Найти доверительный интервал оценки. Понятие об интервальном оценивании

В статистике существует два вида оценок: точечные и интервальные. Точечная оценка представляет собой отдельную выборочную статистику, которая используется для оценки параметра генеральной совокупности. Например, выборочное среднее - это точечная оценка математического ожидания генеральной совокупности, а выборочная дисперсия S 2 - точечная оценка дисперсии генеральной совокупности σ 2 . было показано, что выборочное среднее является несмещенной оценкой математического ожидания генеральной совокупности. Выборочное среднее называется несмещенным, поскольку среднее значение всех выборочных средних (при одном и том же объеме выборки n ) равно математическому ожиданию генеральной совокупности.

Для того чтобы выборочная дисперсия S 2 стала несмещенной оценкой дисперсии генеральной совокупности σ 2 , знаменатель выборочной дисперсии следует положить равным n – 1 , а не n . Иначе говоря, дисперсия генеральной совокупности является средним значением всевозможных выборочных дисперсий.

При оценке параметров генеральной совокупности следует иметь в виду, что выборочные статистики, такие как , зависят от конкретных выборок. Чтобы учесть этот факт, для получения интервальной оценки математического ожидания генеральной совокупности анализируют распределение выборочных средних (подробнее см. ). Построенный интервал характеризуется определенным доверительным уровнем, который представляет собой вероятность того, что истинный параметр генеральной совокупности оценен правильно. Аналогичные доверительные интервалы можно применять для оценки доли признака р и основной распределенной массы генеральной совокупности.

Скачать заметку в формате или , примеры в формате

Построение доверительного интервала для математического ожидания генеральной совокупности при известном стандартном отклонении

Построение доверительного интервала для доли признака в генеральной совокупности

В этом разделе понятие доверительного интервала распространяется на категорийные данные. Это позволяет оценить долю признака в генеральной совокупности р с помощью выборочной доли р S = Х/ n . Как указывалось , если величины n р и n (1 – р) превышают число 5, биномиальное распределение можно аппроксимировать нормальным. Следовательно, для оценки доли признака в генеральной совокупности р можно построить интервал, доверительный уровень которого равен (1 – α)х100% .


где p S - выборочная доля признака, равная Х/ n , т.е. количеству успехов, деленному на объем выборки, р - доля признака в генеральной совокупности, Z - критическое значение стандартизованного нормального распределения, n - объем выборки.

Пример 3. Предположим, что из информационной системы извлечена выборка, состоящая из 100 накладных, заполненных в течение последнего месяца. Допустим, что 10 из этих накладных составлены с ошибками. Таким образом, р = 10/100 = 0,1. Доверительному уровню 95% соответствует критическое значение Z = 1,96.

Таким образом, вероятность того, что от 4,12% до 15,88% накладных содержат ошибки, равна 95%.

Для заданного объема выборки доверительный интервал, содержащий долю признака в генеральной совокупности, кажется более широким, чем для непрерывной случайной величины. Это объясняется тем, что измерения непрерывной случайной величины содержат больше информации, чем измерения категорийных данных. Иначе говоря, категорийные данные, принимающие лишь два значения, содержат недостаточно информации для оценки параметров их распределения.

В ычисление оценок, извлеченных из конечной генеральной совокупности

Оценка математического ожидания. Поправочный коэффициент для конечной генеральной совокупности (fpc ) использовался для уменьшения стандартной ошибки в раз. При вычислении доверительных интервалов для оценок параметров генеральной совокупности поправочный коэффициент применяется в ситуациях, когда выборки извлекаются без возвращения. Таким образом, доверительный интервал для математического ожидания, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Пример 4. Чтобы проиллюстрировать применение поправочного коэффициента для конечной генеральной совокупности, вернемся к задаче о вычислении доверительного интервала для средней суммы накладных, рассмотренной выше в примере 3. Предположим, что за месяц в компании выписываются 5000 накладных, причем =110,27долл., S = 28,95 долл., N = 5000, n = 100, α = 0,05, t 99 = 1,9842. По формуле (6) получаем:

Оценка доли признака. При выборе без возвращения доверительный интервал для доли признака, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Доверительные интервалы и этические проблемы

При выборочном исследовании генеральной совокупности и формулировании статистических выводов часто возникают этические проблемы. Основная из них - как согласуются доверительные интервалы и точечные оценки выборочных статистик. Публикация точечных оценок без указания соответствующих доверительных интервалов (как правило, имеющих 95%-ный доверительный уровень) и объема выборки, на основе которых они получены, может породить недоразумения. Это может создать у пользователя впечатление, что точечная оценка - именно то, что ему необходимо, чтобы предсказать свойства всей генеральной совокупности. Таким образом, необходимо понимать, что в любых исследованиях во главу угла должны быть поставлены не точечные, а интервальные оценки. Кроме того, особое внимание следует уделять правильному выбору объемов выборки.

Чаще всего объектами статистических манипуляций становятся результаты социологических опросов населения по тем или иным политическим проблемам. При этом результаты опроса выносят на первые страницы газет, а ошибку выборочного исследования и методологию статистического анализа печатают где-нибудь в середине. Чтобы доказать обоснованность полученных точечных оценок, необходимо указывать объем выборки, на основе которой они получены, границы доверительного интервала и его уровень значимости.

Следующая заметка

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 448–462

Центральная предельная теорема утверждает, что при достаточно большом объеме выборок выборочное распределение средних можно аппроксимировать нормальным распределением. Это свойство не зависит от вида распределения генеральной совокупности.

Доверительный интервал пришел к нам из области статистики. Это определенный диапазон, который служит для оценки неизвестного параметра с высокой степенью надежности. Проще всего это будет пояснить на примере.

