Найти доверительный интервал для. Доверительный интервал для оценки среднего (дисперсия известна) в MS EXCEL

ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ ДЛЯ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ

1. Пусть известно, что сл. величина x подчиняется нормальному закону с неизвестным средним μ и известной σ 2: X~N(μ,σ 2 ), σ 2 задано, μ не известно. Задано β. По выборке x 1, x 2, … , x n надо построить I β (θ) (сейчас θ=μ), удовлетворяющий (13)

Выборочное среднее (говорят также выборочная средняя) подчиняется нормальному закону с тем же центром μ, но меньшей дисперсией X~N (μ , D ), где дисперсией D =σ 2 =σ 2 /n.

Нам понадобится число К β , определяемое для ξ~N(0,1) условием

Словами: между точками -К β и К β оси абсцисс лежит площадь под кривой плотности стандартного нормального закона, равная β

Например, К 0,90 =1,645 квантиль уровня 0,95 величины ξ

K 0,95 = 1,96. ; К 0,997 =3 .

В частности, отложив от центра любого нормального закона 1,96 стандартных отклонений вправо и столько же влево, мы захватим площадь под кривой плотности, равную 0.95, в силу чего К 0 95 является квантилью уровня 0,95 + 1/2*0,005 = 0,975 для этого за­кона.

Искомый доверительный интервал для генерального среднего μ есть I А (μ) = (х-σ, х+σ),

где δ = (15)

Дадим обоснование:

По сказанному, сл. величина в интервал J=μ±σ попадает с вероятностью β (рис.9). В этом случае величина отклоняется от центра μ меньше, чем на δ , и случайный интервал ± δ (со случайным центром и такой же как у J ширины) накроет точку μ. То есть Є J <=> μ Є I β , а потому Р{μЄІ β } = Р{ Є J }=β.

Итак, постоянный по выборке интервал I β содержит среднее μ с вероятностью β.

Ясно, чем больше n, тем меньше σ и уже интервал, а чем больше мы берем гарантию β, тем доверительный интервал шире.

Пример 21.

По выборке с n=16 для нормальной величины с известной дисперсией σ 2 =64 найдено х=200. Построить доверительный интервал для генерального среднего (иначе говоря, для математического ожидания) μ, приняв β=0,95.

Решение. I β (μ)= ± δ, где δ = К β σ/ -> К β σ/ =1.96*8/ = 4

I 0.95 (μ)=200 4=(196;204).

Делая вывод, что с гарантией β=0,95 истинное среднее принадлежат интервалу (196,204), мы понимаем, что возможна ошибка.

Из 100 доверительных интервалов I 0. 95 (μ) в среднем 5 не содержат μ.

Пример 22.

Каким в условиях предыдущего примера 21 следует взять n, чтобы вдвое сузить доверительный интервал? Чтобы иметь 2δ=4, надо взять

На практике часто пользуются односторонними доверительными интервалами. Так, если полезны или не страшны высокие значения μ, но не.приятны низкие, как в случае с прочностью или надежностью, то резонно строить односторонний интервал. Для этого следует максимально поднять его верхнюю границу. Если мы построим, как в примере 21, двусторонний доверительный интервал для заданного β, а затем максимально расширим его за счет одной из границ, то получим односторонний интервал с большей гарантией β" = β + (1-β) / 2 = (1+β)/2, например, если β = 0,90, то β = 0,90 + 0,10/2 = 0,95.

Например, будем считать, что речь идет о прочности изделия и поднимем верхнюю границу интервала до . Тогда для μ в примере 21 получим односторонний доверительный интервал (196,°°) с нижней границей 196 и доверительной вероятностью β"=0,95+0,05/2=0,975.

Практическим недостатком формулы (15)_является то, что она выведена в предположении, что дисперсия = σ 2 (отсюда и = σ 2 /n) известна; а это бывает в жизни редко. Исключение составляет случай, когда объем выборки велик, скажем, n измеряется сотнями или тысячами и тогда за σ 2 можно практически принять ее оценку s 2 или .

