Наличие способностей математические технические. Как улучшить математические навыки

математический способность восприятие крутецкий

Анализ способностей вызывает необходимость различить понятия способностей, с одной стороны, и умений и навыков - с другой. Эти категории взаимосвязаны и взаимозависимы. С.Л. Рубинштейн писал о «своеобразной диалектике между способностями и умениями». С одной стороны, в процессе приобретения знаний, умений и навыков развиваются способности. Их формирование и развитие невозможно вне этого процесса. С другой стороны - способности позволяют быстрее, легче и глубже овладеть соответствующими знаниями, умениями и навыками.

Мы считаем, что реальная тесная связь и взаимозависимость способностей и умений, навыков не «закрывает» возможности дифференцировать эти категории. Как неверно было бы разрывать их, так неправильно было бы и отождествлять их.

Как же отличать способности от умений и навыков? В основе определения понятия «способности» лежит характеристика индивидуально-психологических особенностей человека. С другой стороны, все определения навыков, умений основываются из понятия деятельности. А.Н. Леонтьев говорит об умении как о целесообразном выполнении действий. В этом различие: когда говорят о способностях, имеют в виду психологическую характеристику человека в деятельности, когда говорят об умениях (навыках) - психологическую характеристику деятельности человека.

Все это дает основание следующим образом дифференцировать указанные понятия. Под способностями понимается индивидуально-психологические особенности человека, которые благоприятствуют овладению определенной, например, математической деятельностью, овладению соответствующими навыками и умениями; под умениями и навыками понимается конкретные акты деятельности (например, математической), которые осуществляются человеком на сравнительно высоком уровне (это понятие исходит из анализа данной конкретной деятельности).

Необходимо подчеркнуть, что при анализе, как умений, навыков, так и способностей анализируется деятельность. И о наличие способностей, и о наличие умений и навыков, необходимо судить по особенностям выполнения человеком соответствующей (например, математической) деятельности.

Классификация способностей человека.

В теории способности в первую очередь различают природные, или естественные и социальные человеческие способности, имеющие общественно-историческое происхождение.

К природным способностям относятся такие элементарные способности как восприятие, память, мышление, способность к элементарным коммуникациям на уровне экспрессии.

К социальным способностям относятся общие и специальные высшие интеллектуальные способности.

Общие способности включают в себя те, которыми определяются успехи человека в самых различных видах деятельности. К ним, например, относятся умственные способности, тонкость и точность ручных движений, развитая память, совершенная речь и ряд других. Специальные способности определяют успехи человека в специфических видах деятельности, для осуществления которых необходимы задатки особого рода и их развитие. К таким способностям можно отнести музыкальные, математические, лингвистические, технические, литературные, художественно-творческие, спортивные и ряд других.

Наличие у человека общих способностей не исключает развития специальных и наоборот. Нередко общие и специальные способности сосуществуют, взаимно дополняя и обогащая друг друга.

В зависимости от деятельности, которую осуществляет человек, специальные способности могут классифицироваться как:

1) Теоретические и практические способности. Эти способности отличаются тем, что первые предопределяют склонность человека к абстрактно-теоретическим размышлениям, а вторые - к конкретным, практическим действиям. Такие способности, в отличие от общих и специальных, часто не сочетаются друг с другом, вместе встречаясь только у одаренных, разносторонне талантливых людей.

2) Способности к общению, взаимодействию с людьми, а также предметно-деятелъностные, или предметно-познавательные, способности. Они в наибольшей степени социально обусловлены. В качестве примеров способностей первого вида можно привести речь человека как средство общения (речь в ее коммуникативной функции), способности межличностного восприятия и оценивания людей, способности социально-психологической адаптации к различным ситуациям, способности входить в контакт с различными людьми, располагать их к себе, оказывать на них влияние и т.п.

3) Учебные и творческие отличаются друг от друга по мнению Р.С. Немова тем, что первые определяют успешность обучения и воспитания, усвоения человеком знаний, умений, навыков, формирования качеств личности, в то время как вторые - создание предметов материальной и духовной культуры, производство новых идей, открытий и изобретений, словом - индивидуальное творчество в различных областях человеческой деятельности. Но нам кажется, различие между двумя способностями не носит абсолютный характер. Изучая математические способности школьников, мы имеем в виду не просто обучаемость.

В нашем исследовании будет идти речь хотя и об учебных способностях школьников, но и о творческих учебных способностях, связанных с самостоятельным творческим овладением математикой в условиях школьного обучения, с самостоятельной постановкой несложных математических проблем и нахождением путей и методов для их решения, изобретением доказательств, самостоятельным выведением формул. Все это несомненно тоже проявление математического творчества. Если критерием собственно математического мышления является наличие творческого начала, то не надо забывать, что математическое творчество может быть не только объективным, но и субъективным.

Устанавливая специфические критерии, отличающие творческий мыслительный процесс от нетворческого, А. Ньюэлл, Д. Шоу и Г. Саймон отмечают следующие признаки творческого мышления:

1) продукт мыслительной деятельности обладает новизной и ценностью как в субъективном и в объективном смысле;

мыслительный процесс также отличается новизной в том смысле, что требует преобразования ранее принятых идей или отказа от них.

Творческий мыслительный процесс характеризуется наличием сильной мотивацией и устойчивости, протекая либо в течение значительного периода времени, либо с большой интенсивностью.