Предположим, нужно исследовать какую-либо случайную величину, например, скорость отклика сервера на запрос клиента. Каждый раз, когда пользователь набирает адрес конкретного сайта, сервер реагирует на это с разной скоростью. Таким образом, исследуемое время отклика имеет случайный характер. Так вот, доверительный интервал позволяет определить границы этого параметра, и затем можно будет утверждать, что с вероятностью в 95% сервера будет находиться в рассчитанном нами диапазоне.

Или же нужно узнать, какому количеству людей известно о торговой марке фирмы. Когда будет подсчитан доверительный интервал, то можно будет, к примеру, сказать что с 95% долей вероятности доля потребителей, знающих о данной находится в диапазоне от 27% до 34%.

С этим термином тесно связана такая величина, как доверительная вероятность. Она представляет собой вероятность того, что искомый параметр входит в доверительный интервал. От этой величины зависит то, насколько большим окажется наш искомый диапазон. Чем большее значение она принимает, тем уже становится доверительный интервал, и наоборот. Обычно ее устанавливают равной 90%, 95% или 99%. Величина 95% наиболее популярна.

На данный показатель также оказывает влияние дисперсия наблюдений и Его определение основано на том предположении, что исследуемый признак подчиняется Это утверждение известно также как Закон Гаусса. Согласно ему, нормальным называется такое распределение всех вероятностей непрерывной случайной величины, которое можно описать плотностью вероятностей. Если предположение о нормальном распределении оказалось ошибочным, то оценка может оказаться неверной.

Сначала разберемся с тем, как вычислить доверительный интервал для Здесь возможны два случая. Дисперсия (степень разброса случайной величины) может быть известна либо нет. Если она известна, то наш доверительный интервал вычисляется с помощью следующей формулы:

хср - t*σ / (sqrt(n)) <= α <= хср + t*σ / (sqrt(n)), где

α - признак,

t - параметр из таблицы распределения Лапласа,

σ - квадратный корень дисперсии.

Если дисперсия неизвестна, то ее можно рассчитать, если нам известны все значения искомого признака. Для этого используется следующая формула:

σ2 = х2ср - (хср)2, где

х2ср - среднее значение квадратов исследуемого признака,

(хср)2 - квадрат данного признака.

Формула, по которой в этом случае рассчитывается доверительный интервал немного меняется:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n)), где

хср - выборочное среднее,

α - признак,

t - параметр, который находят с помощью таблицы распределения Стьюдента t = t(ɣ;n-1),

sqrt(n) - квадратный корень общего объема выборки,

s - квадратный корень дисперсии.

Рассмотри такой пример. Предположим, что по результатам 7 замеров была определена исследуемого признака, равная 30 и дисперсия выборки, равная 36. Нужно найти с вероятностью в 99% доверительный интервал, который содержит истинное значение измеряемого параметра.

Вначале определим чему равно t: t = t (0,99; 7-1) = 3.71. Используем приведенную выше формулу, получаем:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n))

30 - 3.71*36 / (sqrt(7)) <= α <= 30 + 3.71*36 / (sqrt(7))

21.587 <= α <= 38.413

Доверительный интервал для дисперсии рассчитывается как в случае с известным средним, так и тогда, когда нет никаких данных о математическом ожидании, а известно лишь значение точечной несмещенной оценки дисперсии. Мы не будем приводить здесь формулы его расчета, так как они довольно сложные и при желании их всегда можно найти в сети.

Отметим лишь, что доверительный интервал удобно определять с помощью программы Excel или сетевого сервиса, который так и называется.

Одним из методов решения статистических задач является вычисление доверительного интервала. Он используется, как более предпочтительная альтернатива точечной оценке при небольшом объеме выборки. Нужно отметить, что сам процесс вычисления доверительного интервала довольно сложный. Но инструменты программы Эксель позволяют несколько упростить его. Давайте узнаем, как это выполняется на практике.

Этот метод используется при интервальной оценке различных статистических величин. Главная задача данного расчета – избавится от неопределенностей точечной оценки.

В Экселе существуют два основных варианта произвести вычисления с помощью данного метода: когда дисперсия известна, и когда она неизвестна. В первом случае для вычислений применяется функция ДОВЕРИТ.НОРМ , а во втором — ДОВЕРИТ.СТЮДЕНТ .

Способ 1: функция ДОВЕРИТ.НОРМ

Оператор ДОВЕРИТ.НОРМ , относящийся к статистической группе функций, впервые появился в Excel 2010. В более ранних версиях этой программы используется его аналог ДОВЕРИТ . Задачей этого оператора является расчет доверительного интервала с нормальным распределением для средней генеральной совокупности.

Его синтаксис выглядит следующим образом:

ДОВЕРИТ.НОРМ(альфа;стандартное_откл;размер)

«Альфа» — аргумент, указывающий на уровень значимости, который применяется для расчета доверительного уровня. Доверительный уровень равняется следующему выражению:

(1-«Альфа»)*100

«Стандартное отклонение» — это аргумент, суть которого понятна из наименования. Это стандартное отклонение предлагаемой выборки.

«Размер» — аргумент, определяющий величину выборки.

Все аргументы данного оператора являются обязательными.

Функция ДОВЕРИТ имеет точно такие же аргументы и возможности, что и предыдущая. Её синтаксис таков:

ДОВЕРИТ(альфа;стандартное_откл;размер)

Как видим, различия только в наименовании оператора. Указанная функция в целях совместимости оставлена в Excel 2010 и в более новых версиях в специальной категории «Совместимость» . В версиях же Excel 2007 и ранее она присутствует в основной группе статистических операторов.

Граница доверительного интервала определяется при помощи формулы следующего вида:

X+(-)ДОВЕРИТ.НОРМ

Где X – это среднее выборочное значение, которое расположено посередине выбранного диапазона.