Пример 23.

Положим, в некотором большом городе в результате выборочного обследования жилищных условий жителей получена следу­ющая таблица данных (пример из работы ).

Таблица 8

Исходные данные к примеру

Естественно допустить, что сл. величина X - общая (полезная) площадь (в м 2), приходящаяся на одного человека подчиняется нор­мальному закону. Среднее μ и дисперсия σ 2 не известны. Для μ тре­буется построить 95%-ный доверительный интервал. Чтобы по группи­рованным данным найти выборочные средние и дисперсию, составим следующую таблицу выкладок (табл.9).

Таблица 9

Вычисления X и 5 по сгруппированным данным

N группы з Общая площадь в расчете на 1 человека, м 2 Число жителей в группе г j Середина интервала x j r j x j rjxj 2
До 5.0 2.5 20.0 50.0
5.0-10.0 7.5 712.5 5343.75
10.0-15.0 12.5 2550.0 31875.0
15.0-20.0 17.5 4725.0 82687.5
20.0-25.0 22.5 4725.0 106312.5
25.0-30.0 27.5 3575.0 98312.5
более 30.0 32.5 * 2697.5 87668.75
- 19005.0 412250.0

В этой вспомогательной таблице по формуле (2) подсчитаны первый и второй начальные статистические моменты а 1 и а 2

Хотя дисперсия σ 2 здесь неизвестна, из-за большого объема выборки можно практически применить формулу (15), положив в ней σ= =7.16.

Тогда δ=k 0.95 σ/ =1.96*7.16/ =0.46.

Доверительный интервал для генерального среднего при β=0,95 равен I 0.95 (μ) = ± δ = 19 ± 0.46 = (18.54; 19.46).

Следовательно, среднее значение площади на одного человека в данном городе с гарантией 0.95 лежит в промежутке (18.54; 19.46).



2. Доверительный интервал для математического ожидания μ в случае неизвестной дисперсии σ 2 нормальной величины. Этот интервал для заданной гарантии β строится по формуле ,где ν = n-1 ,

(16)

Коэффициент t β,ν имеет тот же смысл для t – распределения с ν степенями свободы, что к β для распределения N(0,1), а именно:

.

Другими словами, сл. Величина tν попадает в интервал (-t β,ν ; +t β,ν) с вероятностью β. Значения t β,ν даны в табл.10 для β=0.95 и β=0.99.

Таблица 10.

Значения t β,ν

Возвращаясь к примеру 23, видим, что в нем доверительный интервал был построен по формуле (16) с коэффициентом t β,υ =k 0..95 =1.96, т. к. n=1000.

В статистике существует два вида оценок: точечные и интервальные. Точечная оценка представляет собой отдельную выборочную статистику, которая используется для оценки параметра генеральной совокупности. Например, выборочное среднее - это точечная оценка математического ожидания генеральной совокупности, а выборочная дисперсия S 2 - точечная оценка дисперсии генеральной совокупности σ 2 . было показано, что выборочное среднее является несмещенной оценкой математического ожидания генеральной совокупности. Выборочное среднее называется несмещенным, поскольку среднее значение всех выборочных средних (при одном и том же объеме выборки n ) равно математическому ожиданию генеральной совокупности.

Для того чтобы выборочная дисперсия S 2 стала несмещенной оценкой дисперсии генеральной совокупности σ 2 , знаменатель выборочной дисперсии следует положить равным n – 1 , а не n . Иначе говоря, дисперсия генеральной совокупности является средним значением всевозможных выборочных дисперсий.

При оценке параметров генеральной совокупности следует иметь в виду, что выборочные статистики, такие как , зависят от конкретных выборок. Чтобы учесть этот факт, для получения интервальной оценки математического ожидания генеральной совокупности анализируют распределение выборочных средних (подробнее см. ). Построенный интервал характеризуется определенным доверительным уровнем, который представляет собой вероятность того, что истинный параметр генеральной совокупности оценен правильно. Аналогичные доверительные интервалы можно применять для оценки доли признака р и основной распределенной массы генеральной совокупности.

