Может ли эксцесс быть отрицательным. Вычисление асимметрии и эксцесса эмпирического распределения в Excel

Коэффициент асимметрии показывает «скошенность» ряда распределения относительно центра:

где – центральный момент третьего порядка;

– куб среднего квадратического отклонения.

Для данного метода расчета: если , в распределении наблюдается правосторонняя (положительная асимметрия), если , в распределении наблюдается левосторонняя (отрицательная асимметрия)

Кроме центрального момента расчет асимметрия можно провести, используя моду или медиану:

либо , (6.69)

Для данного метода расчета: если , в распределении наблюдается правосторонняя (положительная асимметрия), если , в распределении наблюдается левосторонняя (отрицательная асимметрия) (рис. 4).


Рис. 4. Асимметричные распределения

Величина, показывающая «крутость» распределения, называется коэффициентом эксцесса :

Если , в распределении наблюдается островершинность – эксцесс положительный, если , в распределении наблюдается плосковершинность – эксцесс отрицательный (рис. 5).

Рис. 5. Эксцессы распределения

Пример 5. Имеются данные о количестве овец по хозяйствам района (табл. 9).

1. Среднее количество овец в расчете на одно хозяйство.

3. Медиану.

4. Показатели вариации

· дисперсию;

· стандартное отклонение;

· коэффициент вариации.

5. Показатели асимметрии и эксцесса.

Решение.

1. Так как значение варианты в совокупности повторяется по несколько раз, с определенной частотой для расчета среднего значения используем формулу среднюю арифметическую взвешенную:

2. Данный ряд является дискретным, поэтому модой будет варианта с наибольшей частотой – .

3. Данный ряд является четным, в этом случае медиану для дискретного ряда находят по формуле:

То есть, половина хозяйств в исследуемой совокупности имеют количество овец до 4,75тыс.голов. а половина свыше данной численности.

4. Для расчета показателей вариации составим таблицу 10, в которой рассчитаем отклонения , квадраты данных отклонений , расчет можно провести как по простым, так и по взвешенным формулам расчета (в примере используем простую):

Таблица 10

2,00 -2,42 5,84
2,50 -1,92 3,67
2,50 -1,92 3,67
3,00 -1,42 2,01
3,00 -1,42 2,01
4,00 -0,42 0,17
5,50 1,08 1,17
5,50 1,08 1,17
5,50 1,08 1,17
6,00 1,58 2,51
6,50 2,08 4,34
7,00 2,58 6,67
Итого 53,00 0,00 34,42
В среднем 4,4167

Рассчитаем дисперсию:

Рассчитаем стандартное отклонение:

Рассчитаем коэффициент вариации:

5. Для расчета показателей асимметрии и эксцесса построим таблицу 11, в которой рассчитаем , ,

Таблица 11

2,00 -2,42 -14,11 34,11
2,50 -1,92 -7,04 13,50
2,50 -1,92 -7,04 13,50
3,00 -1,42 -2,84 4,03
3,00 -1,42 -2,84 4,03
4,00 -0,42 -0,07 0,03
5,50 1,08 1,27 1,38
5,50 1,08 1,27 1,38
5,50 1,08 1,27 1,38
6,00 1,58 3,97 6,28
6,50 2,08 9,04 18,84
7,00 2,58 17,24 44,53
Итого 53,00 0,00 0,11 142,98
В среднем 4,4167

Асимметрия распределения равна:

То есть, наблюдается левосторонняя асимметрия, так как , что подтверждается и при расчете по формуле:

В этом случае , что для данной формулы так же указывает на левостороннюю асимметрию

Эксцесс распределения равен:

В нашем случае эксцесс отрицательный, то есть наблюдается плосковершинность.

Пример 6 . По хозяйству представлены данные о заработной плате работников (табл. 12)

Решение.

Для интервального вариационного ряда мода рассчитывается по формуле:

где модальный интервал – интервал с наибольшей частотой, в нашем случае 3600-3800, с частотой

Минимальная граница модального интервала (3600);

Величина модального интервала (200);

Частота интервала предшествующая модальному интервалу (25);

Частота следующего за модальным интервалом (29);

Частота модального интервала (68).

