Направленность (профиль) – технология получения лекарств современное состояние и перспективы развития фармацевтической технологии. фармацевтическая технология, как наука, и ее задачи на современном этапе

Алматы, 2015

1. Понятие «фармацевтическая технология» и ее основные задачи

2. Краткие исторические сведения о развитии промышленного производства лекарств

3. Нормативно-техническая документация в промышленном производстве лекарств

4. Промышленное производство лекарственных препаратов

5. Значение фармацевтической технологии лекарств

ОБЩИЕ ВОПРОСЫ ТЕХНОЛОГИИ ЛЕКАРСТВ промышленного ПРОИЗВОДСТВА

1.1. Понятие «фармацевтическая технология» и ее основные задачи

Технология - совокупность методов обработки, приготовле­ния, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции.

Технология как наука о способах и методах переработки сырья возникла в связи с развитием крупной машинной промышлен­ности в конце XVIII в. и, сформировавшись, быстро выросла из прикладной в обширную фундаментальную науку.

Развитие технологии постоянно испытывает мощное влияние экономических и идейных институтов общества. В свою очередь, социальное воздействие техники на общество идет, прежде всего, через повышение производительности труда, через специализацию средств труда, которые служат технической основой его разделе­ния, и, наконец, путем замещения техническими средствами трудовых функций человека. Социальное воздействие техники на общество легко прослеживается на примере перехода от ручного труда к машинному, а затем к комплексной автоматизации производства, но, изменяя условия труда и быта, также влияет и на мировоззрение человека, его психологию, мышление.

Все сферы жизнедеятельности общества развиваются комплексно, с учетом социальных, экономических и технических факторов. Только те технологические решения являются опти­мальными, которые способствуют наиболее полному удовлетворе­нию материальных и духовных потребностей людей.

Все сказанное в полной мере относится к технологии химической, пищевых продуктов, а также фармацевтической.



В современное понятие «технология» вкладывают совокуп­ность приемов и способов получения, обработки или переработки сырья, материалов, полуфабрикатов, изделий, осуществляемых с целью получения готовой фармацевтической продукции. Следует заметить, что в понятие «технология» включают операции добычи, переработки, дозирования (фасовки), транспортировки, складирования и хранения исходного сырья и готовой продукции (так как они являются составной частью производственного процесса), а также технологический контроль и научно обосно­ванную стандартизацию производства в виде технологических регламентов, методов, правил, графиков и т. д.

Основные задачи фармацевтической технологии:

-разработка технологических основ и методов производства
новых лекарственных субстанций и препаратов;

-совершенствование существующих лекарственных препаратов;

-поиск, изучение и использование в производстве лекарств
новых вспомогательных веществ;

Изучение стабильности и установление сроков годности лекарственных веществ, препаратов, полуфабрикатов и другой продукции;

Изучение эффективности технологического процесса, основными показателями которого являются: удельный расход сырья, энерго- и трудозатраты на единицу продукции выходи качество готовой продукции; интенсивность процесса; себе­стоимость продукции.

Задача фармацевтической технологии как науки - выявление физических, химических, механических и других закономернос­тей, а также наиболее эффективных экономических процессов с целью использования их в производстве лекарств.

Значение фармацевтической технологии лекарств в здравоохранении, чрезвычайно велико, так как при оказании медицинской помощи больным в 90% случаев специалисты этой службы используют лекарства. Подчеркивая значение фармако­терапии, И. П. Павлов отмечал, что лекарство является универсальным орудием врача, и никакие вмешательства, будь-то хирургические, акушерские или другие, не обходятся без использования лекарственных препаратов.

1.2. Краткие исторические сведения о развитии промышленного производства лекарств

Первые сведения о приготовлении лекарств упоминались в различных памятниках культуры древних народов (египтян, китайцев, индусов), дошедших до наших времен.

При первобытнообщинном строе лекарства применялись в том виде, в котором они встречались в природе - в основном растения и вещества минерального или животного происхождения. Приготовление лекарств заключалось главным образом в измельче­нии, просеивании или же смешивании веществ.