Способности и успешное выполнение деятельности

Определяют успешность выполнения какой-либо деятельности не отдельные способности, а лишь их удачное сочетание, именно такое, какое для данной деятельности необходимо. Практически нет такой деятельности, успех в которой определялся бы лишь одной способностью. С другой стороны, относительная слабость какой-нибудь одной способности не исключает возможности успешного выполнения той деятельности, с которой она связана, так как недостающая способность может быть компенсирована другими, входящими в комплекс, обеспечивающий данную деятельность. К примеру, слабое зрение частично компенсируется особым развитием слуха и кожной чувствительности.

Способности не только совместно определяют успешность деятельности, но и взаимодействуют, оказывая влияние друг на друга. Сочетание различных высокоразвитых способностей называют одаренностью, и эта характеристика относится к человеку, способному ко многим различным видам деятельности.

Многоплановость и разнообразие видов деятельности, в которые одновременно включается человек, выступает как одно из важнейших условий комплексного и разностороннего развития его способностей. В этой связи следует обсудить основные требования, которые предъявляются к деятельности, развивающей способности человека. Р.С. Немов в теории социального научения выделил следующие требования: творческий характер деятельности, оптимальный уровень ее трудности для исполнителя, должная мотивация и обеспечение положительного эмоционального настроя в ходе и по окончании выполнения деятельности.

Если деятельность ребенка носит творческий, нерутинный характер, то она постоянно заставляет его думать и сама по себе становится достаточно привлекательным делом как средство проверки и развития способностей. Такая деятельность всегда связана с созданием чего-либо нового, открытием для себя нового знания, обнаружения в самом себе новых возможностей. Это само по себе становится сильным и действенным стимулом к занятиям ею, к приложению необходимых усилий, направленных на преодоление возникающих трудностей. Такая деятельность укрепляет положительную самооценку, повышает уровень притязаний, порождает уверенность в себе и чувство удовлетворенности от достигнутых успехов.

Если выполняемая деятельность находится в зоне оптимальной трудности, т.е. на пределе возможностей ребенка, то она ведет за собой развитие его способностей, реализуя то, что Л.С.Выготский называл зоной потенциального развития. Деятельность, не находящаяся в пределах этой зоны, гораздо в меньшей степени ведет за собой развитие способностей. Если она слишком проста, то обеспечивает лишь реализацию уже имеющихся способностей; если же она чрезмерно сложна, то становится невыполнимой и, следовательно, также не приводит к формированию новых умений и навыков.

Поддержание интереса к деятельности через стимулирующую мотивацию означает превращение цели соответствующей деятельности в актуальную потребность человека. В русле теории социального научения особо подчеркивалось то обстоятельство, что для приобретения и закрепления у человека новых форм поведения, необходимо научение, а оно без соответствующего подкрепления не происходит. Становление и развитие способностей - это тоже результат научения, и чем сильнее подкрепление, тем быстрее будет идти развитие. Что же касается нужного эмоционального настроя, то он создается таким чередованием успехов и неудач в деятельности, развивающей способности человека, при котором за неудачами (они не исключены, если деятельность находится в зоне потенциального развития) обязательно следует эмоционально подкрепляемые успехи, причем их количество в целом является большим, чем число неудач.

Математические способности

Исследованием математических способностей занимались и такие яркие представители определенных направлений в зарубежной психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар. Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях. Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта. Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды. Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. Выделяют три важные проблемы.

Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия. Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж. Адамар, «между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера». Для того чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Основным положением отечественной психологии в этом вопросе является положение о решающем значении социальных факторов в развитии способностей, ведущей роли социального опыта человека, условий его жизни и деятельности. Психические особенности не могут быть врожденными. Это целиком относится и к способностям. Способности всегда результат развития. Они формируются и развиваются в жизни, в процессе деятельности, в процессе обучения и воспитания. В индивидах должны существовать предпосылки, внутренние условия для развития способностей. А.Н. Леонтьев и А.Р. Лурия также говорят о необходимых внутренних условиях, делающих возможным возникновение способностей. Способности не заключены в задатках. В онтогенезе они не проявляются, а формируются. Задаток не потенциальная способность (а способность не задаток в развитии), так как анатомо-физиологическая особенность ни при каких условиях не может развиваться в психическую особенность.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Отечественный психолог, исследовавший математические способности у школьников, В.А. Крутецкий дает следующее определение математическим способностям: «Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики».

Чтобы объяснить, откуда в человеке развилась способность к математическим операциям, специалисты предлагали две гипотезы . Одна из них заключалась в том, что склонность к математике является побочным эффектом появления языка и речи. Другая предполагала, что причиной явилась возможность использовать интуитивное понимание пространства и времени, которое имеет куда более древнее эволюционное происхождение.

Для того чтобы ответить на вопрос, какая из гипотез верна, психологи поставили эксперимент с участием 15 профессиональных математиков и 15 обычных людей с равным уровнем образования. Каждой группе представляли сложные математические и нематематические утверждения, которые нужно было оценить как истинные, ложные или бессмысленные. По ходу эксперимента мозг участников сканировали с помощью функциональной томографии.

Результаты исследования показали, что заявления, которые касались математического анализа, алгебры, геометрии и топологии, активировали участки в теменной, нижневисочной и префронтальной коре головного мозга у математиков, но не у контрольной группы. Эти зоны отличались от тех, что возбуждались у всех участников эксперимента при обычных утверждениях. «Математические» участки активировались у обычных людей только в том случае, если испытуемым предлагали проделать простые арифметические действия.