Таблица 12

Для интервального вариационного ряда медиана рассчитывается по формуле:

где медианный интервал это интервал, кумулятивная (накопленная) частота которого равна или превышает половину суммы частот, в нашем примере это 3600-3800.

Минимальная граница медианного интервала (3600);

Величина медианного интервала (200);

Сумма частот ряда (154);

Сумма накопленных частот, всех интервалов, предшествующих медианному (57);

– частота медианного интервала (68).

Пример 7. По трем хозяйствам одного района имеются сведения о фондоемкости продукции (количество затрат основных фондов на 1руб. произведенной продукции): I – 1,29 руб., II – 1,32 руб., III – 1,27руб. Необходимо рассчитать среднюю фондоемкость.

Решение . Так как фондоемкость обратный показатель оборота капитала используем формулу среднюю гармоническую простую.

Пример 8. По трем хозяйствам одного района имеются данные о валовом сборе зерновых и средней урожайности (табл. 13).

Решение . Расчет средней урожайности по средней арифметической невозможен, так как отсутствуют сведения о количестве посевных площадей , поэтому используем формулу средней гармонической взвешенной:

Пример 9. Имеются данные о средней урожайности картофеля на отдельных участках и количестве окучиваний (табл. 14)

Таблица 14

Проведем группировку данных (табл. 15):

Таблица 15

Группировка участков по признаку «число прополок»

1. Рассчитаем общую дисперсию выборки (табл. 16).

Асимметрия вычисляется функцией СКОС. Ее аргументом является интервал ячеек с данными, например, =СКОС(А1:А100), если данные содержатся в интервале ячеек от А1 до А100.

Эксцесс вычисляется функцией ЭКСЦЕСС, аргументом которой являются числовые данные, заданные, как правило, в виде интервала ячеек, например: =ЭКСЦЕСС(А1:А100).

§2.3. Инструмент анализа Описательная статистика

В Excel имеется возможность вычислить сразу все точечные характеристики выборки с помощью инструмента анализа Описательная статистика , который содержится в Пакете анализа .

Описательная статистика создает таблицу основных статистических характеристик для совокупности данных. В этой таблице будут содержаться следующие характеристики: среднее, стандартная ошибка, дисперсия, стандартное отклонение, мода, медиана, размах варьирования интервала, максимальное и минимальное значения, асимметрия, эксцесс, объем совокупности, сумма всех элементов совокупности, доверительный интервал (уровень надежности). Инструмент Описательная статистика существенно упрощает статистический анализ тем, что отпадает необходимость вызывать каждую функцию для расчета статистических характеристик отдельно.

Для того, чтобы вызвать Описательную статистику , следует:

1) в меню Сервис выбрать команду Анализ данных ;

2) в списке Инструменты анализа диалогового окна Анализ данных выбрать инструмент Описательная статистика и нажать ОК.

В окне Описательная статистика необходимо:

· в группе Входные данные в поле Входной интервал указать интервал ячеек, содержащих данные;

· если первая строка во входном диапазоне содержит заголовок столбца, то в поле Метки в первой строке следует поставить галочку;

· в группе Параметры вывода активизировать переключатель (поставить галочку) Итоговая статистика , если нужен полный список характеристик;

· активизировать переключатель Уровень надежности и указать надежность в %, если необходимо вычислить доверительный интервал (по умолчанию надежность равна 95%). Нажать ОК.

В результате появится таблица с вычисленными значениями указанных выше статистических характеристик. Сразу, не сбрасывая выделения этой таблицы, выполните команду Формат ®Столбец ®Автоподбор ширины .

Вид диалогового окна Описательная статистика :

Практические задания

2.1. Вычисление основных точечных статистических характеристик с помощью стандартных функции Excel

Одним и тем же вольтметром было измерено 25 раз напряжение на участке цепи. В результате опытов получены следующие значения напряжения в вольтах:

32, 32, 35, 37, 35, 38, 32, 33, 34, 37, 32, 32, 35,

34, 32, 34, 35, 39, 34, 38, 36, 30, 37, 28, 30.

Найти среднюю, выборочные и исправленные дисперсию, стандартное отклонение, размах варьирования, моду, медиану. Проверить отклонение от нормального распределения, вычислив асимметрию и эксцесс.

Для выполнения этого задания проделайте следующие пункты.