В период рабовладельческого строя появились лекарственные формы и был накоплен опыт по использованию лекарств при различных заболеваниях.

Несмотря на примитивные орудия производства, фармация достигла значительного развития в Египте, Китае, Индии. Греческая фармацевтическая техника превосходила египетскую. Например, греки применяли перегонку воды с целью ее очистки.

Каждый, кто занимался приготовлением лекарств, имел запасы сырья, которые хранились в отдельном помещении. От названия «apotece» (кладовая, амбар) и произошло современное название «аптека».

Значительного развития достигло приготовление лекарств в Древнем Риме. Знаменитый врач и фармацевт того времени Клавдий Гален (131-201 гг. н. э.) систематизировал способы приготовления известных в то время лекарств. Он описывал производство порошков, пилюль, болюсов, мыл, мазей, пластырей, горчичников, сборов, настоев, отваров, растворов, микстур, соков из растений, жирных растительных масел, вин, смазываний, растительных уксусомедов, примочек, припарок. Гален имел свою аптеку с лабораторией, мастерской или заводом, т. е. помещением, в котором изготавливались различные лекарственные формы, а также в большом количестве - косметические средства - зубные порошки, средства для волос и т. д. Препараты, описанные Гале-ном, и другие, аналогичные им, предложенные уже позже, в XVI в. получили название «галеновые». Это название сохранилось до настоящего времени.

На Востоке широкую известность получил выдающийся таджикский философ, врач и фармацевт Авиценна (Абу Али Ибн Сина, около 980-1037 гг.), автор труда «Канон врачебной науки», состоящего из пяти книг. Две из них посвящены лекарствоведе­нию, в которых он описал многие лекарственные средства и усовершенствованные им прописи лекарственных форм. Труды Авиценны служили руководством для врачей и фармацевтов на протяжении нескольких столетий.

В эпоху феодализма значительное влияние на развитие фармации оказала алхимия. Алхимиками были открыты новые вещества, усовершенствованы такие технологические операции, как перегонка, фильтрация и кристаллизация.

Существенные изменения были внесены в номенклатуру лекарственных средств и способов их приготовления ятрохимией, или лечебной химией, основателем и приверженцем которой был Теофраст Парацельс Гогенгейм (1493 -1541 гг). Он и его последователи развили учение о дозировках лекарств, предложили оборудование для их приготовления, ввели в лечебную практику многие химические препараты и извлечения из растительного сырья.

В Древней Руси развитие народной медицины происходило самобытным путем. Лечебные средства, полученные из сырья растительного или животного происхождения, применяли в сыром виде или подвергали примитивной обработке. Профессии врача и фармацевта разграничены не были. Так, продавец лекарств обязательно давал врачебные советы, а врач всегда при себе имел лекарства. И тех и других называли «лечителями».

В Киевской Руси от «лечителей» не требовалось специальных знаний. Лечением и продажей лекарств мог заниматься любой

человек. «Лечители» также занимались обработкой лекарствен­ного сырья и приготовлением сложных по составу медикаментов. Орудия производства и методы работы были примитивными и мелкокустарными.

Постепенно в народной медицине появляются такие лекарства, как «зелия», «целебные снадобья», «водицы», «питие», «мазуни» (мази), «порохи» (порошки) и т. д. В XI в. уже готовятся соки, настои, отвары и ароматные воды. Чуть позже появляются такие лекарственные формы, как пластыри, горошки (пилюли), леваши (лепешки). Их готовили в москательных, травяных и «зелейных лавках», которые являлись прообразом будущих аптек.

При Иоанне Грозном была учреждена Аптекарская палата, преобразованная в 1631 г. в Аптекарский приказ, а в 1654 г. открыта первая школа для подготовки лекарей. В 1681 г. организована «Царская аптека», приобретающая сырье в зелейном ряду и обслуживающая только царскую семью и двор. К концу XVI в. в Москве открыли еще несколько аптек, имеющих лаборатории для изготовления галеновых и других препаратов.