Скачать заметку в формате или , примеры в формате

Построение доверительного интервала для математического ожидания генеральной совокупности при известном стандартном отклонении

Построение доверительного интервала для доли признака в генеральной совокупности

В этом разделе понятие доверительного интервала распространяется на категорийные данные. Это позволяет оценить долю признака в генеральной совокупности р с помощью выборочной доли р S = Х/ n . Как указывалось , если величины n р и n (1 – р) превышают число 5, биномиальное распределение можно аппроксимировать нормальным. Следовательно, для оценки доли признака в генеральной совокупности р можно построить интервал, доверительный уровень которого равен (1 – α)х100% .


где p S - выборочная доля признака, равная Х/ n , т.е. количеству успехов, деленному на объем выборки, р - доля признака в генеральной совокупности, Z - критическое значение стандартизованного нормального распределения, n - объем выборки.

Пример 3. Предположим, что из информационной системы извлечена выборка, состоящая из 100 накладных, заполненных в течение последнего месяца. Допустим, что 10 из этих накладных составлены с ошибками. Таким образом, р = 10/100 = 0,1. Доверительному уровню 95% соответствует критическое значение Z = 1,96.

Таким образом, вероятность того, что от 4,12% до 15,88% накладных содержат ошибки, равна 95%.

Для заданного объема выборки доверительный интервал, содержащий долю признака в генеральной совокупности, кажется более широким, чем для непрерывной случайной величины. Это объясняется тем, что измерения непрерывной случайной величины содержат больше информации, чем измерения категорийных данных. Иначе говоря, категорийные данные, принимающие лишь два значения, содержат недостаточно информации для оценки параметров их распределения.

В ычисление оценок, извлеченных из конечной генеральной совокупности

Оценка математического ожидания. Поправочный коэффициент для конечной генеральной совокупности (fpc ) использовался для уменьшения стандартной ошибки в раз. При вычислении доверительных интервалов для оценок параметров генеральной совокупности поправочный коэффициент применяется в ситуациях, когда выборки извлекаются без возвращения. Таким образом, доверительный интервал для математического ожидания, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Пример 4. Чтобы проиллюстрировать применение поправочного коэффициента для конечной генеральной совокупности, вернемся к задаче о вычислении доверительного интервала для средней суммы накладных, рассмотренной выше в примере 3. Предположим, что за месяц в компании выписываются 5000 накладных, причем =110,27долл., S = 28,95 долл., N = 5000, n = 100, α = 0,05, t 99 = 1,9842. По формуле (6) получаем:

Оценка доли признака. При выборе без возвращения доверительный интервал для доли признака, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Доверительные интервалы и этические проблемы

При выборочном исследовании генеральной совокупности и формулировании статистических выводов часто возникают этические проблемы. Основная из них - как согласуются доверительные интервалы и точечные оценки выборочных статистик. Публикация точечных оценок без указания соответствующих доверительных интервалов (как правило, имеющих 95%-ный доверительный уровень) и объема выборки, на основе которых они получены, может породить недоразумения. Это может создать у пользователя впечатление, что точечная оценка - именно то, что ему необходимо, чтобы предсказать свойства всей генеральной совокупности. Таким образом, необходимо понимать, что в любых исследованиях во главу угла должны быть поставлены не точечные, а интервальные оценки. Кроме того, особое внимание следует уделять правильному выбору объемов выборки.

Чаще всего объектами статистических манипуляций становятся результаты социологических опросов населения по тем или иным политическим проблемам. При этом результаты опроса выносят на первые страницы газет, а ошибку выборочного исследования и методологию статистического анализа печатают где-нибудь в середине. Чтобы доказать обоснованность полученных точечных оценок, необходимо указывать объем выборки, на основе которой они получены, границы доверительного интервала и его уровень значимости.

Следующая заметка

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 448–462

Центральная предельная теорема утверждает, что при достаточно большом объеме выборок выборочное распределение средних можно аппроксимировать нормальным распределением. Это свойство не зависит от вида распределения генеральной совокупности.