Ученые объясняют полученный результат тем, что математическое мышление высокого уровня задействует нейронную сеть, которая отвечает за восприятие чисел, пространства и времени и отличается от сети, связанной с языком . По словам экспертов, на основе исследования можно предсказать, разовьются ли у ребенка математические способности, если оценить его навыки пространственного мышления.

Таким образом, чтобы стать математиком нужно развивать пространственное мышление.

Что представляет из себя пространственное мышление

Для решения огромного количества задач из тех, что ставит перед нами наша цивилизация, необходим особый вид мыслительной деятельности - пространственное мышление. Термин пространственное воображение, обозначает человеческую способность четко представлять трехмерные объекты в деталях и цветовом исполнении.

При помощи пространственного мышления можно проводить манипуляции с пространственными структурами - настоящими или воображаемыми, анализировать пространственные свойства и отношения, трансформировать исходные структуры и создавать новые. В психологии восприятия давно уже известно, что изначально зачатками пространственного мышления обладает всего несколько процентов населения.

Пространственное мышление - это специфический вид мыслительной деятельности, которая имеет место в решении задач, требующих ориентации в практическом и теоретическом пространстве (как видимом, так и воображённом). В своих наиболее развитых формах это мышление образцами, в которых фиксируются пространственные свойства и отношения.

Как развить пространственное мышление

Упражнения на развитие пространственного мышления очень полезны в любом возрасте. Поначалу многие люди испытывают затруднения при их выполнении, но со временем обретают способность решать все более сложные задачи. Такие упражнения обеспечивают нормальное функционирование головного мозга, позволяют избежать многих заболеваний, вызванных недостаточным уровнем работы нейронов коры полушарий.

Дети с развитым пространственным мышлением часто преуспевают не только в геометрии, черчении, химии и физике, но и в литературе! Пространственное мышление позволяет создавать в голове целые динамические картины, своего рода кинофильм, основанные на прочитанном отрывке текста. Такая способность существенно облегчает анализирование художественной литературы и позволяет сделать процесс чтения намного более интересным. И, конечно же, пространственное мышление незаменимо на уроках рисования и труда.

С развитым пространственным мышлением становится гораздо легче читать чертежи и карты, определять местонахождение и представлять схему движения к цели. Это просто необходимо любителям спортивного ориентирования, а всем остальным существенно поможет в обычной жизни в условиях города.

Пространственное мышление развивается с раннего детства, когда ребенок начинает совершать свои первые движения. Его формирование проходит несколько этапов и заканчивается, примерно, в подростковом возрасте. Однако в течение жизни возможно его доразвитие и преобразование. Проверить уровень развития пространственного мышления можно с помощью небольшого интерактивного теста .

Выделяют три типа такого оперирования:

  1. Изменение пространственного положения образа. Человек мысленно может передвинуть объект без каких-либо изменений его внешнего вида. Например, передвижения согласно карте, мысленное переставление объектов в комнате, перечерчивание и т.д.
  2. Изменение структуры образа . Человек может мысленно каким-либо образом изменить объект, но при этом он остается неподвижным. Например, мысленное добавление одной фигуры к другой и их объединение, представление того, как будет выглядеть объект, если добавить к нему деталь, и пр.
  3. Одновременное изменение и положения, и структуры образа . Человек способен одновременно представить изменения во внешнем облике и пространственном положении предмета. Например, мысленное вращение объемной фигуры с разными сторонами, представление о том, как будет выглядеть такая фигура с той или другой стороны, и др.

Третий тип является наиболее совершенным и предоставляет больше возможностей. Однако для его достижения необходимо сначала хорошо освоить первые два типа оперирования. Представленные ниже упражнения и советы будут направлены на развитие в целом пространственного мышления и всех трех типов действий.

3D пазлы и оригами

Складывание объемных пазлов и фигурок из бумаги позволяет формировать в голове образы различных объектов. Ведь перед началом работы следует представить готовую фигуру, чтобы определить качество и порядок действий. Складывание может проходить в несколько этапов:

  • Повторение действий за кем-то
  • Работа в соответствии с инструкцией
  • Складывание фигуры с частичной опорой на инструкцию
  • Самостоятельная работа без опоры на материал (может осуществляться не сразу, а после нескольких повторений предыдущих этапов)

Важно, чтобы школьник четко прослеживал каждое действие и запоминал его. Вместо пазлов можно также использовать обычный конструктор.

Делятся на два типа:

  1. С использованием наглядного материала. Для этого необходимо иметь несколько заготовок различных объемных геометрических фигур: конус, цилиндр, куб, пирамида и др. Задача: изучить фигуры; узнать, как они выглядят с различных ракурсов; накладывать фигуры друг на друга и смотреть, что получается и т.д.
  2. Без использования наглядного материала . Если школьник хорошо знаком с различными объемными геометрическими фигурами и хорошо представляет, как они выглядят, то задания переносятся в мысленный план. Задача: описать, как выглядит та или иная фигура; назвать каждую ее сторону; представить, что будет при наложении одной фигуры на другую; сказать, какое действие нужно осуществить с фигурой, чтобы превратить ее в другую (например, как превратить параллелепипед в куб) и пр.