Теперь давайте рассмотрим, как рассчитать доверительный интервал на конкретном примере. Было проведено 12 испытаний, вследствие которых были получены различные результаты, занесенные в таблицу. Это и есть наша совокупность. Стандартное отклонение равно 8. Нам нужно рассчитать доверительный интервал при уровне доверия 97%.

  1. Выделяем ячейку, куда будет выводиться результат обработки данных. Щелкаем по кнопке «Вставить функцию» .
  2. Появляется Мастер функций . Переходим в категорию «Статистические» и выделяем наименование «ДОВЕРИТ.НОРМ» . После этого клацаем по кнопке «OK» .
  3. Открывается окошко аргументов. Его поля закономерно соответствуют наименованиям аргументов.
    Устанавливаем курсор в первое поле – «Альфа» . Тут нам следует указать уровень значимости. Как мы помним, уровень доверия у нас равен 97%. В то же время мы говорили, что он рассчитывается таким путем:

    (1-уровень доверия)/100

    То есть, подставив значение, получаем:

    Путем нехитрых расчетов узнаем, что аргумент «Альфа» равен 0,03 . Вводим данное значение в поле.

    Как известно, по условию стандартное отклонение равно 8 . Поэтому в поле «Стандартное отклонение» просто записываем это число.

    В поле «Размер» нужно ввести количество элементов проведенных испытаний. Как мы помним, их 12 . Но чтобы автоматизировать формулу и не редактировать её каждый раз при проведении нового испытания, давайте зададим данное значение не обычным числом, а при помощи оператора СЧЁТ . Итак, устанавливаем курсор в поле «Размер» , а затем кликаем по треугольнику, который размещен слева от строки формул.

    Появляется список недавно применяемых функций. Если оператор СЧЁТ применялся вами недавно, то он должен быть в этом списке. В таком случае, нужно просто кликнуть по его наименованию. В обратном же случае, если вы его не обнаружите, то переходите по пункту «Другие функции…» .

  4. Появляется уже знакомый нам Мастер функций . Опять перемещаемся в группу «Статистические» . Выделяем там наименование «СЧЁТ» . Клацаем по кнопке «OK» .
  5. Появляется окно аргументов вышеуказанного оператора. Данная функция предназначена для того, чтобы вычислять количество ячеек в указанном диапазоне, которые содержат числовые значения. Синтаксис её следующий:

    СЧЁТ(значение1;значение2;…)

    Группа аргументов «Значения» представляет собой ссылку на диапазон, в котором нужно рассчитать количество заполненных числовыми данными ячеек. Всего может насчитываться до 255 подобных аргументов, но в нашем случае понадобится лишь один.

    Устанавливаем курсор в поле «Значение1» и, зажав левую кнопку мыши, выделяем на листе диапазон, который содержит нашу совокупность. Затем его адрес будет отображен в поле. Клацаем по кнопке «OK» .

  6. После этого приложение произведет вычисление и выведет результат в ту ячейку, где она находится сама. В нашем конкретном случае формула получилась такого вида:

    ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

    Общий результат вычислений составил 5,011609 .

  7. Но это ещё не все. Как мы помним, граница доверительного интервала вычисляется путем сложения и вычитания от среднего выборочного значения результата вычисления ДОВЕРИТ.НОРМ . Таким способом рассчитывается соответственно правая и левая граница доверительного интервала. Само среднее выборочное значение можно рассчитать при помощи оператора СРЗНАЧ .

    Данный оператор предназначен для расчета среднего арифметического значения выбранного диапазона чисел. Он имеет следующий довольно простой синтаксис:

    СРЗНАЧ(число1;число2;…)

    Аргумент «Число» может быть как отдельным числовым значением, так и ссылкой на ячейки или даже целые диапазоны, которые их содержат.

    Итак, выделяем ячейку, в которую будет выводиться расчет среднего значения, и щелкаем по кнопке «Вставить функцию» .

  8. Открывается Мастер функций . Снова переходим в категорию «Статистические» и выбираем из списка наименование «СРЗНАЧ» . Как всегда, клацаем по кнопке «OK» .
  9. Запускается окно аргументов. Устанавливаем курсор в поле «Число1» и с зажатой левой кнопкой мыши выделяем весь диапазон значений. После того, как координаты отобразились в поле, клацаем по кнопке «OK» .
  10. После этого СРЗНАЧ выводит результат расчета в элемент листа.
  11. Производим расчет правой границы доверительного интервала. Для этого выделяем отдельную ячейку, ставим знак «=» и складываем содержимое элементов листа, в которых расположены результаты вычислений функций СРЗНАЧ и ДОВЕРИТ.НОРМ . Для того, чтобы выполнить расчет, жмем на клавишу Enter . В нашем случае получилась следующая формула:

    Результат вычисления: 6,953276

  12. Таким же образом производим вычисление левой границы доверительного интервала, только на этот раз от результата вычисления СРЗНАЧ отнимаем результат вычисления оператора ДОВЕРИТ.НОРМ . Получается формула для нашего примера следующего типа:

    Результат вычисления: -3,06994

  13. Мы попытались подробно описать все действия по вычислению доверительного интервала, поэтому детально расписали каждую формулу. Но можно все действия соединить в одной формуле. Вычисление правой границы доверительного интервала можно записать так:

    СРЗНАЧ(B2:B13)+ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

  14. Аналогичное вычисление левой границы будет выглядеть так:

    СРЗНАЧ(B2:B13)-ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

Способ 2: функция ДОВЕРИТ.СТЮДЕНТ

Кроме того, в Экселе есть ещё одна функция, которая связана с вычислением доверительного интервала – ДОВЕРИТ.СТЮДЕНТ . Она появилась, только начиная с Excel 2010. Данный оператор выполняет вычисление доверительного интервала генеральной совокупности с использованием распределения Стьюдента. Его очень удобно использовать в том случае, когда дисперсия и, соответственно, стандартное отклонение неизвестны. Синтаксис оператора такой:

ДОВЕРИТ.СТЬЮДЕНТ(альфа;стандартное_откл;размер)

Как видим, наименования операторов и в этом случае остались неизменными.

