Наследственная информация: хранение и передача. Генетический код

В реакции, катализируемой обратной транскриптазой .

кДНК часто используется для клонирования генов эукариот в прокариотах . Комплементарная ДНК также образуется ретровирусами (ВИЧ-1 , ВИЧ-2 , Вирусом иммунодефицита обезьян) и затем интегрируется в ДНК хозяина, образуя провирус .

Часто гены эукариот удается экспрессировать в клетках прокариот. В наиболее простом случае, метод предполагает встраивание эукариотической ДНК в геном прокариот, далее транскрипцию ДНК в мРНК и затем трансляцию мРНК в белки. Клетки прокариот не имеют ферментов для вырезания интронов, и поэтому интроны из ДНК эукариот должны быть вырезаны до момента встраивания в геном прокариот. ДНК, комплементарная зрелой мРНК, таким образом, называется комплементарной ДНК - cDNA (кДНК). Для успешной экспрессии белков, закодированных в эукариотической cDNA в прокариотах, требуются также регуляторные элементы прокариотических генов (например, промоторы).

Одним из методов для получения необходимого гена (молекулы ДНК), которая будет подлежать репликации (клонированию) с выходом значительного количества реплик, является конструирование на мРНК комплементарной относительно неё ДНК (кДНК). Этот метод требует применения обратной транскриптазы - фермента, который присутствует в некоторых РНК-содержимых вирусах и обеспечивает синтез ДНК на РНК матрице.

Метод широко применяется для получения кДНК и включает в себя выделение из тотальной мРНК ткани мРНК, которая кодирует трансляцию определенного белка (например, интерферона, инсулина) с дальнейшим синтезом на этой мРНК как на матрице необходимой кДНК с помощью обратной транскриптазы.

Ген, который был получен с помощью вышеуказанной процедуры (кДНК), необходимо ввести в бактериальную клетку таким образом, чтобы он интегрировался в её геном. Для этого формируют рекомбинантную ДНК, которая состоит из кДНК и особенной молекулы ДНК, которая правит как проводник, или вектор, способный проникать реципиенту в клетку. В роли векторов для кДНК применяют вирусы или плазмиды. Плазмиды - это небольшие кольцевые молекулы ДНК, которые находятся отдельно от нуклеоида бактериальной клетки, содержат в своем составе несколько важных для функции всей клетки генов (например, гены стойкости к антибиотикам и могут реплицироваться независимо от основного генома (ДНК) клетки. Биологически важными и практически полезными для генной инженерии свойствами плазмида являются их способность к переходу из одной клетки в другую по механизму трансформации или конъюгации, а также способность включаться в бактериальную хромосому и реплицироваться вместе с ней.

Самовоспроизведение наследственного материала. Репликация ДНК

Репликация – удвоение молекул ДНК, в результате которого образуются две двойные спирали ДНК. Основано на принципах :

1) Комплементарность – каждая из двух цепей – матрица для синтеза комплементарной цепи. Это свойство обеспечивается особенностями химической организации молекулы ДНК, состоящей из двух комплементарных цепей. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. В итоге из одной двойной спирали ДНК образуются две идентичные двойные спирали.

2) Полуконсервативность – каждая из двух двойных спиралей несет одну нить

материнской ДНК.

3) Антипараллельность – каждая цепь ДНК имеет определенную ориентацию: 5"-конец одной цепи соединяется с 3"-концом другой, и наоборот.

4) Прерывистость – репликация осуществляется фрагментами.

Инициация репликации осуществляется в особых участках ДНК, обозначаемых ori (от англ. origin -начало). Они включают последовательность, состоящую из 300 нуклеотидных пар, узнаваемую специфическими белками. Двойная спираль ДНК в этих локусах разделяется на две цепи, при этом, как правило, по обе стороны от точки начала репликации образуются области расхождения полинуклеотидных цепей - репликационные вилки , которые движутся в противоположных от локуса ori направлениях. Между репликационными вилками образуется структура, называемая репликационным глазком , где на двух цепях материнской ДНК образуются новые полинуклеотидные цепи.