Перечерчивание (копирование)

Задания этого типа идут по нарастанию сложности:

  1. Простое перечерчивание фигуры. Перед учеником стоит макет/образец фигуры, который ему необходимо перенести на бумагу без изменений (размеры и внешний вид должны совпадать). Перечерчивается отдельно каждая сторона фигуры.
  2. Копирование с добавлением. Задача: перечертить фигуру без изменений и добавить к ней: 5 см в длину, дополнительную грань, другую фигуру и т.п.
  3. Масштабируемое перечерчивание. Задача: скопировать фигуру с изменением ее размера, т.е. начертить в 2 раза больше чем макет, в 5 раз меньше чем образец, убавив на 3 см каждую сторону и т.д.
  4. Копирование из представления. Задача: представить объемную фигуру и нарисовать ее с разных сторон.

Представления

В качестве объектов представления будут выступать отрезки и линии. Задачи могут быть самыми разнообразными, например:

  • Представь три разнонаправленных отрезка, мысленно соедини их и нарисуй, получившуюся фигуру.
  • Представь, что на два отрезка наложили треугольник. Что получилось?
  • Представь две сближающиеся линии. В каком месте они пересекутся?

Составление чертежей и схем

Могут осуществляться с опорой на наглядный материал или с опорой на представляемые объекты. Составлять чертежи, схемы и планы можно по любому предмету. Например, план комнаты с отображением расположения каждой вещи в ней, схематическое изображение цветка, чертеж здания и пр.

Игра «Угадай на ощупь»

Ребенок закрывает в глаза и получает какой-то предмет, который может ощупать. Объект должен иметь такие размеры, чтобы школьник имел возможность изучить его целиком. На это отводится определенное количество времени в зависимости от возраста ученика и объема предмета (15-90 секунд). По истечении этого времени ребенок должен сказать, что именно это было и почему он так решил.

Также в игре можно использовать разные виды ткани, схожие по форме фрукты (яблоки, нектарины, апельсины, персики), нестандартные геометрические фигуры и другое.

Игра «Муха в клетке»

Для этой игры потребуется не менее трех человек. Два непосредственно участвуют в игре, а третий отслеживает ее ход и проверяет конечный ответ.

Правила: два участника представляют решетку 9 на 9 квадратов (пользоваться графическим изображением нельзя!). В правом верхнем углу находится муха. По очереди делая ходы, игроки перемещают муху по квадратам. Можно использовать обозначения движения (вправо, влево, вверх, вниз) и число клеток. Например, муха передвигается на три клетки вверх. Третий участник имеет графическую схему решетки и обозначает каждый ход (каждое перемещение мухи). Далее он говорит «Стоп» и другие игроки должны сказать, где, по их мнению, находится муха в данный момент. Выигрывает тот, кто правильно назвал квадрат, где остановилась муха (проверяется по схеме, которую составил третий участник).

Игру можно усложнить, добавив количество клеток в решетку или такой параметр, как глубину (сделав решетку трехмерной).

Графические задания-тренажеры

Выполняются на глаз без использования каких-либо вспомогательных предметов (линейки, ручки, циркуля и т.д.).

1. На какую отметку должен переместиться человек, чтобы падающее дерево не задело его?

2. Какая (какие) из фигур сможет (смогут) пройти между объектом А и объектом Б?

Картинка из книги Посталовского И.З. «Тренировка образного мышления»

3. Представь, что овалы на картинке - это машины. Какая из них раньше окажется на перекрестке, если скорость передвижения машин равна?

Картинка из книги Посталовского И.З. «Тренировка образного мышления»

4. Восстанови часть фигуры, которую закрыла линейка.

Картинка из книги Посталовского И.З. «Тренировка образного мышления»

5. Определи, куда упадет шар.

Картинка из книги Посталовского И.З. «Тренировка образного мышления»

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Н.Г. ЧЕРНЫШЕВСКОГО

РЕФЕРАТ ПО ДИСЦИПЛИНЕ

Психолого-педагогические основы обучения математики

«Математические способности»

ВЫПОЛНИЛ: студентка

заочного отделения Дудрова Л.В.

ПРОВЕРИЛ: Гуменская О.М.

Саратов 2013

Введение

1. Математические способности

4. Возрастные особенности математических способностей0

Заключение

Библиография

Введение

Способности - совокупность психических качеств имеющих сложную структуру. К примеру, в структуре способностей математических есть: способность к математическому обобщению, способность к приостановлению процесса математических рассуждений и действий, гибкость при решении задач математики и т.д.

Структура способностей литературных характеризуется наличием высокоразвитых эстетических чувств, ярких образов памяти, чувства красоты языка, фантазии и потребности самовыражения.

Структура способностей в музыке, педагогике, медицине также имеет довольно специфический характер. Есть среди свойств личности, образующих структуру определенных способностей, занимающие ведущее положение, а есть и вспомогательное. Например, в структуре способностей педагога ведущими будут: тактичность, способность к избирательному наблюдению, любовь к воспитанникам, не исключающая требовательности, потребность учить, способность организовать учебный процесс и т. д. Вспомогательными: артистичность, способность лаконично и понятно выражать свои мысли и др.

Понятно то, что и ведущие, и вспомогательные элементы способностей педагога образуют единую составляющую успешного обучения и воспитания.