Посмотрим, как рассчитать границы доверительного интервала с неизвестным стандартным отклонением на примере всё той же совокупности, что мы рассматривали в предыдущем способе. Уровень доверия, как и в прошлый раз, возьмем 97%.

  1. Выделяем ячейку, в которую будет производиться расчет. Клацаем по кнопке «Вставить функцию» .
  2. В открывшемся Мастере функций переходим в категорию «Статистические» . Выбираем наименование «ДОВЕРИТ.СТЮДЕНТ» . Клацаем по кнопке «OK» .
  3. Производится запуск окна аргументов указанного оператора.

    В поле «Альфа» , учитывая, что уровень доверия составляет 97%, записываем число 0,03 . Второй раз на принципах расчета данного параметра останавливаться не будем.

    После этого устанавливаем курсор в поле «Стандартное отклонение» . На этот раз данный показатель нам неизвестен и его требуется рассчитать. Делается это при помощи специальной функции – СТАНДОТКЛОН.В . Чтобы вызвать окно данного оператора, кликаем по треугольнику слева от строки формул. Если в открывшемся списке не находим нужного наименования, то переходим по пункту «Другие функции…» .

  4. Запускается Мастер функций . Перемещаемся в категорию «Статистические» и отмечаем в ней наименование «СТАНДОТКЛОН.В» . Затем клацаем по кнопке «OK» .
  5. Открывается окно аргументов. Задачей оператора СТАНДОТКЛОН.В является определение стандартного отклонения при выборке. Его синтаксис выглядит так:

    СТАНДОТКЛОН.В(число1;число2;…)

    Нетрудно догадаться, что аргумент «Число» — это адрес элемента выборки. Если выборка размещена единым массивом, то можно, использовав только один аргумент, дать ссылку на данный диапазон.

    Устанавливаем курсор в поле «Число1» и, как всегда, зажав левую кнопку мыши, выделяем совокупность. После того, как координаты попали в поле, не спешим жать на кнопку «OK» , так как результат получится некорректным. Прежде нам нужно вернуться к окну аргументов оператора ДОВЕРИТ.СТЮДЕНТ , чтобы внести последний аргумент. Для этого кликаем по соответствующему наименованию в строке формул.

  6. Снова открывается окно аргументов уже знакомой функции. Устанавливаем курсор в поле «Размер» . Опять жмем на уже знакомый нам треугольник для перехода к выбору операторов. Как вы поняли, нам нужно наименование «СЧЁТ» . Так как мы использовали данную функцию при вычислениях в предыдущем способе, в данном списке она присутствует, так что просто щелкаем по ней. Если же вы её не обнаружите, то действуйте по алгоритму, описанному в первом способе.
  7. Попав в окно аргументов СЧЁТ , ставим курсор в поле «Число1» и с зажатой кнопкой мыши выделяем совокупность. Затем клацаем по кнопке «OK» .
  8. После этого программа производит расчет и выводит значение доверительного интервала.
  9. Для определения границ нам опять нужно будет рассчитать среднее значение выборки. Но, учитывая то, что алгоритм расчета при помощи формулы СРЗНАЧ тот же, что и в предыдущем способе, и даже результат не изменился, не будем на этом подробно останавливаться второй раз.
  10. Сложив результаты вычисления СРЗНАЧ и ДОВЕРИТ.СТЮДЕНТ , получаем правую границу доверительного интервала.
  11. Отняв от результатов расчета оператора СРЗНАЧ результат расчета ДОВЕРИТ.СТЮДЕНТ , имеем левую границу доверительного интервала.
  12. Если расчет записать одной формулой, то вычисление правой границы в нашем случае будет выглядеть так:

    СРЗНАЧ(B2:B13)+ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))

  13. Соответственно, формула расчета левой границы будет выглядеть так:

    СРЗНАЧ(B2:B13)-ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))

Как видим, инструменты программы Excel позволяют существенно облегчить вычисление доверительного интервала и его границ. Для этих целей используются отдельные операторы для выборок, у которых дисперсия известна и неизвестна.

ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ ДЛЯ ЧАСТОТ И ДОЛЕЙ

© 2008 г.

Национальный институт общественного здоровья, г. Осло, Норвегия

В статье описывается и обсуждается расчет доверительных интервалов для частот и долей по методам Вальда, Уилсона, Клоппера – Пирсона, с помощью углового преобразования и по методу Вальда с коррекцией по Агрести – Коуллу. Изложенный материал дает общие сведения о способах расчета доверительных интервалов для частот и долей и призван вызвать интерес читателей журнала не только к использованию доверительных интервалов при представлении результатов собственных исследований, но и к прочтению специализированной литературы перед началом работы над будущими публикациями.

Ключевые слова : доверительный интервал, частота, доля

В одной из предыдущих публикаций кратко упоминалось описание качественных данных и сообщалось, что их интервальная оценка предпочтительнее точечной для описания частоты встречаемости изучаемой характеристики в генеральной совокупности . Действительно, поскольку исследования проводятся с использованием выборочных данных, проекция результатов на генеральную совокупность должна содержать элемент неточности выборочной оценки. Доверительный интервал представляет собой меру точности оцениваемого параметра. Интересно, что в некоторых книгах по основам статистики для медиков тема доверительных интервалов для частот полностью игнорируется . В данной статье мы рассмотрим несколько способов расчета доверительных интервалов для частот, подразумевая такие характеристики выборки, как бесповторность и репрезентативность, а также независимость наблюдений друг от друга. Под частотой в данной статье понимается не абсолютное число, показывающее, сколько раз встречается в совокупности то или иное значение, а относительная величина , определяющая долю участников исследования, у которых встречается изучаемый признак.

