ни создать, ни уничтожить, ее можно преобразовать только из одной формы в другую.

2. Коэффициентом полезного действия нужно обозначить отношение величины энергии, полезной для данного конкретного использования, ко всей затраченной на это энергии.

3. Общее количество энергии, затраченной на любой процесс с учетом неиспользуемой части энергии, воспринимаемой как потери, на входе любой системы и на ее выходе всегда одно и то же.

4. С этой точки зрения кпд любого холодильника, если учитывать отдаваемое им во вне тепло, всегда больше единицы, поскольку он отдает в виде тепла не только ту энергию, которую он потребляет из сети, но и ту энергию, которую он принудительно отбирает у морозильной камеры. Если же в качестве полезного тепла рассматривать тепло самой холодильной камеры, то кпд всегд будет иметь отрицательное значение, поскольку в морозильной камере тепло не выделяется, а отбирается.

5. Поэтому все термодинамические процессы надо рассматривать не только с точки зрения кпд, которое пора уточнить, но и с точки зрения рассеивания или концентрации энергии в пространстве.

В настоящее время во всем мире создано множество устройств, у которых кпд больше единицы, но это означает, что они каким-то образом забирают энергию из некоторого резервуара, который обязан существовать, поскольку на самом деле дополнительную энергию создать нельзя, ее можно только откуда-то взять. Образование эфирных вихрей – элементарных частиц вещества и затем их распад и обеспечивает постоянство количества движения, а следовательно, и энергии во всей вселенной: при образовании вихрей часть энергии окружающего эфира переходит в энергию вращении тела вихрей, а при их распаде возвращается обратно в свободный эфир. Таким образом, здесь, как и в любых процессах макромира происходит переход энергии из одного иерархического уровня организации материи в другой, а затем возвращается обратно. Отличие с большинством процессов макромира заключается в том, что в них энергия, переходя из макроуровня – движения макротел, переходит в энергию микроуровня – тепловое движение молекул и обратно не возвращается, но и здесь при формировании газовых вихрей, например, воздушных, происходит преобразование тепловой энергии среды – потенциальной энергии давления атмосферы в кинетическую энергия вращения вихрей, а затем, после распада вихрей (смерчей, циклонов) происходит возврат их кинетической энергии вращения в тепловую энергию атмосферы. Поэтому П.К.Ощепков был прав, утверждая, что подобные процессы надо рассматривать с точки зрения рассеивания и концентрации энергии.

1.4 Современное состояние космологии и космогонии

Возникновение современной космологии связано с созданием релятивистской теории тяготения А.Эйнштейна в 1913–1917гг. . На первом этапе развития релятивистской космологии главное внимание уделялось геометрии Вселенной – кривизне пространства-времени и замкнутости пространства. На втором этапе работами А.Фридмана было показано, что искривленное пространство не может быть стационарным, что оно должно расширяться или сжиматься, что было признано за истину после открытия в 1929 г. Э.Хабблом «Красного смещения» спектров далеких галактик. Третий этап начинается моделями «горячей» Вселенной (2-я половина 40-х годов, Г.Гамов) . Основное внимание теперь переносится на физику Вселенной – состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии, когда состояние было необычным.

В современной космогонии рассматриваются различные модели происхождения и эволюции планет, звезд и галактик. Здесь выдвигаются различные гипотезы, основными из которых являются концепции концентрации первоначально диффузных газа и пыли, о происхождении которых не говорится ничего, а также концепция распада находящегося в некоторых областях пространства «сверхплотного» вещества, которое и служит материалом для образования галактик и звезд, о происхождении этого вещества также не говорится ничего. Например, существует несколько гипотез о причинах испускания газа ядрами галактик (см., например, ). Суть их сводится в основном к тому, что в ядрах галактик имеется большое число звезд или большая масса, распад которой и ведет к истечению газа и излучениям. Существует также предположение о том, что в центре ядра имеется так называемая черная дыра, однако это предположение уже никак не вяжется с фактом истечения газа и может в лучшем случае оправдать наличие электромагнитного излучения.

Изложенные гипотезы представляются весьма искусственными, поскольку они подразумевают некоторые необратимые процессы. Кроме того, наличие в ядрах галактик сверхплотных образований, скоплений звезд или черной дыры, в свою очередь, требует объяснения причин их нахождения или появления в этих ядрах.