1. Математические способности

В исследование математических способностей внесли свой вклад и такие яркие представители определённых направлений в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Разумеется, исследование математических способностей следует начинать с определения. Попытки такого рода делались неоднократно, но установившегося, удовлетворяющего всех определения математических способностей не имеется до сих пор. Единственное, в чём сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Ещё в 1918 году в работе А. Роджерс отмечались две стороны математических способностей, репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет мат. способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями. Из работ отечественных авторов необходимо упомянуть оригинальную статью Д. Мордухай-Болтовского «Психология математического мышления», опубликованную в 1918 году. Автор, специалист математик, писал с идеалистической позиции, придавая, например, особо значение «бессознательному мыслительному процессу», утверждая, что «мышление математика глубоко внедряется в бессознательную сферу, то, всплывая на её поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движения смычка».

Большой интерес представляет попытка Мордухай-Болтовского выделить компоненты математических способностей. К таким компонентам он относит в частности: «сильную память», память на «предметы того типа, с которыми имеет дело математика», память скорее не на факты, а на идеи и мысли, «остроумие», под которым понимается способность «обнимать в одном суждении» понятия из двух малосвязанных областей мысли, находить в уже известном сходное с данным, отыскивать сходное в самых отделённых казалось бы, совершенно разнородных предметах.

Советская теория способностей создавалась совместным трудом виднейших отечественных психологов, из которых в первую очередь надо назвать Б.М. Теплова, а так же Л.С. Выготского, А.Н. Леонтьева, С.Л. Рубинштейна и Б.Г. Ананьева.

Помимо общетеоретических исследований проблемы математических способностей, В.А. Крутецкий своей монографией «Психология математических способностей школьников» положил начало экспериментальному анализу структуры математических способностей. Под способностями к изучению математики он понимает индивидуально- психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, лёгкое и глубокое овладения знаниями, умениями, навыками в области математики. Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях в обучаемости детей, вводит понятие психологических свойств, определяющих при прочих равных условиях успех в учении. Они не употребляют термина «способности», но по существу соответствующее понятие близко к тому определению, которое дано выше.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, отнюдь не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявления которой мы условно называем «синдром математической одаренности».

2. Структура математических способностей

Большой вклад в разработку данной проблемы внёс В.А. Крутецкий. Собранный им экспериментальный материал позволяет говорит о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одарённость.

Общая схема структуры математических способностей в школьном возрасте

1. Получение математической информации

А) Способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи.

2. Переработка математической информации.

А) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

Б) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

В) Способность к свёртыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

Г) Гибкость мыслительных процессов в математической деятельности.

Д) Стремление к ясности, простоте, экономности и рациональности решений.

Е) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении.

3. Хранение математической информации.

А) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним)

4. Общий синтетический компонент.

А) Математическая направленность ума.

Не входят в структуру математической одарённости те компоненты, наличие которых в этой структуре не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее степень развития) определяют типы математического склада ума.

1. Быстрота мыслительных процессов как временная характеристика. Индивидуальный темп работы не имеет решающего значения. Математик может размышлять неторопливо, даже медленно, но очень обстоятельно и глубоко.

2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме). Известно, что есть люди, способные производить в уме сложные математические вычисления (почти мгновенное возведение в квадрат и куб трёхзначных чисел), но не умеющие решать сколько-нибудь сложные задачи. Известно также, что существовали и существуют феноменальные «счётчики» не давшие математике ничего, а выдающийся математик А.Пуанкаре писал о себе, что без ошибки не может сделать даже сложение.

3. Память на цифры, формулы, числа. Как указывал академик А.Н. Колмогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

4. Способность к пространственным представлениям.

5. Способность наглядно представлять абстрактные математические отношения и зависимости

Следует подчеркнуть, что схема структуры математических способностей имеет в виду математические способности школьника. Нельзя сказать в какой мере её можно считать общей схемой структуры математических способностей, в какой мере её можно отнести к вполне сложившимся одарённым математикам.

3. Типы математических складов ума

Хорошо известно, что в любой области науки одарённость как качественное сочетание способностей всегда многообразна и в каждом отдельном случае своеобразна. Но при качественном многообразии одарённости всегда можно наметить какие-то основные типологические различия в структуре одарённости, выделить определённые типы, значительно отличающиеся один от другого, разными путями приходящие к одинаково высоким достижениям в соответствующей области. Об аналитическом и геометрическом типах упоминается работах А. Пуанкаре, Ж. Адамара, Д. Мордухай-Болтовского, но с этими терминами у них связывается скорее логический, интуитивный пути творчества в математике.

Из отечественных исследователей вопросами индивидуальных различий учащихся при решении задач с точки зрения соотношения абстрактных и образных компонентов мышления много занималась Н.А. Менчинская. Она выделяла учащихся с относительным преобладанием: а) образного мышления над абстрактным; б)абстрактного над образным в)гармоническим развитием обоих видов мышления.

Нельзя думать, что аналитический тип проявляется только в алгебре, а геометрический - в геометрии. Аналитический склад может проявляться в геометрии, а геометрический - в алгебре. В.А. Крутецкий дал развернутую характеристику каждого типа.

Аналитический тип

Мышление представителей этого типа характеризуется явным преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлечёнными схемами. У них нет потребности в наглядных опорах, в использование предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости «наталкивают» на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализом геометрической схемы или чертежа.

Геометрический тип

Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим условно можно говорить о преобладании над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактного материала и демонстрируют большую избирательность в этом отношении. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлечёнными схемами. Они упорно пытаются оперировать наглядными схемами, образами, представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднительно.

Гармонический тип

Для этого типа характерно относительное равновесие хорошо развитых словесно-логического и наглядно-образного компонентов при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они избирательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся чётко осознают, что содержание обобщения не исчерпывается частными случаями. Успешно осуществляют они и образно- геометрический подход к решению многих задач.