С помощью фермента хеликазы, разрывающего водородные связи, двойная спираль ДНК расплетается в точках начала репликации. Образующиеся при этом одинарные цепи ДНК связываются специальными дестабилизирующими белками, которые растягивают остовы цепей, делая их азотистые основания доступными для связывания с комплементарными нуклеотидами, находящимися в нуклеоплазме. На каждой из цепей, образующихся в области репликационной вилки, при участии фермента ДНК-полимеразы осуществляется синтез комплементарных цепей.

В процессе синтеза репликационные вилки движутся вдоль материнской спирали в противоположных направлениях, захватывая все новые зоны.

Разделение спирально закрученных цепей родительской ДНК ферментом хеликазой вызывает появление супервитков перед репликационной вилкой. Это объясняется тем, что при расхождении каждых 10 пар нуклеотидов, образующих один виток спирали, родительская ДНК должна совершить один полный оборот вокруг своей оси. Следовательно, для продвижения репликационной вилки вся молекула ДНК перед ней должна была бы быстро вращаться, что потребовало бы большой затраты энергии. В действительности это не наблюдается благодаря особому классу белков, называемых ДНК-топоизомеразами . Топоизомераза разрывает одну из цепей ДНК, что дает ей возможность вращаться вокруг второй цепи. Это ослабляет накопившееся напряжение в двойной спирали ДНК.

К высвобождающимся водородным связям нуклеотидных последовательностей разделенных родительских цепей присоединяются свободные нуклеотиды из нуклеоплазмы, где они присутствуют в виде дезоксирибонуклеозидгрифосфатов: дАТФ, дГТФ, дЦТФ, дТТФ. Комплементарный нуклеозидтрифосфат образует водородные связи с определенным основанием материнской цепи ДНК. Затем при участии фермента ДНК-полимеразы он связывается фосфодиэфирной связью с предшествующим нуклеотидом вновь синтезируемой цепи, отдавая при этом неорганический пирофосфат.

Поскольку ДНК-полимераза присоединяет очередной нуклеотид к ОН-группе в 3"-положении предшествующего нуклеотида, цепь постепенно удлиняется на ее 3"-конце.

Особенностью ДНК-полимеразы является ее неспособность начать синтез новой полинуклеотидной цепи путем простого связывания двух нуклеозидтрифосфатов: необходим 3"-ОН-конец какой-либо полинуклеотидной цепи, спаренной с матричной цепью ДНК, к которой ДНК-полимераза может лишь добавлять новые нуклеотиды. Такую полинуклеотидную цепь называют затравкой или праймером.

Роль затравки для синтеза полинуклеотидных цепей ДНК в ходе репликации выполняют короткие последовательности РНК, образуемые при участии фермента РНК-праймазы . Указанная особенность ДНК-полимеразы означает, что матрицей при репликации может служить лишь цепь ДНК, несущая спаренную с ней затравку, которая имеет свободный 3"-ОН-конец.

Способность ДНК-полимеразы осуществлять сборку полинуклеотида в направлении от 5"- к 3" -концу при антипараллельном соединении двух цепей ДНК означает, что процесс репликации должен протекать на них по-разному. Действительно, если на одной из матриц (3" → 5") сборка новой цепи происходит непрерывно от 5"- к 3"-концу и она постепенно удлиняется на 3"-конце, то другая цепь, синтезируемая на матрице (5" → 3"), должна была бы расти от 3"- к 5"-концу. Это противоречит направлению действия фермента ДНК-полимеразы.

В настоящее время установлено, что синтез второй цепи ДНК осуществляется короткими фрагментами (фрагменты Оказаки ) также в направлении от 5"- к 3"-концу (по типу шитья «назад иголкой»). У прокариот фрагменты Оказаки содержат от 1000 до 2000 нуклеотидов, у эукариот они значительно короче (от 100 до 200 нуклеотидов). Синтезу каждого такого фрагмента предшествует образование РНК-затравки длиной около 10 нуклеотидов. Вновь образованный фрагмент с помощью фермента ДНК-лигазы соединяется с предшествующим фрагментом после удаления его РНК-затравки.