В биомедицинских исследованиях чаще всего используются 95 % доверительные интервалы. Данный доверительный интервал представляет собой область, в которую попадает истинное значение доли в 95 % случаев. Другими словами, можно с 95 % надежностью сказать, что истинное значение частоты встречаемости признака в генеральной совокупности будет находиться в пределах 95 % доверительного интервала.

В большинстве пособий по статистике для исследователей от медицины сообщается , что ошибка частоты рассчитывается с помощью формулы

где p – частота встречаемости признака в выборке (величина от 0 до 1). В большинстве отечественных научных статей указывается значение частоты встречаемости признака в выборке (р), а также ее ошибка (s) в виде p ± s. Целесообразнее, однако, представлять 95 % доверительный интервал для частоты встречаемости признака в генеральной совокупности, который будет включать значения от

до.

В некоторых пособиях рекомендуется при малых выборках заменять значение 1,96 на значение t для N – 1 степеней свободы, где N – количество наблюдений в выборке. Значение t находится по таблицам для t-распределения, имеющимся практически во всех пособиях по статистике. Использование распределения t для метода Вальда не дает видимых преимуществ по сравнению с другими методами, рассмотренными ниже , и потому некоторыми авторами не приветствуется .

Представленный выше метод расчета доверительных интервалов для частот или долей носит имя Вальда в честь Авраама Вальда (Abraham Wald, 1902–1950), поскольку широкое применение его началось после публикации Вальда и Вольфовица в 1939 году . Однако сам метод был предложен Пьером Симоном Лапласом (1749–1827) еще в 1812 году.

Метод Вальда очень популярен, однако его применение связано с существенными проблемами. Метод не рекомендуется при малых объемах выборок, а также в случаях, когда частота встречаемости признака стремится к 0 или 1 (0 % или 100 %) и просто невозможно для частот 0 и 1. Кроме того, аппроксимация нормального распределения, которая используется при расчете ошибки, «не работает» в случаях, когда n · p < 5 или n · (1 – p) < 5 . Более консервативные статистики считают, что n · p и n · (1 – p) должны быть не менее 10 . Более детальное рассмотрение метода Вальда показало, что полученные с его помощью доверительные интервалы в большинстве случаев слишком узки, то есть их применение ошибочно создает слишком оптимистичную картину, особенно при удалении частоты встречаемости признака от 0,5, или 50 % . К тому же при приближении частоты к 0 или 1 доверительный интревал может принимать отрицательные значения или превышать 1, что выглядит абсурдно для частот. Многие авторы совершенно справедливо не рекомендуют применять данный метод не только в уже упомянутых случаях, но и тогда, когда частота встречаемости признака менее 25 % или более 75 % . Таким образом, несмотря на простоту расчетов, метод Вальда может применяться лишь в очень ограниченном числе случаев. Зарубежные исследователи более категоричны в своих выводах и однозначно рекомендуют не применять этот метод для небольших выборок , а ведь именно с такими выборками часто приходится иметь дело исследователям-медикам.

Поскольку новая переменная имеет нормальное распределение, нижняя и верхняя границы 95 % доверительного интервала для переменной φ будут равны φ-1,96 и φ+1,96left">

Вместо 1,96 для малых выборок рекомендуется подставлять значение t для N – 1 степеней свободы . Данный метод не дает отрицательных значений и позволяет более точно оценить доверительные интервалы для частот, чем метод Вальда. Кроме того, он описан во многих отечественных справочниках по медицинской статистике , что, правда, не привело к его широкому использованию в медицинских исследованиях. Расчет доверительных интервалов с использованием углового преобразования не рекомендуется при частотах, приближающихся к 0 или 1 .

На этом описание способов оценки доверительных интервалов в большинстве книг по основам статистики для исследователей-медиков обычно заканчивается, причем эта проблема характерна не только для отечественной, но и для зарубежной литературы. Оба метода основаны на центральной предельной теореме, которая подразумевает наличие большой выборки.

Принимая во внимание недостатки оценки доверительных интервалов с помощью вышеупомянутых методов, Клоппер (Clopper) и Пирсон (Pearson) предложили в 1934 году способ расчета так называемого точного доверительного интервала с учетом биномиального распределения изучаемого признака . Данный метод доступен во многих онлайн-калькуляторах, однако доверительные интервалы, полученные таким образом, в большинстве случаев слишком широки. В то же время этот метод рекомендуется применять в тех случаях, когда необходима консервативная оценка. Степень консервативности метода увеличивается по мере уменьшения объема выборки, особенно при N < 15 . описывает применение функции биномиального распределения для анализа качественных данных с использованием MS Excel, в том числе и для определения доверительных интервалов, однако расчет последних для частот в электронных таблицах не «затабулирован» в удобном для пользователя виде, а потому, вероятно, и не используется большинством исследователей.

По мнению многих статистиков , наиболее оптимальную оценку доверительных интервалов для частот осуществляет метод Уилсона (Wilson), предложенный еще в 1927 году , но практически не используемый в отечественных биомедицинских исследованиях. Данный метод не только позволяет оценить доверительные интервалы как для очень малых и очень больших частот, но и применим для малого числа наблюдений. В общем виде доверительный интервал по формуле Уилсона имеет вид от



где принимает значение 1,96 при расчете 95 % доверительного интервала, N – количество наблюдений, а р – частота встречаемости признака в выборке. Данный метод доступен в онлайн-калькуляторах, поэтому его применение не является проблематичным. и не рекомендуют использовать этот метод при n · p < 4 или n · (1 – p) < 4 по причине слишком грубого приближения распределения р к нормальному в такой ситуации, однако зарубежные статистики считают метод Уилсона применимым и для малых выборок .