В XIX в. технология лекарств в России продолжала раз­виваться. К этому времени разрабатывались методы изготовления вытяжек из растительного сырья, совершенствовались способы приготовления эмульсий, суппозиториев, пилюль и других лекарственных форм. Появилось более совершенное оборудование: весоизмерительные приборы, машинка для изготовления пилюль и суппозиториев, таблеточные прессы, перколяторы, стери­лизаторы и др. В конце XIX в. стали готовить лекарственные формы для инъекций.

После революции 1917 г. все аптеки и находящиеся при них лаборатории, а также галеновые заводы были национализированы. Мелкие предприятия по производству лекарств были закрыты, а крупные перестроены и переоборудованы. Все сделанное позволило механизировать и автоматизировать химико-фармацевтические предприятия.

Перспективы развития фармацевтической технологии

Перспективы развития фармацевтической технологии тесно связаны с влиянием научно-технического прогресса. На базе новейших научных открытий создаются принципиально новые, более совершенные и производительные технологические процессы, резко увеличивающие производительность труда и повышающие качество готовой продукции. Технологии оказывают значительное влияние на будущие экономические показатели производства, требуют разработки малооперационных, ресурсосберегающих и безотходных процессов, их автоматизации, максимальной механизации и компьютеризации.

Для прогнозирования и оптимизации технологических процессов успешно применяется математическое планирование эксперимента, прочно вошедшее в технологическую науку и практику. Этот метод позволяет получать математические модели, связывающие параметр оптимизации с влияющими на него факторами, и дает возможность без длительного процесса выявлять их оптимальные технологические режимы.

Таким образом, технология получила современные методы нахождения оптимальных конечных результатов с наименьшими затратами, что является примером того, как наука превращается в непосредственную производительную силу.

В результате возросшей роли и возможностей технологий необычно сокращаются сроки от возникновения идеи, первых результатов научных исследований до их реализации в промыш­ленном производстве.

Развитие фармацевтической технологии определяется требованиями современной фармакотерапии, настоятельно предлагающей создание таких лекарственных препаратов, которые были бы максимально эффективны с лечебной точки зрения при содержании минимума лекарственной субстанции и не обладали побочным действием. В основе решения задач - положения и принципы биофармации, базирующиеся на оптимальном подборе состава и вида лекарственной формы и использование оптимальных технологических процессов. Этим объясняется широкое распространение и углубление биофармацевтических исследований во многих странах.

Однако изучение биофармацевтических аспектов получения и назначения лекарственных препаратов, изучение «судьбы» лекарственных средств в организме - это лишь первый шаг выше сформулированной задачи. Дальнейшие усилия должны быть направлены на реализацию полученных сведений в процессе производства и применения лекарственных препаратов с целью ликвидации их недостатков: короткий срок действия; неравномерное поступление лекарственных веществ в патологи­ческий очаг; отсутствие избирательного действия; недостаточная стабильность и др.

К первоочередным проблемам фармацевтической технологии следует отнести повышение растворимости труднорастворимых веществ в воде и липидах; увеличение стабильности гомогенных и гетерогенных лекарственных систем; продление времени действия лекарственных препаратов; создание лекарств направленного действия с заданными фармакокинетическими свойствами.

Здесь же уместно отметить необходимость изучения и использования в фармацевтической технологии последних достижений коллоидной химии и химической технологии: новые способы диспергирования, успехи физико-химической механики, коллоидной химии и химии полимеров, применение нестехио-метрических соединений, микрокапсулирование, новые способы сушки, экстракции и многое другое.

Совершенно очевидно, что решение этих и других вопросов, стоящих перед фармацевтической технологией, потребует разработки новых способов производства и анализа эффективности лекарственных препаратов, использования новых критериев ее оценки, а также изучения возможностей внедрения полученных результатов в практическую фармацию и медицину.