1. Наберите результаты эксперимента в столбец А.

2. В ячейку В1 наберите «Среднее», в В2 – «Выборочная дисперсия», в В3 – «Стандартное отклонение», в В4 – «Исправленная дисперсия», в В5 – «Исправленное стандартное отклонение», в В6 – «Максимум», в В7 – «Минимум», в В8 – «Размах варьирования», в В9 – «Мода», в В10 – «Медиана», в В11 – «Асимметрия», в В12 – «Эксцесс».

3. Выровняйте ширину этого столбца с помощью Автоподбора ширины.

4. Выделите ячейку С1 и нажмите на кнопку со знаком «=» в строке формул. С помощью Мастера функций в категории Статистические найдите функцию СРЗНАЧ, затем выделите интервал ячеек с данными и нажмите ОК.

5. Выделите ячейку С2 и нажмите на знак =в строке формул. С помощью Мастера функций в категории Статистические найдите функцию ДИСПР, затем выделите интервал ячеек с данными и нажмите ОК.

6. Проделайте самостоятельно аналогичные действия для вычисления остальных характеристик.

7. Для вычисления размаха варьирования в ячейку С8 следует ввести формулу: =C6-C7.

8. Добавьте перед вашей таблицей одну строку, в которую наберите заголовки соответствующих столбцов: «Наименование характеристик» и «Численные значения».

Определение. Модой М 0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.

Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным .

Если распределение имеет минимум, но не имеет максимума, то оно называется антимодальным .

Определение. Медианой M D случайной величины Х называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.

Геометрически медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам.

Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.

Определение. Начальным моментом порядка k случайной величины Х называется математическое ожидание величины Х k .

Для дискретной случайной величины: .

.

Начальный момент первого порядка равен математическому ожиданию.

Определение. Центральным моментом порядка k случайной величины Х называется математическое ожидание величины

Для дискретной случайной величины: .

Для непрерывной случайной величины: .

Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.

Определение. Отношение центрального момента третьего порядка к среднему квадратическому отклонению в третьей степени называется коэффициентом асимметрии .

Определение. Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом.

Кроме рассмотренных величин используются также так называемые абсолютные моменты:

Абсолютный начальный момент: .

Абсолютный центральный момент: .

Квантилем , отвечающий заданному уровню вероятности Р , называют такое значение, при котором функция распределения принимает значение, равное Р , т.е. где Р - заданный уровень вероятности.

Другими словами квантиль есть такое значение случайной величины, при котором

Вероятность Р , задаваемая в процентах, дает название соответствующему квантилю, например, называется 40%-ым квантилем.

20. Математическое ожидание и дисперсия числа появления события в независимых опытах.

Определение. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку , называется определенный интеграл

Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

При этом, конечно, предполагается, что несобственный интеграл сходится.

Математическим ожиданием дискретной случайной величины называется сумма произведений ее возможных значений на соответствующие им вероятности:

М (Х ) =х 1 р 1 +х 2 р 2 + … +х п р п . (7.1)

Если число возможных значений случайной величины бесконечно, то
, если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногдавзвешенным средним , так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольшего.

Замечание 3. Математическое ожидание дискретной случайной величины естьнеслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Свойства математического ожидания.

    Математическое ожидание постоянной равно самой постоянной:

М (С ) =С. (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значениеС с вероятностьюр = 1, тоМ (С ) =С ·1 =С .

    Постоянный множитель можно выносит за знак математического ожидания:

М (СХ ) =С М (Х ). (7.3)

Доказательство. Если случайная величина Х задана рядом распределения

x i

x n

p i

p n

то ряд распределения для СХ имеет вид:

С x i

С x 1

С x 2

С x n

p i

p n

Тогда М (СХ ) =Сх 1 р 1 +Сх 2 р 2 + … +Сх п р п =С ( х 1 р 1 +х 2 р 2 + … +х п р п ) =СМ (Х ).

Математическим ожиданием непрерывной случайной величины называется

(7.13)

Замечание 1. Общее определение дисперсии сохраняется для непрерывной случайной величины таким же, как и для дискретной (опр. 7.5), а формула для ее вычисления имеет вид:

(7.14)

Среднее квадратическое отклонение вычисляется по формуле (7.12).