В современной космологии принято несколько типовых объяснений наблюдаемых явлений. К ним относятся:

– «Красное смещение» спектров далеких галактик, которое объясняется только как результат доплеровского эффекта разбегания галактик и расширения Вселенной; другие возможные объяснения игнорируются;

– взрывы галактик или их ядер как причина появления широких ярких полос спектров;

– торможение в магнитном поле электронов как причина нетеплового излучения, а также некоторые другие.

По мнению современных космологов, все три упомянутых выше парадокса – фотометрический, гравитационный и термодинамический разрешаются, если применить к космологии теорию относительности Эйнштейна, в которой уделено внимание кривизне пространства-времени, благодаря чему Вселенная замкнута сама на себя, а также ее не стационарности, открытой советским физиком Фридманом в 20-е годы прошлого столетия. Работы Фридмана получили признание после того, как в 1929 г. американский астроном Хаббл открыл закон «Красного смещения» спектров далеких галактик: оказалось, что спектры галактик смещены в сторону красной части, причем тем больше, чем дальше от нас находятся эти галактики. Отсюда был сделан вывод о расширении Вселенной в результате так называемого «Большого взрыва».

Смысл Большого взрыва следующий. Когда-то Вселенная была сосредоточена в одной безразмерной точке, названной сингулярной, и имела бесконечно большую плотность. Но потом она взорвалась, и с тех пор все еще разлетается во все стороны, что экспериментально и подтверждает «Красное смещение» спектров. Большой взрыв – акт рождения Вселенной произошел примерно 15-20 млрд. лет тому назад. Пока что процесс идет в одну сторону. Возможно, что через некоторое время Вселенная начнет сжиматься и снова соберется в сингулярную, т. е. безразмерную точку, а потом снова взорвется. Тогда это будет «пульсирующая» Вселенная. Но пока это неясно.

В современной космологической литературе много внимания уделяется процессам, происшедшим во Вселенной в первые моменты после Взрыва – через короткое время после Взрыва – через 1 с, через 1 мс и даже через 1 мкс. Но состояние Вселенной до Взрыва, скажем, за 1 с до Взрыва, не рассматривается, так как считается, что это бессмысленно: самой категории времени тогда не существовало, поскольку никаких процессов не было вообще. Отсчет времени исчисляется только с момента Большого Взрыв. Теоретики считают, что идея расширяющейся Вселенной позволила разрешить все упомянутые парадоксы, впрочем, для разрешения термодинамического парадокса этой идеи оказалось недостаточно. Поэтому привлекается дополнительное объяснение, в соответствии с которым любая сколь угодно большая часть Вселенной не является замкнутой, и потому вывод о неизбежности «Тепловой смерти» неверен. Правда, такое рассуждение противоречит идее о замкнутости Вселенной, вытекающей из теории относительности, но это не так важно, как полагают все те же теоретики. Зато остальные два парадокса разрешаются вполне успешно.

В целом же вся Вселенная однородна и изотропна. Это базируется на двух постулатах :

Постулат 1. Наилучшим описанием гравитационного поля являются уравнения Эйнштейна, откуда и вытекает кривизна пространства-времени. (Этим постулируется факт, что лучше Эйнштейна уже никто и никогда ничего придумать не сможет).

Постулат 2. Во Вселенной нет каких-либо выделенных точек (однородность Вселенной) и выделенных направлений (Здесь тоже все ясно: никто не интересуется, существуют ли такие выделенные направления; раз в соответствии с постулатом их нет, значит, и искать не надо).

Однако есть еще и третий постулат «горячей» Вселенной, в соответствии с которым при очень малых значениях интервала времени от «начала» Вселенной не могли существовать не только молекулы и атомы, но и атомные ядра, существовала лишь смесь разных элементарных частиц. При этом при t = 0 плотность Вселенной была бесконечно велика, и вся она была сосредоточена в безразмерной «сингулярной» точке пространства, а через 0,01 секунду после «Большого взрыва» плотность упала до 10 11 г/см 3 . Обсуждаются модели открытой Вселенной и замкнутой Вселенной. В первой модели расширение Вселенной может происходить бесконечно, во второй – расширение может смениться сжатием. Ни о причинах «Большого взрыва», ни о том, что было до этого взрыва, современная космология не говорит ничего.