В связи с указанными особенностями репликационная вилка является асимметричной. Из двух синтезируемых дочерних цепей одна строится непрерывно, ее синтез идет быстрее и эту цепь называют лидирующей . Синтез другой цепи идет медленнее, так как она собирается из отдельных фрагментов,требующих образования, а затем удаления РНК-затравки. Поэтому такую цепь называют запаздывающей (отстающей). Хотя отдельные фрагменты образуются в направлении 5" → 3", в целом эта цепь растет в направлении 3" → 5".

В виду того, что от локуса oriкак правило начинаются две репликационные вилки, идущие в противоположных направлениях, синтез лидирующих цепей в них идет на разных цепях материнской ДНК.

Конечным результатом процесса репликации является образование двух молекул ДНК, нуклеотидная последовательность которых идентична таковой в материнской двойной спирали ДНК.

Рассмотренная последовательность событий, происходящих в ходе репликативного синтеза, предполагает участие целой системы ферментов: хеликазы, топоизомеразы, дестабилизирующих белков, ДНК-полимеразы и других, совместно действующих в области репликационной вилки.



Репликация ДНК у про- и эукариот в основных чертах протекает сходно, однако, скорость синтеза у эукариот (около 100 нуклеотидов/с) на порядок ниже, чем у прокариот (1000 нуклеотидов/с). Причиной этого может быть образование ДНК эукариот достаточно прочных соединений с белками, что затрудняет ее деспирализацию, необходимую для осуществления репликативного синтеза.

Фрагмент ДНК от точки начала репликации до точки ее окончания образует единицу репликации - репликон . Однажды начавшись в точке начала, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован. Эукариотические хромосомы содержат большое число репликонов. В связи с этим удвоение молекулы ДНК, расположенной вдоль эукариотической хромосомы, начинается в нескольких точках. В разных репликонах удвоение может идти в разное время или одновременно.

Принципы решения типовых задач по молекулярной биологии

Задача 1

Одна из цепочек молекулы ДНК имеет следующий порядок нуклеотидов: АЦГ ТАГ ЦТА ГЦГ… Напишите порядок нуклеотидов в комплементарной цепочке ДНК.

Пояснение к решению задачи. Известно что две цепочки в молекуле ДНК соединяются водородными связями между комплементарными нуклеотидами (А-Т, Г-Ц). Порядок нуклеотидов в известной цепочке ДНК:

А Ц Г Т А Г Ц Т А Г Ц Г

Т Г Ц А Т Ц Г А Т Ц Г Ц – порядок нуклеотидов в комплементарной цепочке ДНК.

Ответ: порядок нуклеотидов в комплементарной цепочке ДНК: ТГЦАТЦГАТЦГЦ

Задача 2

Порядок нуклеотидов в одной из цепочек молекулы ДНК следующий: АГЦТАЦГТАЦГА… Определите порядок аминокислот в полипептиде, закодированном этой генетической информацией.

Пояснение к решению задачи . Известно, что матрицей для синтеза полипептида является молекула и-РНК, матрицей для синтеза которой в свою очередь является одна из цепочек молекулы ДНК. Первый этап биосинтеза белка: транскрипция – переписывание порядка нуклеотидов с цепочки ДНК на и-РНК. Синтез и-РНК идет по принципу комплементарности (А-У, Г-Ц). Вместо тимина в и-РНК азатистое основание урацил. Известная цепочка ДНК:

А Г Ц Т А Ц Г Т А Ц Г А…

У Ц Г А У Г Ц А У Г Ц У…-порядок нуклеотидов в и-РНК.

Одну аминокислоту кодируют три рядом расположенные нуклеотида цепочки и-РНК (кодоны) – разбиваем и-РНК на кодоны:

УЦГ, АУГ, ЦАУ, ГЦУ и по тадлице кодонов находим соответствующие им аминокислоты: УЦГ – соответствует серину, АУГ – метионину, ЦАУ – гисцидину, ГЦУ – аланину.