Замечание 2. Если все возможные значения непрерывной случайной величины не выходят за пределы интервала [a , b ], то интегралы в формулах (7.13) и (7.14) вычисляются в этих пределах.

Теорема. Дисперсия числа появлений события в независимых испытаниях равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании: .

Доказательство. Пусть – число появлений события в независимых испытаниях. Оно равно сумме появлений события в каждом испытании: . Так как испытания независимы, то и случайные величины – независимы, поэтому .

Как было показано выше, , а .

Тогда , а .

В этом случае, как уже упоминалось ранее, среднее квадратичное отклонение .

Для получения приблизительного представления о форме распределения случайной величины строят график её ряда распределения (полигон и гистограмму), функции или плотности распределения. В практике статистических исследований приходится встречаться с самими различными распределениями. Однородные совокупности характеризуются, как правило, одновершинными распределениями. Многовершинность свидетельствует о неоднородности изучаемой совокупности. В этом случае необходима перегруппировка данных с целью выделения более однородных групп.

Выяснение общего характера распределения случайной величины предполагает оценку степени его однородности, а также исчисление показателей асимметрии и эксцесса. В симметричном распределении, в котором математическое ожидание равно медиане, т.е. , можно считать асимметрия отсутствует. Но чем заметнее асимметрия, тем больше отклонение между характеристиками центра распределения – математическим ожиданием и медианой.

Простейшим коэффициентом асимметрии распределения случайной величины можно считать , где - это математическое ожидание, - медиана, а - стандартное отклонение случайной величины.

В случае правосторонней асимметрии , левосторонней – . Если , считается, что асимметрия низкая, если – средняя, а при – высокая. Геометрическая иллюстрация правосторонней и левосторонней асимметрии приведена на рисунке ниже. На нём изображены графики плотности распределений соответствующих типов непрерывных случайных величин.

Рисунок. Иллюстрация правосторонней и левосторонней асимметрии на графиках плотностей распределений непрерывных случайных величин.

Существует и другой коэффициент асимметрии распределения случайной величины. Можно доказать, что отличие от нуля центрального момента нечётного порядка свидетельствует об асимметрии распределения случайной величины. В предыдущем показателе мы использовали выражение , аналогичное моменту первого порядка . Но обычно в этом другом коэффициенте асимметрии используют центральный момент третьего порядка , а для того, чтобы этот коэффициент стал безразмерным его делят на куб стандартного отклонения. Получается такой коэффициент асимметрии: . Для этого коэффициента асимметрии, как и для первого в случае правосторонней асимметрии , левосторонней – .

Эксцесс случайной величины

Эксцесс распределения случайной величины характеризует степень сосредоточенности её значений около центра распределения: чем более высокая такая сосредоточенность, тем выше и уже будет график плотности её распределения. Показатель эксцесса (островершинности) рассчитывается по формуле: , где - это центральный момент 4 порядка, а – это стандартное отклонение, возведённое в 4 степень. Поскольку степени числителя и знаменателя одинаковы эксцесс является безразмерной величиной. При этом принято за эталон отсутствия эксцесса, нулевого эксцесса, брать нормальное распределение. Но можно доказать, что для нормального распределения . Поэтому в формуле для вычисления эксцесса из этой дроби число 3 вычитается.

Таким образом, для нормального распределения эксцесс равен нулю: . Если эксцесс больше нуля, т.е. , то распределение более островершинное, чем нормальное. Если эксцесс меньше нуля, т.е. , то распределение менее островершинное, чем нормальное. Предельным значением отрицательного эксцесса является значение ; величина положительного эксцесса может быть бесконечно большой. Как выглядят графики островершинных и плосковершинных плотностей распределения случайных величин в сравнении с нормальным распределением, показано на рисунке.

Рисунок. Иллюстрация островершинных и плосковершинных плотностей распределения случайных величин в сравнении с нормальным распределением.

Асимметрия и эксцесс распределения случайной величины показывают, насколько она отклоняется от нормального закона. При больших асимметриях и эксцессах применять формулы вычислений для нормального распределения не следует. Каким является уровень допустимости асимметрии и эксцесса для использования формул нормального распределения в анализе данных конкретной случайной величины должен определять исследователь на основе своих знаний и опыта.