Биотехнология традиционных лекарств и лекарств будущего

С целью улучшения лечебных свойств традиционных лекарств усилия всех специалистов, разрабатывающих лекарственные пре-параты, направлены на использование новых технологий их полу-чения, совершенствование составов, повышение специфичности и изучение как можно более полного механизма их действия на различные системы и органы человека. Продвижения в этом направ-лении все ощутимее и появляется надежда, что лекарственные препараты в следующем тысячелетии станут более действенными и эффективными средствами лечения многих заболеваний. Широко будут применяться лекарственные препараты в виде терапевтиче-ских систем и биопродуктов, особенно таких, как пептиды и про-белки, которые практически невозможно получить синтетически. Поэтому становится понятным возрастающее значение биотехноло-гии для фармацевтической промышленности.

Сегодня биотехнология стремительно выдвигается на передний край научно-технического прогресса. Этому, с одной стороны, способствует бурное развитие современной молекулярной биологии и генетики, опирающихся на достижения химии и физики, а с другой стороны, -- острая потребность в новых технологиях, спо-собных улучшить состояние здравоохранения и охраны окружающей среды, а главное -- ликвидировать нехватку продовольствия, энер-гии и минеральных ресурсов.

В качестве первоочередной задачи перед биотехнологией стоит создание и освоение производства лекарственных препаратов для медицины: интерферонов, инсулинов, гормонов, антибиотиков, вакцин, моноклональных антител и других, позволяющих осуществлять ран-нюю диагностику и лечение сердчено-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных заболеваний.

По оценкам специалистов мировой рынок биотехнологической продукции уже к середине 90-х годов составил около 150 млрд долларов. По объему выпускаемой продукции и числу зарегистри-рованных патентов Япония занимает первое место среди стран, преуспевающих в области биотехнологии, и второе -- по производ-ству фармацевтической продукции. В 1979 году на мировой рынок было выпущено 11 новых антибиотиков, 7 из них синтезировано в Японии. В 1980 году фармацевтическая промышленность Японии освоила производство веществ широкой номенклатуры: пеницилли-нов, цефалоспорина С, стрептомицина, полусинтетических анти-биотиков второго и третьего поколений, противоопухолевых пре-паратов и иммуномодуляторов. Среди десяти ведущих мировых производителей интерферона -- пять японских. С 1980 года фирмы активно включились в разработку технологий, связанных с иммо-билизованными ферментами и клетками. Проводятся активные исследования, направленные на получение термостойких и кисло-тоустойчивых ферментов. 44% новых продуктов, полученных с помощью биотехнологий, нашли применение в фармации и только 23% -- в пищевой или химической промышленности.

Биотехнология оказывает воздействие на различные отрасли про-мышленности Японии, включая производство вино-водочных изделий, пива, аминокислот, нуклеидов, антибиотиков; рассматривается как одно из самых перспективных направлений развития пищевого и фармацев-тического производства и на этом основании включена в исследователь-скую программу по созданию новых промышленных технологий. Суще-ствует государственная программа, направленная на разработку новых технологий получения гормонов, интерферонов, вакцин, витаминов, аминокислот, антибиотиков и диагностических препаратов.

Второе место после Японии по объему продуктов биотехнологии и первое место по производству фармацевтической продукции принадле-жит США. На антибиотики приходится 12% мировой продукции. Зна-чительные успехи достигнуты в области синтеза инсулина, гормона роста человека, интерферона, фактора свертывания крови VIII, диа-гностических тестов, вакцины против гепатита В и других лекарст-венных препаратов, а также непрерывного процесса конверсии саха-ра в этиловый спирт. В 1983 году был синтезирован лейкоцитарный интерферон человека высокой чистоты. Методами генной инженерии овладели многие фармацевтические фирмы США. Быстро развиваются средства информации, связанные с биотехнологией. Определенные успехи в области биотехнологии имеются и в других странах мира.

Понятие "биотехнология" собирательное и охватывает такие области, как ферментационная технология, применение биофакто-ров с использованием иммобилизованных микроорганизмов или энзимов, генная инженерия, иммунная и белковая технологии, технология с использованием клеточных культур как животного, так и растительного происхождения.