Установленные типы, по-видимому, имеют общее значение. Наличие их подтверждается многими исследованиями.

4. Возрастные особенности математических способностей

математический способность ум

В зарубежной психологии до настоящего времени широко распространены представления о возрастных особенностях математического развития школьника, исходящих из ранних исследований Ж.Пиаже. Пиаже считал, что ребёнок только к 12 годам становится способным к абстрактному мышлению. Анализируя стадии развития математических рассуждений подростка, Л. Шоанн пришёл к выводу, что в плане наглядно-конкретном школьник мыслит до 12 - 13 лет, а мышление в плане формальной алгебре, связанной с овладением операциями, символами, складывается лишь к 17 годам.

Исследование отечественных психологов дают иные результаты. Ещё П.П. Блонский писал об интенсивном развитие у подростка (11 - 14 лет) обобщающего и абстрагирующего мышления, умения доказывать и разбираться в доказательствах. Возникает законный вопрос: в какой мере можно говорить о математических способностях по отношению к младшим школьникам? Исследования под руководством И.В. Дубровиной, даёт основание ответить на этот вопрос следующим образом. Конечно, исключая случаи особой одарённости, мы не можем говорить о сколько-либо сформированной структуре собственно математических способностей применительно к этому возрасту. Поэтому понятие «математические способности» условно в применение к младшим школьникам - детям 7 -10-лет, при исследовании компонентов математических способностей в этом возрасте речь обычно может идти лишь об элементарных формах таких компонентов. Но отдельные компоненты математических способностей формируются уже и в начальных классах.

Опытное обучение, которое осуществлялось в ряде школ сотрудниками Института психологии (Д.Б. Эльконин, В.В. Давыдов) показывает, что при специальной методике обучения младшие школьники приобретают большую способность к отвлечению и рассуждению, чем принято думать. Однако, хотя возрастные особенностями школьника в большей мере зависят от условий, в которых осуществляется обучение, что они целиком создаются обучением, было бы неверно. Поэтому неправильна крайняя точка зрения на этот вопрос, когда считают, что не существует никакой закономерности естественного психического развития. Более эффективная система обучения может «стать» весь процесс, но до известных пределов, может несколько измениться последовательность развития, но не может придать линии развития совершенно иной характер.

Таким образом, возрастные особенности, о которых говорится, - это несколько условное понятие. Поэтому все исследования ориентированные на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

Заключение

Проблема математических способностей в психологии представляет обширное поле действия для исследователя. В силу противоречий между различными течениями в психологии, а также внутри самих течений, пока не может быть и речи о точном и строгом понимании содержания этого понятия.

Рассмотренные в данной работе книги подтверждают это заключение. Вместе с тем следует отметить неугасающий интерес к этой проблеме во всех течениях психологии, что подтверждает следующий вывод.

Практическая ценность исследований по этой теме очевидна: математическое образование играет ведущую роль в большинстве образовательных систем, а оно, в свою очередь, станет более эффективным после научного обоснования его основы - теории математических способностей.

Итак, как утверждал В.А. Крутецкий: "Задача всестороннего и гармонического развития личности человека делает совершенно необходимой глубокую научную разработку проблемы способности людей к тем или иным видам деятельности. Разработка этой проблемы представляет как теоретический, так и практический интерес".

Библиография

1. Габдреева Г.Ш. Основные аспекты проблемы тревожности в психологии // Тонус. 2000 №5

2. Гуревич К.М. Основы профориентации М., 72.

3. Дубровина И.В. Индивидуальные различия в способности к обобщению математического и нематематического материала в младшем школьном возрасте. // Вопросы психологии.,1966 №5

4. Изюмова И.С. Индивидуально-типологические особенности школьников с литературными и математическими способностями.// Психол. журн. 1993 №1. Т.14

5. Изюмова И.С. К проблеме природы способностей: задатки мнемических способностей у школьников математических и литературных классов. // Психол. журн.

6. Елесеев О.П. Практикум по психологии личности. Спб., 2001

7. Ковалев А.Г. Мясищев В.Н. Психологические особенности человека. Т.2 «Способности» ЛГУ.: 1960

8. Колесников В.Н. Эмоциональность, её структура и диагностика. Петррозаводск. 1997.

9. Кочубей Б.И. Новиков Е.А. Эмоциональная устойчивость школьников. М. 1988

10. Крутецкий В.А. Психология математических способностей. М. 1968

11. Левитов В.Г. психическое состояние беспокойства, тревоги.//Вопросы психологии 1963. №1

12. Лейтис Н.С. Возрастная одаренность и индивидуальные различия. М. 1997

Размещено на Allbest.ru

...

Подобные документы

    Компоненты математических способностей, степень их проявления в младшем школьном возрасте, природные предпосылки и условия формирования. Основные формы и методика проведения внеклассной работы: кружковые занятия, математические вечера, олимпиады, игры.

    дипломная работа , добавлен 06.11.2010

    Специфика развития математических способностей. Формирование математических способностей детей дошкольного возраста. Логическое мышление. Роль дидактических игр. Методика обучения счету и основам математики дошкольников через игровую деятельность.

    реферат , добавлен 04.03.2008

    Психолого-педагогическая характеристика детей 5-6 лет, специфика развития их математических способностей. Требования к подготовленности воспитателя и роль дидактической игры. Вовлечение родителей в деятельность по развитию математических способностей.