Ответ: порядок аминокислот в закодированном полипептиде: сер – мет – гис – ала…

Задача 3

Одна из цепочек молекулы ДНК имеет следующий порядок нуклеотидов: ГГЦАТГГАТЦАТ…

а) Определите последовательность аминокислот в соответствуюшем полипептиде, если известно, что и РНК синтезируется на комплементарной цепи ДНК.

б) Как изменится первичная структура полипептида, если выпадет третий нуклеотид?

Пояснение к решению задачи .

а) Известно, что молекула и- РНК синтезируется по принципу комплементарности на одной из цепей молекулы ДНК. Нам известен порядок нуклеотидов в одной цепи ДНК и сказано, что и-РНК синтезируется на комплементарной цепи. Следовательно, надо построить комплементарную цепь ДНК, помня при этом, что аденин соответствует тимину, а гуанин цитозину. Двойная цепочка ДНК будет выглядеть следующим образом:

Г Г Ц А Т Г Г А Т Ц А Т…

Ц Ц Г Т А Ц Ц Т А Г Т А …

Теперь можно построить молекулу и – РНК. Следует помнить, что вместо тимина в молекулу РНК входит урацил. Следовательно:

ДНК: Ц Ц Г Т А Ц Ц Т А Г А Т…

И-РНК: Г Г Ц А У Г Г А У Ц А У….

Три рядом расположенных нуклеотида (триплет, кодон) и-РНК определяют присоединение одной аминокислоты. Соответствующие триплетам аминокислоты находим по таблице кодонов. Кодон ГГЦ соответствует гли, А УГ – мет, ГАУ – асп, ЦАУ – гис. Следовательно, последовательность аминокислот участка полипептидной цепи будет: гли – мет – асп – гис…

б) Если в цепочке молекулы ДНК выпадет третий нуклеотид, то она будет выглядеть следующим образом:

ГГАТГГАТЦАТ…

Комплементарная цепочка: ЦЦТАЦЦТАГТА...

Информационная и-РНК: ГГАУГГАУЦАУ...

Произойдут изменения всех кодонов. Первый кодон ГГА соответствует аминокислоте гли, второй УУГ – три, третий АУЦ – иле, четвертый не полный. Таким образом, участок полипептида будет выглядеть:

Гли – три – иле…, т. е. произойдет значительное изменение порядка и количества аминокислот в полипептиде.

Ответ: а) последовательность аминокислот в полипептиде: гли – мет – асп – гис…,

б) после выпадения третьего нуклеотида последовательность аминокислот в полипептиде: гли – три – иле…

Задача 4

Полипептид имеет следующий порядок аминокислот: фен – тре – ала – сер – арг…

а) Определите один из вариантов последовательности нуклеотидов гена, кодирующего данный полипептид.

б) Какие т-РНК (с какими антикодонами) участвуют в синтезе этого белка? Напишите один из возможных вариантов.

Пояснение к решению задачи .

а) Полипептид имеет следующую последовательность аминокислот: фен – тре – ала – сер – арг… По таблице кодонов находим один из триплетов, кодирующий соответствующие аминокислоты. Фен – УУУ, тре – АЦУ, ала – ГЦУ, сер – АГУ, арг – АГА. Следовательно, кодирующая данный полипептид и-РНК будет иметь следующую последовательность нуклеотидов:

УУУАЦУГЦУАГУАГА…

Порядок нуклеотидов в кодирующей цепочке ДНК: АААТГАЦГАТЦАТЦТ…

Комплементарная цепочка ДНК: ТТТАЦТГЦТАГТАГА…

б) По таблице кодонов находим один из вариантов последовательности нуклеотидов и-РНК (как в предыдущем варианте). Антикодоны т-РНК комплементарны кодонам и-РНК:

и-РНК УУУАЦУГЦУАГУАГА…

антикодоны т-РНК ААА, УГА, ЦГА, УЦА, УЦУ

Ответ: а) один из вариантов последовательности нуклеотидов в гене будет:

АААТГАЦГАТЦАТЦТ

ТТТАЦТГЦТАГТАГА,

б) в синтезе этого белка будут участвовать т-РНК с антикодонами (один из вариантов): ААА, УГА, ЦГА, УЦА, УЦУ.