Считается, что помимо метода Уилсона метод Вальда с коррекцией по Агрести – Коуллу также дает оптимальную оценку доверительного интервала для частот . Коррекция по Агрести – Коуллу представляет собой замену в формуле Вальда частоты встречаемости признака в выборке (р) на р`, при расчете которой к числителю добавляется 2, а к знаменателю добавляется 4, то есть p` = (X + 2) / (N + 4), где Х – количество участников исследования, у которых имеется изучаемый признак, а N – объем выборки . Такая модификация приводит к результатам, очень похожим на результаты применения формулы Уилсона, за исключением случаев, когда частота события приближается к 0 % или 100 %, а выборка мала . Кроме вышеупомянутых способов расчета доверительных интервалов для частот были предложены поправки на непрерывность как для метода Вальда, так и для метода Уилсона для малых выборок, однако исследования показали, что их применение нецелесообразно .

Рассмотрим применение вышеописанных способов расчета доверительных интервалов на двух примерах. В первом случае мы изучаем большую выборку, состоящую из 1 000 случайно отобранных участников исследования, из которых 450 имеют изучаемый признак (это может быть фактор риска, исход или любой другой признак), что составляет частоту 0,45, или 45 %. Во втором случае исследование проводится с использованием малой выборки, допустим, всего 20 человек, причем изучаемый признак имеется всего у 1 участника исследования (5 %). Доверительные интервалы по методу Вальда, по методу Вальда с коррекцией по Агрести – Коуллу, по методу Уилсона рассчитывались с помощью онлайн-калькулятора, разработанного Jeff Sauro (http://www. /wald. htm). Доверительные интервалы по методу Уилсона с поправкой на непрерывность рассчитывались с помощью калькулятора, предложенного порталом Wassar Stats: Web Site for Statistical Computation (http://faculty. vassar. edu/lowry/prop1.html). Расчеты с помощью углового преобразования Фишера производились «вручную» с использованием критического значения t для 19 и 999 степеней свободы соответственно. Результаты расчетов представлены в таблице для обоих примеров.

Доверительные интервалы, рассчитанные шестью разными способами для двух примеров, описанных в тексте

Способ расчета доверительного интервала

Р=0,0500, или 5%

95% ДИ для X=450, N=1000, Р=0,4500, или 45%

–0,0455–0,2541

Вальда с коррекцией по Агрести – Коуллу

<,0001–0,2541

Уилсона с коррекцией на непрерывность

«Точный метод» Клоппера – Пирсона

Угловое преобразование

<0,0001–0,1967

Как видно из таблицы, для первого примера доверительный интервал, рассчитанный по «общепринятому» методу Вальда заходит в отрицательную область, чего для частот быть не может. К сожалению, подобные казусы нередки в отечественной литературе. Традиционный способ представления данных в виде частоты и ее ошибки частично маскирует эту проблему. Например, если частота встречаемости признака (в процентах) представлена как 2,1 ± 1,4, то это не настолько «режет глаз», как 2,1 % (95 % ДИ: –0,7; 4,9), хоть и обозначает то же самое. Метод Вальда с коррекцией по Агрести – Коуллу и расчет с помощью углового преобразования дают нижнюю границу, стремящуюся к нулю. Метод Уилсона с поправкой на непрерывность и «точный метод» дают более широкие доверительные интервалы, чем метод Уилсона. Для второго примера все методы дают приблизительно одинаковые доверительные интервалы (различия появляются только в тысячных), что неудивительно, так как частота встречаемости события в этом примере не сильно отличается от 50 %, а объем выборки достаточно велик.

Для читателей, заинтересовавшихся данной проблемой, можно порекомендовать работы R. G. Newcombe и Brown, Cai и Dasgupta , в которых приводятся плюсы и минусы применения 7 и 10 различных методов расчета доверительных интервалов соответственно . Из отечественных пособий рекомендуется книга и , в которой помимо подробного описания теории представлены методы Вальда, Уилсона, а также способ расчета доверительных интервалов с учетом биномиального распределения частот. Кроме бесплатных онлайн-калькуляторов (http://www. /wald. htm и http://faculty. vassar. edu/lowry/prop1.html) доверительные интервалы для частот (и не только!) можно рассчитывать с помощью программы CIA (Confidence Intervals Analysis), которую можно загрузить с http://www. medschool. soton. ac. uk/cia/ .

В следующей статье будут рассмотрены одномерные способы сравнения качественных данных.

Список литературы

Банержи А. Медицинская статистика понятным языком: вводный курс / А. Банержи. – М. : Практическая медицина, 2007. – 287 с. Медицинская статистика / . – М. : Медицинское информационное агенство, 2007. – 475 с. Гланц С. Медико-биологическая статистика / С. Гланц. – М. : Практика, 1998. Типы данных, проверка распределения и описательная статистика / // Экология человека – 2008. – № 1. – С. 52–58. Жижин К. С . Медицинская статистика: учебное пособие / . – Ростов н/Д: Феникс, 2007. – 160 с. Прикладная медицинская статистика / , . – СПб. : Фолиант, 2003. – 428 с. Лакин Г. Ф . Биометрия / . – М. : Высшая школа, 1990. – 350 с. Медик В. А . Математическая статистика в медицине / , . – М. : Финансы и статистика, 2007. – 798 с. Математическая статистика в клинических исследованиях / , . – М. : ГЭОТАР-МЕД, 2001. – 256 с. Юнкеров В . И . Медико-статистическая обработка данных медицинских исследований / , . – СПб. : ВмедА, 2002. – 266 с. Agresti A. Approximate is better than exact for interval estimation of binomial proportions / A. Agresti, B. Coull // American statistician. – 1998. – N 52. – С. 119–126. Altman D. Statistics with confidence // D. Altman, D. Machin, T. Bryant, M. J. Gardner. – London: BMJ Books, 2000. – 240 p. Brown L. D. Interval estimation for a binomial proportion / L. D. Brown, T. T. Cai, A. Dasgupta // Statistical science. – 2001. – N 2. – P. 101–133. Clopper C. J. The use of confidence or fiducial limits illustrated in the case of the binomial / C. J. Clopper, E. S. Pearson // Biometrika. – 1934. – N 26. – P. 404–413. Garcia-Perez M. A . On the confidence interval for the binomial parameter / M. A. Garcia-Perez // Quality and quantity. – 2005. – N 39. – P. 467–481. Motulsky H. Intuitive biostatistics // H. Motulsky. – Oxford: Oxford University Press, 1995. – 386 p. Newcombe R. G. Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods / R. G. Newcombe // Statistics in Medicine. – 1998. – N. 17. – P. 857–872. Sauro J. Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations / J. Sauro, J. R. Lewis // Proceedings of the human factors and ergonomics society annual meeting. – Orlando, FL, 2005. Wald A. Confidence limits for continuous distribution functions // A. Wald, J. Wolfovitz // Annals of Mathematical Statistics. – 1939. – N 10. – P. 105–118. Wilson E. B . Probable inference, the law of succession, and statistical inference / E. B. Wilson // Journal of American Statistical Association. – 1927. – N 22. – P. 209–212.