    реферат , добавлен 22.04.2010

    Способности и их связь с умениями и навыками. Общая структура математических способностей по В.А. Крутецкому. Анализ задачного материала темы "Теория делимости". Особенности формирования способности к формализованному восприятию математического материала.

    дипломная работа , добавлен 26.08.2011

    Понятия творчества и творческих способностей. Виды математических игр. Игры Б. Финкельштейна с блоками Дьенеша как средство развития творческих способностей. Результаты опытно-практической работы по использованию игр с математическим содержанием.

    курсовая работа , добавлен 11.08.2014

    Сущность понятия "способности". Классификация составляющих математических возможностей учащихся, обеспечивающих полноценную деятельность ребенка. Логико-дидактический анализ темы "Обыкновенные дроби" на предмет развития математических способностей.

    курсовая работа , добавлен 10.04.2014

    Особенность развития математических способностей младших школьников как психолого-педагогическая проблема. Анализ применения оригами в современной учебной литературе для учащихся. Вырабатывание общематематических умений у детей на уроках технологии.

    дипломная работа , добавлен 25.09.2017

    Особенности развития математических способностей, преимущества использования дидактических игр в процессе занятий. Методика обучения детей старшего дошкольного возраста основам математики посредством дидактических игр и задач, оценка их эффективности.

    курсовая работа , добавлен 13.01.2012

    Сущность понятий "творчество", "творческие способности". Развитие способностей ребенка в младшем школьном возрасте. Диагностика творческих способностей. Развитие креативных способностей учащихся. Интеллектуальная одаренность и творческие способности.

    курсовая работа , добавлен 07.04.2014

    Основы методики изучения математических понятий. Математические понятия, их содержание и объём, классификация понятий. Психолого-педагогические особенности обучения математике в 5-6 классах. Психологические аспекты формирования понятий.

«Очень большой и сложный вопрос: имеются ли у данного ученика математические способности или нет?

Прежде всего, что понимать под наличием способностей: творческие способности или же способность успешно преодолеть школьную программу по математике, программу втуза?

Слишком большой разброс начальных данных в исходном материале: одни не научились учиться и считают, что если они запомнили без понимания правила, методы решения, то это всё, что от них требуется; других же с раннего детства приучили прежде понимать, а потом запоминать, и к самостоятельному поиску решений; третьих - пользоваться правилами решения, придуманных для разных типов задач, но не самостоятельно мыслить.

Третий тип хорошо известен преподавателям, они знают этих натасканных на правилах мальчиков и девочек, у которых моментально слетают с языка заученные формулировки, но нет привычки искать самостоятельное решение.

Мне приходилось встречаться со школьниками всех трёх указанных типов первоначальной математической подготовки. Конечно, те, кто привык понимать и самостоятельно мыслить, резко выделялись на фоне остальной серенькой массы. Но затем, когда после двух-трёх лет переподготовки и остальные подходили к необходимости понимания материала и отказывались от привычки зазубривания без понимания, появлялись и в их среде яркие личности, способные вносить нечто новое , предлагать неожиданные решения, проявлять свои истинные способности.

Моё убеждение, что способности к хорошему познанию математики, по крайней мере школьной и вузовской, имеют все нормальные дети. Их только нужно научить учиться. Научить пользоваться тем даром, которым наделила человека природа - способностью мыслить. Некоторые школьники буквально менялись коренным образом, когда в их первоначальном математическом образовании удавалось ликвидировать пропуски в знаниях и умениях. Поэтому я резко осуждаю тех, кто слишком рано приклеивает к тому или иному учащемуся ярлык неспособного к математике. Я позволю себе в качестве примера привести самого себя: включительно до шестого класса мне тяжело давалась математика, я испытывал постоянный страх перед задачами.

Я помню, как говорил родителям: «как бы было хорошо учиться, если бы не было математики». В 1925 г. семья переехала в Саратов. Обнаружилось, что в саратовской школе прошли по математике больше, и мне пришлось догонять класс. Я самостоятельно изучил нужные разделы и обратился к прежнему материалу, в котором у меня также оказались пробелы.

Затем мне на глаза попался сборник конкурсных задач, предлагавшихся при поступлении в Петербургский институт путей сообщения. Я перерешал значительное число задач самостоятельно. Через полгода я прослыл лучшим учеником класса по математике. Всё дело в том, что при самостоятельной работе над учебником я доводил дело до понимания и только затем шёл дальше, предварительно закрепляя пройденный материал самостоятельным решением задач. Затем в университете я также занял положение математического лидера, хотя речь шла только об учебном процессе, а не о собственном творчестве. Потребовалось много лет, чтобы я выдвинул проблемы для исследования и начал влиять на творческие интересы других.

Будучи студентом университета, я придерживался такого правила: внимательно слушал лекции, в тот же день просматривал сделанные краткие записи и расширял полученные сведения, прочитывая соответствующие места учебника. Изученное немедленно закреплял несколькими самостоятельно решенными задачами. Такой способ повторения помогал мне избегать горячки перед экзаменами. Мне достаточно было освежить в памяти ранее изученное.

Я никогда не позволял себе идти дальше, не поняв предыдущего. Пожалуй, имеет смысл сказать, что сразу же после лекций, после обдумывания, я вкратце записывал содержание лекции, уделяя внимание четкости формулировок определений и теорем. Дополнительные сведения, почерпнутые из книг, я также помещал после записи содержания лекции. Мои записки пользовались успехом на курсе, их брали, переписывали, просили на время каникул для пересдачи. В результате мне не удалось сохранить ни одной такой тетради, все они разошлись по рукам.