Если к этому добавить, что уравнения Эйнштейна при равенстве нулю космологического члена λ приобретают простой вид, то это, как раз, и свидетельствует о правильности и красоте теории Эйнштейна.

Космологическая постоянная λ введена Эйнштейном в 1917 г. в свои уравнения, чтобы эти уравнения могли иметь решение, описывающее стационарную Вселенную, и удовлетворяли требованию относительности инерции. При λ 0 – отталкивание, возрастающее с увеличением расстояния, а не убывающее! Физический смысл введения космологической постоянной заключается в допущении существования особых космических сил, природа которых неизвестна, но это и неважно.

Поскольку требование стационарности Вселенной отпало в связи с открытием разбегания галактик, то Эйнштейн в 1931 г. отказался от космологической постоянной, которая до сих пор считается приближенно равной нулю, хотя допускается и другая возможность: космологическая постоянная крайне мала, но все же не равна нулю исоставляет λ ≈ 10 –55 см –2 .

В соответствии с представлениями Общей теории относительности полная масса Вселенной конечна и определяется выражением :

R √ 32 π 2

М = 2ρ π 2 R 3 = 4π 2 - = --- (1.2).

χ χ 3/2 ρ

Здесь R – радиус четырехмерного пространства замкнутой Вселенной. При λ ≈ 10 –55 см –2 R = 3·10 27 см.

Эйнштейн отмечает , что положительная кривизна прост-ранства, обусловленная находящейся в нем материей, получается и в том случае, если λ = 0, и что постоянная λ нужна для того, чтобы обеспечить квазистатическое распределение материи, соответствующее фактическим скоростям перемещения звезд.

На этой основе в современной космологии рассматриваются главным образом две модели Вселенной. В одной их них кривизна пространства отрицательна или в пределе равна нулю. Пространство бесконечно, все расстояния со временем неогра-ниченно возрастают. Это так называемая открытая модель. В другой – замкнутой модели кривизна пространства положите-льна, пространство конечно, но столь же безгранично, что и в открытой модели. В этой модели расширение со временем смени-тся сжатием. Начальные стадии для обеих моделей одинаковы – должно существовать особое начальное состояние с бесконечной плотностью масс и бесконечной кривизной пространства и взрывное, замедляющееся со временем, расширение.

Существует еще и третий вариант – вариант «горячей Вселенной», предполагающий высокую начальную температуру Вселенной, что также является постулатом. Из этого постулата вытекает, что при очень малых значениях начального времени не могли существовать не только молекулы или атомы, но даже и атомные ядра: существовала лишь некоторая смесь разных элементарных частиц, включая фотоны и нейтрино.

Если в самый «начальный момент, т.е. при t = 0 плотность ρ = ∞, то уже при t = 0,01 с. плотность снижается до значения ρ = 10 11 г/см 3 . В статье «Космология» Наан пишет, что «…незнание того, что происходило при плотностях, намного превышающих ядерную (за первые 10 –4 с расширения), не мешает делать более или менее достоверные суждения о более поздних состояниях, начиная с t = 0,01 с».

Основными наблюдательными фактами, подтверждающими не стационарность Вселенной и то, что она горячая, считаются космологическое «Красное смещение», открытое Хабблом в 1929 г., и открытое в 1965 г. реликтовое радиоизлучение. И только кривизна пространства непосредственно не поддается измере-нию, но и она определена косвенно. При этом средняя плотность светящегося вещества оказалась равной 10 –31 – 10 –29 г/см 3 . Но так как критическая средняя плотность составляет 6·10 –30 г/см 3 , то нельзя точно сказать, какова Вселенная – открытая, т. е. расширя-ющаяся безгранично, или замкнутая, т. е. она начнет через некоторое время сжиматься. Но все, что касается прошлого, ясно.