Биотехнология -- это совокупность технологических мето-дов, в том числе и генной инженерии, использующих живые организмы и биологические процессы для производства лекар-ственных средств, или наука о разработке и применении живых систем, а также неживых систем биологического происхождения в рамках технологических процессов и инду-стриального производства.

Современная биотехнология -- это химия, где изменение и превра-щение веществ происходит с помощью биологических процессов. В острой конкуренции успешно развиваются две химии: синтетическая и биологическая. Синтетическая химия, сочетая и перетасовывая атомы, переделывая молекулы, создавая новые вещества, неведомые в природе, окружила нас новым миром, который стал привычным и необходимым. Это -- лекарства, моющие средства и красители, цемент, бетон и бумага, синтетические ткани и меха, пластинки и драгоценные камни, духи и искусственные алмазы. Но чтобы получить вещества "второй природы" необходимы жесткие условия и специфические катализаторы. Напри-мер, связывание азота происходит в промышленных прочных аппаратах при высокой температуре и огромном давлении. При этом в воздух выбрасываются столбы дыма, а в реки -- потоки сточных вод. Для азотофиксирующих бактерий этого совсем не требуется. Имеющиеся в их распоряжении энзимы осуществляют эту реакцию в мягких условиях, образуя чистый продукт без отходов. Но самое неприятное заключается в том, что пребывание человека в окружении "второй природы" стало оборачиваться аллергией и другими опасностями. Неплохо бы держаться поближе к природе-матери. И если делать искусственные ткани, пленки, то хотя бы из микробного белка, если применять лекарственные пре-параты, то прежде всего те, которые вырабатываются в организме. Отсюда вырисовываются перспективы развития и использования в фармацевтической промышленности биотехнологий, где применяются живые клетки (в основном такие микроорганизмы, как бактерии и дрожжевые грибки или отдельные энзимы, выполняющие роль катали-заторов только определенных химических реакций). Обладая феноме-нальной избирательностью, энзимы осуществляют одну-единственную реакцию и позволяют получить чистый продукт без отходов.

Однако энзимы нестойкие и быстро разрушаются, например, при повышении температуры трудно выделяются, их нельзя использо-вать многократно. Это и обусловило, главным образом, развитие науки об обездвиженных (иммобилизованных) ферментах. Основа, на которую "сажают" фермент, может иметь вид гранул, волокон, пленок из полимеров, стекла, керамики. Потери энзима при этом минимальны, а активность сохраняется месяцами. В настоящее время научились получать иммобилизованные бактерии, которые вырабатывают энзимы. Это упростило их использование в произ-водстве и сделало метод более дешевым (не надо выделять энзим, очищать его). Кроме того, бактерии работают в десять раз дольше, что сделало технологический процесс экономичнее й проще. Тра-диционная ферментационная технология превратилась в биотехно-логию со всеми признаками передовой технологии.

Ферментные технологии с большим экономическим эффектом стали применять для получения чистых аминокислот, переработки крахмалосодержащего сырья (например, кукурузного зерна в сироп, состоящий из глюкозы и фруктоы). За последние годы это произ-водство превратилось в многотоннажное. Развиваются производства по переработке опилок, соломы, бытовых отходов в кормовой белок или спирт, который используют для замены бензина. Ферменты сегодня широко используются в медицине как фиброиолитические препараты (фибринолизин + гепарин, стрептолиаза); при расстрой-ствах пищеварения (пепсин + хлористоводородная кислота, пепси-дил, абомин, панкреатин, ораза, панкурмен, фестал, дигестал, три-фермент, холензим и др.); для лечения гнойных ран, При образова-нии спаек, рубцов после ожогов и операций и т.д. Биотехнология позволяет получать большое количество ферментов медицинского назначения. Их используют для растворения тромбов, лечения на-следственных заболеваний, удаления нежизнеспособных, денатури-рованных структур, клеточных и тканевых фрагментов, освобожде-ния организма от токсических веществ. Так, с помощью тромболи-тических ферментов (стрептокиназы, урокиназы) спасена жизнь многим больным с тромбозом конечностей, легких, коронарных сосудов сердца. Протеазы в современной медицине применяются для освобождения организма от патологических продуктов, для лечения ожогов.