Я считаю, что составление записок мне принесло двойную пользу. Во-первых, я с самого начала изучал как следует всё новое, что нам излагалось и, во-вторых, я приучался кратко излагать то основное, что следовало знать и уметь применять. Эта привычка к кратким и чётким формулировкам сохранилась у меня на всю дальнейшую жизнь.

Если говорить о способностях воспринимать курс школьной и вузовской математики, то я убеждён в том, что в большинстве случаев отсутствие способностей приписывают тем, кто не хочет учиться или же имеет серьёзные пробелы в предшествующих частях курса и не считает нужным восстановить своевременно непознанное. Многолетний опыт общения со студентами, школьниками и их родителями убедил меня в том, что, как правило, неудачи усвоением курса математики связаны не с отсутствием математических способностей, а с отсутствием прочных знаний фундаментальных понятий, с ленью ума, которая мешает систематической работе над материалом, и со стремлением се познание свести к запоминанию без понимания. Мы же должны помнить, что только в самостоятельном преодолении трудностей - ключ к познанию и уверенности в своих гениях и знаниях.

В подавляющем большинстве случаев, когда говорят об отсутствии у учащегося математических способностей для познания обязательного курса, речь должна идти о другом - либо о неумении, либо о нежелании учиться.

Заключение же об отсутствии способностей обычно педагогически необосновано и вредно. Такое заключение способно угнетающе подействовать на психику учащегося. Это во-первых. А во-вторых, оно как бы выдает индульгенцию лентяю или же не научившемуся учиться.

Умение учиться не приходит само собой, а нуждается в систематическом воспитании, постоянном внимании учителей и серьёзных усилиях учащихся. Цель школьного обучения состоит не в том, чтобы перегрузить память учащихся сведениями, которые не превращаются в орудие труда, а в том, чтобы сделать ум пытливым, подвижным, способным анализировать новые ситуации, находить подходы к решению возникающих проблем. Тот, кто делает ставку только на память, на зубрёжку, отключает мысль, разум от работы по познанию. Память обязана играть роль активного помощника разума, и не следует навязывать ей несвойственную роль единственного средства познания. В памяти должны храниться основные сведения и идеи, которые по мере надобности превращаются в активные методы.

Точно так же невозможно научить говорить на чужом языке, если только снабдить память словами и правилами. Этого мало. Необходимо ещё приучить человека активно пользоваться полученным запасом знаний. А для этого нужно говорить, т. е. заставлять знания не лежать мертвым грузом в недрах памяти, а активно действовать. Для математики упражнения на решение задач, на проведение логических заключений так же обязательны, как разговор на чужом языке при его изучении».

Гнеденко Б.В., Математика и жизнь, М., «Комкнига», 2006 г., с.118-121.

Взгляды зарубежных психологов на математические способности
В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды.

Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. В этом плане можно выделить три важные проблемы.
1. Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?
2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.
3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

Взгляды Б.М. Теплова на математические способности
Хотя математические способности и не были предметом специального рассмотрения в трудах Б.М. Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей. Среди них особое место занимают две монографические работы «Психология музыкальных способностей» и «Ум полководца», ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

В обеих работах Б. М. Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б. М. Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке - слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

Наиболее ярко роль общих способностей продемонстрирована в работе «Ум полководца». Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б.М. Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б.М. Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

Важное место в интеллектуальной деятельности полководца занимает память. Она очень избирательна, то есть удерживает прежде всего необходимые, существенные детали. В качестве классического примера такой памяти Б.М. Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

Б.М. Теплов приходит к выводу, что «умение находить и выделять существенное и постоянная систематизация материала - вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца» (Б.М. Теплов 1985, стр. 249). Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это прежде всего мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием «воля». Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

Особое место в интеллектуальной деятельности полководца Б.М. Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б. М. Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае «озарению» должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

Подтверждения положениям, проанализированным и обобщенным Б.М. Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков. Так, в психологическом этюде «Математическое творчество» Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом «озарения» необходимо следовал второй этап - тщательной сознательной работы по приведению в порядок доказательства и его проверке. А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия.

Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж. Адамар, «между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера». Для того чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Советский психолог, исследовавший математические способности у школьников, В.А. Крутецкий дает следующее определение математическим способностям: «Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики».

Исследование математических способностей включает в себя и решение одной из важнейших проблем - поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б.М. Теплов и С.Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В.С. Мерлин, 1986). Б. Г. Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами «талант» и «призвание» (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу

Общая схема структуры математических способностей в школьном возрасте по В.А. Крутецкому
Собранный В. А. Крутецким материал позволил ему выстроить общую схему структуры математических способностей в школьном возрасте.
1. Получение математической информации.
Способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи.
2. Переработка математической информации.
1) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.
2) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.
3) Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.
4) Гибкость мыслительных процессов в математической деятельности.
5) Стремление к ясности, простоте, экономности и рациональности решений.
6) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).
3. Хранение математической информации.
1) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним).
4. Общий синтетический компонент.
1) Математическая направленность ума. Выделенные компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:
1. Быстрота мыслительных процессов как временная характеристика.
2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).
3. Память на цифры, числа, формулы.
4. Способность к пространственным представлениям.
5. Способность наглядно представить абстрактные математические отношения и зависимости.