CONFIDENCE INTERVALS FOR PROPORTIONS

A. M. Grjibovski

National Institute of Public Health, Oslo, Norway

The article presents several methods for calculations confidence intervals for binomial proportions, namely, Wald, Wilson, arcsine, Agresti-Coull and exact Clopper-Pearson methods. The paper gives only general introduction to the problem of confidence interval estimation of a binomial proportion and its aim is not only to stimulate the readers to use confidence intervals when presenting results of own empirical research, but also to encourage them to consult statistics books prior to analysing own data and preparing manuscripts.

Key words : confidence interval, proportion

Контактная информация:

старший советник Национального института общественного здоровья, г. Осло, Норвегия

Из данной статьи вы узнаете:

    Что такое доверительный интервал ?

    В чем суть правила 3-х сигм ?

    Как можно применить эти знания на практике?

В наше время из-за переизбытка информации, связанного с большим ассортиментом товаров, направлений продаж, сотрудников, направлений деятельности и т.д., бывает трудно выделить главное , на что, в первую очередь, стоит обратить внимание и приложить усилия для управления. Определение доверительного интервала и анализ выхода за его границы фактических значений - методика, которая поможет вам выделить ситуации , влияющие на изменение тенденций. Вы сможете развивать позитивные факторы и снизить влияние негативных. Данная технология применяется во многих известных мировых компаниях.

Существуют так называемые "оповещения" , которые информируют руководителей о том, что очередное значение в определенном направлении вышло за доверительный интервал . Что это означает? Это сигнал, что произошло какое-то нестандартное событие, которое, возможно, изменит существующую тенденцию в данном направлении. Это сигнал к тому, чтобы разобраться в ситуации и понять, что на неё повлияло.

Например, рассмотрим несколько ситуаций. Мы рассчитали прогноз продаж с границами прогноза по 100 товарным позициям на 2011 год по месяцам и в марте фактические продажи:

  1. По «Подсолнечному маслу» пробили верхнюю границу прогноза и не попали в доверительный интервал.
  2. По «Сухим дрожжам» вышли за нижнюю границу прогноза.
  3. По «Овсяным Кашам» пробили верхнюю границу.

По остальным товарам фактические продажи оказались в рамках заданных границ прогноза. Т.е. их продажи оказались в рамках ожиданий. Итак, мы выделили 3 товара, которые вышли за границы, и начали разбираться, что же повлияло на выход за границы:

  1. По «Подсолнечному маслу» мы вошли в новую торговую сеть, которая дала нам дополнительный объем продаж, что привело к выходу за верхнюю границу. Для этого товара стоит пересчитать прогноз до конца года с учетом прогноза продаж в данную сеть.
  2. По «Сухим дрожжам» машина застряла на таможне, и образовался дефицит в рамках 5 дней, что повлияло на снижение продаж и выход за нижнюю границу. Возможно, стоит разобраться, что послужило причиной и постараться не повторять данную ситуацию.
  3. По «Овсяным Кашам» было запущено мероприятие по стимулированию сбыта, которое дало значительный прирост продаж и привело к выходу за границы прогноза.

Мы выделили 3 фактора, которые повлияли на выход за границы прогноза. В жизни их может быть гораздо больше.Для повышения точности прогнозирования и планирования факторы, которые приводят к тому, что фактические продажи могут выйти за границы прогноза, стоит выделить и строить прогнозы и планы по ним отдельно. А затем учитывать их влияние на основной прогноз продаж. Также можно регулярно оценивать влияние данных факторов и менять ситуацию к лучшему за счет уменьшения влияния негативных и увеличения влияния позитивных факторов .

С помощью доверительного интервала мы можем:

  1. Выделить направления , на которые стоит обратить внимание, т.к. в этих направлениях произошли события, которые могут повлиять на изменение тенденции .
  2. Определить факторы , которые реально влияют на изменение ситуации.
  3. Принять взвешенное решение (например, о закупках, при планировании и т.д.).

Теперь рассмотрим, что такое доверительный интервал и как его рассчитать в Excel на примере.

Что такое доверительный интервал?

Доверительный интервал – это границы прогноза (верхняя и нижняя), в рамки которых с заданной вероятностью (сигма) попадут фактические значения.

Т.е. мы рассчитываем прогноз - это наш основной ориентир, но мы понимаем, что фактические значения вряд ли на 100% будут равны нашему прогнозу. И возникает вопрос, в какие границы могут попасть фактические значения, если существующая тенденция сохранится ? И на этот вопрос нам поможет ответить расчет доверительного интервала , т.е. - верхней и нижней границы прогноза.

Что такое заданная вероятность сигма?