В процессе проработки современной космологии возникли некоторые теоретические трудности, например, отсутствие теории для изучения состояния вещества со сверхвысокой плотностью, нахождение математики для изучения состояния вещества с бесконечной плотностью, потребовалось обобщение понятия времени для подтверждения бессмысленности постановки вопроса о том, что же все-таки было до t = 0, здесь делаются лишь первые шаги. Недостаточно разработана тополо-гия пространства-времени, не совсем точно определен возраст Вселенной, не объяснены зарядовая симметрия Вселенной, преобладание вещества над антивеществом, нет убедительной теории возникновения звезд и галактик и т. д. Но это все никак не сказывается на общей уверенности в том, что основные перечисленные выше фундаментальные моменты решены правильно, и космология в целом находится на верном пути.

Введение. 3

1. Космологические парадоксы.. 4

2. Концепция расширяющейся Вселенной. 8

3. Концепция «Большого Взрыва». 14

Заключение. 20

Список использованных источников и литературы: 21

Приложения………………………………………………………………..22


Введение

Наша планета – одна из планет Солнечной системы. окружающие Солнце звёзды и само Солнце – это ничтожно малая часть гигантского коллектива звёзд и туманностей, называемого «Галактикой». . Но Вселенная состоит из огромного количества даже не галактик, а метагалактик, являющихся скоплениями галактик. Собственно, метагалактика – это и есть известная в настоящее время Вселенная. Здесь масштабы и расстояния приобретают характер, совершенно не представимый человеческому воображению.

Изменение в представлениях о форме и размерах Вселенной на протяжении веков и до наших дней описано в начальных главах многих научно-популярных книг по космологии. Главные темы космологии сейчас - это ядерные превращения в звездах и физика субатомных частиц. А космогония (от слова gonia - угол), являясь в наше время лишь частью более общей науки - космологии, говорит именно о крупномасштабных пространственных характеристиках Вселенной - не об архитектурных и конструктивных деталях мироздания, а как бы со стороны целиком показывает модель, макет этого «здания», в котором мы живем.

Цель нашей работы раскрыть концепцию Большого Взрыва. Для этого необходимо решить следующие задачи:

1. Выявить космологические парадоксы;

2. Рассмотреть концепцию расширяющейся Вселенной;

3. Изучить концепцию непосредственно Большого Взрываю


Космологические парадоксы

В истории познания окружающего нас мира четко прослеживается общее направление - постепенное признание неисчерпаемости природы, ее бесконечности во всех отношениях. Вселенная бесконечна в пространстве и во времени, и если отбросить идеи И. Ньютона о "первом толчке", то такого рода мировоззрение можно считать вполне материалистическим. Ньютоновская Вселенная утверждала, что пространство есть вместилище всех небесных тел, с движением и массой которых оно никак не связано; Вселенная всегда одна и та же, т. е. стационарна, хотя в ней постоянно происходит гибель и рождение миров.

Казалось бы, небо ньютоновской космологии обещало быть безоблачным. Однако очень скоро пришлось убедиться в обратном. В течение XIX в. обнаружились три противоречия, которые были сформулированы в форме трех парадоксов, названных космологическими. Они, казалось, подрывали представление о бесконечности Вселенной.

Фотометрический парадокс. Если Вселенная бесконечна и звезды в ней распределены равномерно, то по любому направлению мы должны видеть какую-нибудь звезду. В этом случае фон неба был бы ослепительно ярким, как Солнце.

Гравитационный парадокс. Если Вселенная бесконечна и звезды равномерно занимают ее пространство, то сила тяготения в каждой его точке должна быть бесконечно велика, а стало быть, бесконечно велики были бы и относительные ускорения космических тел, чего, как известно, нет.

Термодинамический парадокс. По второму закону термодинамики все физические процессы во Вселенной в конечном счете сводятся к выделению теплоты, которая необратимо рассеивается в мировом пространстве. Рано или поздно все тела остынут до температуры абсолютного нуля, движение прекратится и наступит навсегда "тепловая смерть". Вселенная имела начало, и ее ждет неизбежный конец.

Первая четверть XX в. прошла в томительном ожидании развязки. Никто, разумеется, не хотел отрицать бесконечность Вселенной, но, с другой стороны, никому не удавалось устранить космологические парадоксы стационарной Вселенной. Лишь гений Альберта Эйнштейна внес новую струю в космологические споры.