Задачи для самоконтроля

1.Одна из цепочек фрагмента молекулы ДНК имеет такую последовательность нуклеотидов: АГТГАТГТТГГТГТА… Какова будет структура второй цепочки молекулы ДНК?

2.Участок одной цепи ДНК имеет следующую последовательность нуклеотидов: ТГААЦАЦТАГТТАГААТАЦЦА… Какова последовательность аминокислот в полипептиде, соответствующем этой генетической информации?

3.Участок одной нити ДНК имеет такую структуру: ТАТТЦТТТТТГТ… Укажите структуру соответствующей части молекулы белка, синтезированного при участии комплементарной цепи. Как изменится первичная структура фрагмента белка, если выпадет второй от начала нуклеотид?

4.Часть молекулы белка имеет такую последовательность аминокислот: сер – ала – тир – лей – асп… Какие т-РНК (с какими антикодонами) участвуют в синтезе этого белка? Напишите один из возможных вариантов.

5.Напишите один из вариантов последовательности нуклеотидов в гене, если кодируемый белок имеет следующую первичную структуру:

Ала – тре – лиз – асн – сер – глн – глу – асп…

Уотсон и Крик показали, что образование водородных связей и регулярной двойной спирали возможно только тогда, когда более крупное пуриновое основание аденин (А) в одной цепи имеет своим партнером в другой цепи меньшее по размерам пиримидиновое основание тимин (Т), а гуанин (Г) связан с цитозином (Ц). Эту закономерность можно представить следующим образом: Соответствие А « Т и Г « Ц называют правилом комплементарности , а сами цепи - комплементарными . Согласно этому правилу, содержание аденина в ДНК всегда равно содержанию тимина, а количество гуанина – количеству цитозина. Следует отметить, что две цепи ДНК, различаясь химически, несут одинаковую информацию, поскольку вследствие комплементарности одна цепь однозначно задает другую.

Структура РНК менее упорядочена. Обычно это одноцепочечная молекула, хотя РНК некоторых вирусов состоит из двух цепей. Но даже такая РНК более гибка, чем ДНК. Некоторые участки в молекуле РНК взаимно комплементарны и при изгибании цепи спариваются, образуя двухцепочечные структуры (шпильки). В первую очередь это относится к транспортным РНК (тРНК). Некоторые основания в тРНК подвергаются модификации уже после синтеза молекулы. Например, иногда происходит присоединение к ним метильных групп.

ФУНКЦИЯ НУКЛЕИНОВЫХ КИСЛОТ Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т.е. синтез точно такой же же молекулы ДНК (репликация). Репликация и транскрипция . С химической точки зрения синтез нуклеиновой кислоты – это полимеризация, т.е. последовательное присоединение строительных блоков. Такими блоками служат нуклеозидтрифосфаты; реакцию можно представить следующим образом:
Энергия, необходимая для синтеза, высвобождается при отщеплении пирофосфата, а катализируют реакцию особые ферменты – ДНК-полимеразы.

В результате такого синтетического процесса мы получили бы полимер со случайной последовательностью оснований. Однако большинство полимераз работает только в присутствии уже существующей нуклеиновой кислоты –матрицы, диктующей, какой именно нуклеотид присоединится к концу цепи. Этот нуклеотид должен быть комплементарен соответствующему нуклеотиду матрицы, так что новая цепь оказывается комплементарной исходной. Используя затем комплементарную цепь в качестве матрицы, мы получим точную копию оригинала.

ДНК состоит из двух взаимно комплементарных цепей. В ходе репликации они расходятся, и каждая из них служит матрицей для синтеза новой цепи:

Так образуются две новые двойные спирали с той же последовательностью оснований, что и у исходной ДНК. Иногда в процессе репликации происходит «сбой», и возникают мутации (см. также НАСЛЕДСТВЕННОСТЬ) . В результате транскрипции ДНК образуются клеточные РНК (мРНК, рРНК и тРНК): Они комплементарны одной из цепей ДНК и являются копией другой цепи, за исключением того, что место тимина у них занимает урацил. Таким способом можно получить множество РНК-копий одной из цепей ДНК. В нормальной клетке передача информации осуществляется только в направлении ДНК ® ДНК и ДНК ® РНК. Однако в клетках, инфицированных вирусом, возможны и другие процессы: РНК ® РНК и РНК ® ДНК. Генетический материал многих вирусов представлен молекулой РНК, обычно одноцепочечной. Проникнув в клетку-хозяина, эта РНК реплицируется с образованием комплементарной молекулы, на которой, в свою очередь, синтезируется множество копий исходной вирусной РНК: Вирусная РНК может транскрибироваться ферментом - обратной транскриптазой - в ДНК, которая иногда включается в хромосомную ДНК клетки-хозяина. Теперь эта ДНК несет вирусные гены, и после транскрипции в клетке может появиться вирусная РНК. Таким образом, спустя длительное время, в течение которого никакого вируса в клетке не обнаруживается, он снова в ней появится без повторного заражения. Вирусы, генетический материал которых включается в хромосому клетки-хозяина, часто являются причиной рака.

Принципы решения типовых задач по молекулярной биологии

Пояснение к решению задачи. Известно что две цепочки в молекуле ДНК соединяются водородными связями между комплементарными нуклеотидами (А-Т, Г-Ц). Порядок нуклеотидов в известной цепочке ДНК:

А Ц Г Т А Г Ц Т А Г Ц Г

Т Г Ц А Т Ц Г А Т Ц Г Ц – порядок нуклеотидов в комплементарной цепочке ДНК.

Ответ: порядок нуклеотидов в комплементарной цепочке ДНК: ТГЦАТЦГАТЦГЦ

Задача 2

Пояснение к решению задачи .

а) Полипептид имеет следующую последовательность аминокислот: фен – тре – ала – сер – арг… По таблице кодонов находим один из триплетов, кодирующий соответствующие аминокислоты. Фен – УУУ, тре – АЦУ, ала – ГЦУ, сер – АГУ, арг – АГА. Следовательно, кодирующая данный полипептид и-РНК будет иметь следующую последовательность нуклеотидов:

УУУАЦУГЦУАГУАГА…

Порядок нуклеотидов в кодирующей цепочке ДНК : АААТГАЦГАТЦАТЦТ…

Комплементарная цепочка ДНК: ТТТАЦТГЦТАГТАГА…

б) По таблице кодонов находим один из вариантов последовательности нуклеотидов и-РНК (как в предыдущем варианте). Антикодоны т-РНК комплементарны кодонам и-РНК:

и-РНК УУУАЦУГЦУАГУАГА…

антикодоны т-РНК ААА, УГА, ЦГА, УЦА, УЦУ

Ответ: а) один из вариантов последовательности нуклеотидов в гене будет :

АААТГАЦГАТЦАТЦТ

ТТТАЦТГЦТАГТАГА,

б) в синтезе этого белка будут участвовать т-РНК с антикодонами (один из вариантов): ААА, УГА, ЦГА, УЦА, УЦУ.


Задачи для самоконтроля
1.Одна из цепочек фрагмента молекулы ДНК имеет такую последовательность нуклеотидов: АГТГАТГТТГГТГТА… Какова будет структура второй цепочки молекулы ДНК?

2.Участок одной цепи ДНК имеет следующую последовательность нуклеотидов: ТГААЦАЦТАГТТАГААТАЦЦА… Какова последовательность аминокислот в полипептиде, соответствующем этой генетической информации?

3.Участок одной нити ДНК имеет такую структуру: ТАТТЦТТТТТГТ… Укажите структуру соответствующей части молекулы белка, синтезированного при участии комплементарной цепи. Как изменится первичная структура фрагмента белка, если выпадет второй от начала нуклеотид?

4.Часть молекулы белка имеет такую последовательность аминокислот: сер – ала – тир – лей – асп… Какие т-РНК (с какими антикодонами) участвуют в синтезе этого белка? Напишите один из возможных вариантов.

5.Напишите один из вариантов последовательности нуклеотидов в гене, если кодируемый белок имеет следующую первичную структуру:

Ала – тре – лиз – асн – сер – глн – глу – асп…