При расчете доверительного интервала мы можем задать вероятность попадания фактических значений в заданные границы прогноза . Как это сделать? Для этого мы задаем значение сигма и, если сигма будет равна:

    3 сигма - то, вероятность попадания очередного фактического значения в доверительный интервал составят 99,7%, или 300 к 1, или существует 0,3% вероятности выхода за границы.

    2 сигма - то, вероятность попадания очередного значения в границы составляет ≈ 95,5 %, т.е. шансы примерно 20 к 1, или существует 4,5% вероятности выхода за границы.

    1 сигма - то, вероятность ≈ 68,3%, т.е. шансы примерно 2 к 1, или существует 31,7% вероятность того, что очередное значение выйдет за пределы доверительного интервала.

Мы сформулировали правило 3 сигм, которое гласит, что вероятность попадания очередного случайного значения в доверительный интервал с заданным значением три сигма составляет 99.7% .

Великим русским математиком Чебышевым была доказана теорема о том, что существует 10% вероятность выхода за границы прогноза с заданным значением три сигма. Т.е. вероятность попадания в доверительный интервал 3 сигма составит минимум 90%, в то время как попытка рассчитать прогноз и его границы «на глазок» чревата куда более существенными ошибками.

Как самостоятельно рассчитать доверительный интервал в Excel?

Расчет доверительного интервала в Excel (т.е. верхней и нижней границы прогноза) рассмотрим на примере. У нас есть временной ряд - продажи по месяцам за 5 лет. См. Вложенный файл.

Для расчета границ прогноза рассчитаем:

  1. Прогноз продаж ().
  2. Сигма - среднеквадратическое отклонение модели прогноза от фактических значений.
  3. Три сигма.
  4. Доверительный интервал.

1. Прогноз продаж.

=(RC[-14](данные во временном ряду) - RC[-1](значение модели) )^2(в квадрате)


3. Просуммируем для каждого месяца значения отклонений из 8 этапа Сумма((Xi-Ximod)^2), т.е. просуммируем январи, феврали... для каждого года.

Для этого воспользуемся формулой =СУММЕСЛИ()

СУММЕСЛИ(массив с номерами периодов внутри цикла (для месяцев от 1 до 12);ссылка на номер периода в цикле; ссылка на массив с квадратами разницы исходных данных и значений периодов)


4. Рассчитаем среднеквадратическое отклонение для каждого периода в цикле от 1 до 12 (10 этапво вложенном файле ).

Для этого из значения рассчитанного на 9 этапе мы извлекаем корень и делим на количество периодов в этом цикле минус 1 = КОРЕНЬ((Сумма(Xi-Ximod)^2/(n-1))

Воспользуемся формулами в Excel =КОРЕНЬ(R8 (ссылка на (Сумма(Xi-Ximod)^2) /(СЧЁТЕСЛИ($O$8:$O$67 (ссылка на массив с номерами цикла) ; O8 (ссылка на конкретный номер цикла, которые считаем в массиве) )-1))

С помощью формулы Excel = СЧЁТЕСЛИ мы считаем количество n


Рассчитав среднеквадратическое отклонение фактических данных от модели прогноза, мы получили значение сигма для каждого месяца - этап 10 во вложенном файле .

3. Рассчитаем 3 сигма.

На 11 этапе задаем количество сигм - в нашем примере «3» (11 этапво вложенном файле ):

Также удобные для практики значения сигма:

1,64 сигма - 10% вероятность выхода за предел (1 шанс из 10);

1,96 сигма - 5% вероятность выхода за пределы (1 шанс из 20);

2,6 сигма - 1% вероятность выхода за пределы (1 шанс из 100).

5) Рассчитываем три сигма , для этого мы значения «сигма» для каждого месяца умножаем на «3».

3.Определяем доверительный интервал.

  1. Верхняя граница прогноза - прогноз продаж с учетом роста и сезонности + (плюс) 3 сигма;
  2. Нижняя граница прогноза - прогноз продаж с учетом роста и сезонности – (минус) 3 сигма;

Для удобства расчета доверительного интервала на длительный период (см. вложенный файл) воспользуемся формулой Excel =Y8+ВПР(W8;$U$8:$V$19;2;0) , где

Y8 - прогноз продаж;

W8 - номер месяца, для которого будем брать значение 3-х сигма;

Т.е. Верхняя граница прогноза = «прогноз продаж» + «3 сигма» (в примере, ВПР(номер месяца; таблица со значениями 3-х сигма; столбец, из которого извлекаем значение сигма равное номеру месяца в соответствующей строке;0)).

Нижняя граница прогноза = «прогноз продаж» минус «3 сигма».

Итак, мы рассчитали доверительный интервал в Excel.

Теперь у нас есть прогноз и диапазон с границами в пределах, которого с заданной вероятностью сигма попадут фактические значения.

В данной статье мы рассмотрели, что такое сигма и правило трёх сигм, как определить доверительный интервал и для чего вы можете использовать данную методику на практике.

Точных вам прогнозов и успехов!

Чем Forecast4AC PRO может вам помочь при расчете доверительного интервала ?:

    Forecast4AC PRO автоматически рассчитает верхнюю или нижнюю границы прогноза для более чем 1000 временных рядов одновременно;

    Возможность анализа границ прогноза в сравнении с прогнозом, трендом и фактическими продажами на графике одним нажатием клавиши;

В программе Forcast4AC PRO есть возможность задать значение сигма от 1 до 3.

Присоединяйтесь к нам!

Скачивайте бесплатные приложения для прогнозирования и бизнес-анализа :


  • Novo Forecast Lite - автоматический расчет прогноза в Excel .
  • 4analytics - ABC-XYZ-анализ и анализ выбросов в Excel.
  • Qlik Sense Desktop и QlikView Personal Edition - BI-системы для анализа и визуализации данных.

Тестируйте возможности платных решений:

  • Novo Forecast PRO - прогнозирование в Excel для больших массивов данных.