Ньютоновская классическая физика, как уже говорилось, рассматривала пространство как вместилище тел. Никакого взаимодействия между телами и пространством по Ньютону и быть не могло.

В 1916 г. А. Эйнштейн опубликовал основы общей теории относительности. Одна из главных ее идей состоит в том, что материальные тела, в особенности большой массы, заметно искривляют пространство. Из-за этого, например, луч света, проходящий вблизи Солнца, изменяет первоначальное направление.

Представим себе теперь, что во всей наблюдаемой нами части Вселенной материя равномерно "размазана" в пространстве и в любой его точке действуют одни и те же законы. При некоторой средней плотности космического вещества выделенная ограниченная часть Вселенной не только искривит пространство, но даже замкнет его "на себя". Вселенная (точнее, выделенная ее часть) превратится в замкнутый мир, напоминающий обычную сферу. Но только это будет четырехмерная сфера, или гиперсфера, представить себе которую мы, трехмерные существа, не в состоянии. Однако, мысля по аналогии, мы легко разберемся в некоторых свойствах гиперсферы. Она, как и обычная сфера, имеет конечный объем, заключающий в себе конечную массу вещества. Если в мировом пространстве лететь все время в одном направлении, то через некоторое число миллиардов лет можно попасть в исходную точку.



Идею о возможности замкнутости Вселенной впервые высказал А. Эйнштейн. В 1922 г. советский математик А. А. Фридман доказал, что "замкнутая Вселенная" Эйнштейна никак не может быть статичной. В любом случае ее пространство или расширяется, или сжимается со всем своим содержимым.

В 1929 г. американский астроном Э. Хаббл открыл замечательную закономерность: линии в спектрах подавляющего большинства галактик смещены к красному концу, причем смещение тел тем больше, чем дальше от нас находится галактика. Это интересное явление называется красным смещением. Объяснив красное смещение эффектом Доплера, т. е. изменением длины волны света в связи с движением источника, ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Конечно, галактики не разлетаются во все стороны от нашей Галактики, которая не занимает никакого особого положения в Метагалактике, а происходит взаимное удаление всех галактик. Это означает, что наблюдатель, находящийся в любой галактике, мог бы, подобно нам, обнаружить красное смещение, ему казалось бы, что от него удаляются все галактики. Таким образом, Метагалактика нестационарна. Открытие расширения Метагалактики свидетельствует о том, что Метагалактика в прошлом была не такой, как сейчас, и иной станет в будущем, т. е. Метагалактика эволюционирует.

По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самыми большими скоростями, иногда превышающими 250 тыс. км/с, обладают некоторые квазары, считающиеся самыми удаленными от нас объектами Метагалактики.

Закон, согласно которому красное смещение (а значит, и скорость удаления галактик) возрастает пропорционально расстоянию от галактик (закон Хаббла), можно записать в виде: v - Нr, где v - лучевая скорость галактики; r - расстояние до нее; Н - постоянная Хаббла. По современным оценкам, значение Н заключено в пределах:

Следовательно, наблюдаемый темп расширения Метагалактики таков, что галактики, разделенные расстоянием 1 Мпк (3 10 19 км), удаляются друг от друга со скоростью от 50 до 100 км/с. Если скорость удаления галактики известна, то можно вычислить расстояние до далеких галактик.

Итак, мы живем в расширяющейся Метагалактике. Это явление имеет свои особенности. Расширение Метагалактики проявляется только на уровне скоплений и сверхскоплений галактик, т. е. систем, элементами которых являются галактики. Другая особенность расширения Метагалактики заключается в том, что не существует центра, от которого разбегаются галактики.

Расширение Метагалактики - самое грандиозное из известных в настоящее время явлений природы. Правильное его истолкование имеет исключительно большое мировоззренческое значение. Не случайно в объяснении причины этого явления резко проявилось коренное отличие философских взглядов ученых. Некоторые из них, отождествляя Метагалактику со всей Вселенной, пытаются доказать, что расширение Метагалактики подтверждает религиозное о сверхъестественном, божественном происхождении Вселенной. Однако во Вселенной известны естественные процессы, которые в прошлом могли вызвать наблюдаемое расширение. По всей вероятности, это взрывы. Их масштабы поражают нас уже при изучении отдельных видов галактик.