Известно около 200 наследственных заболеваний, обусловленных дефицитом какого-либо фермента или иного белкового фактора. В настоящее время делаются попытки лечения этих заболеваний с применением ферментов.

В последние годы все больше внимания уделяют ингибиторам ферментов. Ингибиторы протеаз, получаемые из актиномицетов (лейпептин, антипаин, химостатин) и генноинженерных штаммов E.coli (эглин) и дрожжей (ос-1 антитрипсин) эффективны при сеп-тических процессах, инфаркте миокарда, панкреатите, эмфиземе легких. Концентрацию глюкозы в крови больных диабетом можно уменьшить путем использования ингибиторов кишечных инвертаз и амилаз, отвечающих за превращение крахмала и сахарозы в глюкозу. Особой задачей является поиск ингибиторов ферментов, с помощью которых патогенные микроорганизмы разрушают анти-биотики, вводимые в организм больного.

Новые возможности открывает генная инженерия и другие ме-тоды биотехнологии в производстве антибиотиков, обладающих высокой избирательной физиологической активностью по отноше-нию к определенным группам микроорганизмов. Однако антибио-тики имеют и ряд недостатков (токсичность, аллергенность, устой-чивость патогенных микроорганизмов и др.), которые существенно можно ослабить за счет их химической модификации (пеницилли-ны, цефалоспорины), мутасинтеза, генной инженерии и других способов. Многообещающим подходом может служить инкапсули-рование антибиотиков, в частности, включение их в липосомы, что позволяет прицельно доставлять лекарственное вещество только к определенным органам и тканям, повышает его эффективность и снижает побочное действие.

С помощью генной инженерии можно заставить бактерии выра-батывать интерферон -- белок, выделяемый клетками человека в низких концентрациях при попадании в организм вируса. Он уси-ливает иммунитет организма, подавляет размножение аномальных клеток (противоопухолевое действие), используется для лечения болезней, вызываемых вирусами герпеса, бешенства, гепатитов, цитомегаловирусом, вызывающим опасное поражение сердца, а также для профилактики вирусных инфекций. Вдыхание аэрозоля интерферона позволяет предупредить развитие ОРЗ. Интерфероны оказывают лечебное действие при заболевании раком груди, кожи, гортани, легких, мозга, а также рассеяного склероза. Они полезны при лечении лиц, страдающих приобретенными иммунодефицитами (рассеянной миеломой и саркомой Капоци).

В организме человека вырабатывается несколько классов интер-ферона: лейкоцитарный (а), фибробластный (р-интерферон, удоб-ный для массового производства, поскольку фибробласты в отличие от лейкоцитов размножаются в культуре), иммунный (у) из Т-лим-фоцитов и е-интерферон, образуемый эпителиальными клетками.

До введения методов генной инженерии интерфероны получали из лейкоцитов донорской крови. Технология сложная и дорогостоя-щая: из 1 л крови получали 1 мг интерферона (одна доза для инъекций).

В настоящее время а-, (3- и у-интерфероны получают с примене-нием штамма E.coli, дрожжей, культивируемых клеток насекомых (Dro-zophila). Очищают с использованием моноклональных (клон -- совокуп-ность клеток или особей, произошедших от общего предка путем бесполого размножения) антител или другими способами.

Биотехнологическим методом получают и интерлейкины -- срав-нительно короткие (около 150 аминокислотных остатков) полипеп-тиды, участвующие в организации иммунного ответа. Образуются в организме определенной группой лейкоцитов (микрофагами) в от-вет на введение антигена. Используются как лечебные средства при иммунных расстройствах. Путем клонирования соответствующих генов в E.coli или культивирования лимфоцитов in vitro получают интерлейкин-L (для лечения ряда опухолевых заболеваний), фактор крови VIII (культивированием клеток млекопитающих), фактор IX (необходим для терапии гемофилии), а также фактор роста }