Пусть случайная величина (можно говорить о генеральной совокупности) распределена по нормальному закону, для которого известна дисперсия D = 2 (> 0). Из генеральной совокупности (на множестве объектов которой определена случайная величина) делается выборка объема n. Выборка x 1 , x 2 ,..., x n рассматривается как совокупность n независимых случайных величин, распределенных так же как (подход, которому дано объяснение выше по тексту).

Ранее также обсуждались и доказаны следующие равенства:

Mx 1 = Mx 2 = ... = Mx n = M;

Dx 1 = Dx 2 = ... = Dx n = D;

Достаточно просто доказать (мы доказательство опускаем), что случайная величина в данном случае также распределена по нормальному закону.

Обозначим неизвестную величину M через a и подберем по заданной надежности число d > 0 так, чтобы выполнялось условие:

P(- a < d) = (1)

Так как случайная величина распределена по нормальному закону с математическим ожиданием M = M = a и дисперсией D = D /n = 2 /n, получаем:

P(- a < d) =P(a - d < < a + d) =

Осталось подобрать d таким, чтобы выполнялось равенство

Для любого можно по таблице найти такое число t, что(t)= / 2. Это число t иногда называют квантилем .

Теперь из равенства

определим значение d:

Окончательный результат получим, представив формулу (1) в виде:

Смысл последней формулы состоит в следующем: с надежностью доверительный интервал

покрывает неизвестный параметр a = M генеральной совокупности. Можно сказать иначе: точечная оценка определяет значение параметра M с точностью d= t / и надежностью.

Задача. Пусть имеется генеральная совокупность с некоторой характеристикой, распределенной по нормальному закону с дисперсией, равной 6,25. Произведена выборка объема n = 27 и получено средневыборочное значение характеристики = 12. Найти доверительный интервал, покрывающий неизвестное математическое ожидание исследуемой характеристики генеральной совокупности с надежностью =0,99.

Решение. Сначала по таблице для функции Лапласа найдем значение t из равенства (t) = / 2 = 0,495. По полученному значению t = 2,58 определим точность оценки (или половину длины доверительного интервала) d: d = 2,52,58 / 1,24. Отсюда получаем искомый доверительный интервал: (10,76; 13,24).

статистический гипотеза генеральный вариационный

Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии

Пусть - случайная величина, распределенная по нормальному закону с неизвестным математическим ожиданием M, которое обозначим буквой a . Произведем выборку объема n. Определим среднюю выборочную и исправленную выборочную дисперсию s 2 по известным формулам.

Случайная величина

распределена по закону Стьюдента с n - 1 степенями свободы.

Задача заключается в том, чтобы по заданной надежности и по числу степеней свободы n - 1 найти такое число t , чтобы выполнялось равенство

или эквивалентное равенство

Здесь в скобках написано условие того, что значение неизвестного параметра a принадлежит некоторому промежутку, который и является доверительным интервалом. Его границы зависят от надежности, а также от параметров выборки и s.

Чтобы определить значение t по величине, равенство (2) преобразуем к виду:

Теперь по таблице для случайной величины t, распределенной по закону Стьюдента, по вероятности 1 - и числу степеней свободы n - 1 находим t. Формула (3) дает ответ поставленной задачи.

Задача. На контрольных испытаниях 20-ти электроламп средняя продолжительность их работы оказалась равной 2000 часов при среднем квадратическом отклонении (рассчитанном как корень квадратный из исправленной выборочной дисперсии), равном 11-ти часам. Известно, что продолжительность работы лампы является нормально распределенной случайной величиной. Определить с надежностью 0,95 доверительный интервал для математического ожидания этой случайной величины.

Решение. Величина 1 - в данном случае равна 0,05. По таблице распределения Стьюдента, при числе степеней свободы, равном 19, находим: t = 2,093. Вычислим теперь точность оценки: 2,093121/ = 56,6. Отсюда получаем искомый доверительный интервал: (1943,4; 2056,6).