Натуральные числа. Делимость натуральных чисел

Делимость чисел. Простые и составные числа.

Делимость натуральных чисел.....................................................................................................................

Основная теорема арифметики...................................................................................................................

Признаки делимости....................................................................................................................................

Утверждения, связанные с делимостью чисел...........................................................................................

Устные задачи...............................................................................................................................................

«Полуустные» задачи..................................................................................................................................

Когда до полного числа десятков….............................................................................................................

Задачи на делимость сумм:..........................................................................................................................

Нестандартные задачи...............................................................................................................................

Некоторые задачи из учебников................................................................................................................

Сравнения....................................................................................................................................................

Малая теорема Ферма................................................................................................................................

Решение уравнений в целых числах..........................................................................................................

Список литературы:.....................................................................................................................................

Генрих Г.Н.

ФМШ №146 г. Пермь

Одной из целей математического образования, нашедшей отражение в федеральном компоненте государственного стандарта по математике, является интеллектуальное развитие учащихся.

Тема «Делимость чисел. Простые и составные числа» – одна из таких тем, которые, начиная с 5 класса, позволяют в большей степени развивать математические способности детей. Работая в школе с углубленным изучением математики, физики и информатики, где обучение ведется с 7 класса, кафедра математики нашей школы заинтересована в том, чтобы ученики уже в 5-7 классах более подробно знакомились с данной темой. Мы стараемся это реализовать на занятиях в школе юных математиков (ШЮМ), а также в региональном летнем математическом лагере, где вместе с учителями нашей школы преподаю и я. Я постаралась подобрать такие задачи, которые интересны учащимся с 5 по 11 класс. Ведь ученики нашей школы изучают данную тему по программе. А выпускники школы последние 2 года встречаются с задачами по этой теме на ЕГЭ (в задачах типа С6). Теоретический материал в различных случаях рассматриваю в разном объеме.

Делимость натуральных чисел.

Некоторые определения:

Говорят, что натуральное число a делится на натуральное число b, если существует такое натуральное число c, что a=bc. При этом пишут: a b . В этом

случае b называют делителем числа a, а a- кратным числа b. Натуральное число называется простым , если у него нет делителей,

отличных от него самого и от единицы (например: 2, 3, 5, 7 и т. д.). Число называетсясоставным , если оно не является простым. Единица не является ни простым, ни составным.

Число n делится на простое число p в том и только в том случае, если p встречается среди простых множителей, на которые разлагается n.

Наибольшим общим делителем чисел a и b называется наибольшее число, одновременно являющееся делителем a и делителем b, обозначается НОД (a;b) или D (a;b).

Наименьшим общим кратным называют наименьшее число, делящееся и на a, и на b, обозначается НОК (a;b) или K (a;b).

Числа a и b называют взаимно простыми , если их наибольший общий делитель равен единице.

Генрих Г.Н.

ФМШ №146 г. Пермь

Основная теорема арифметики

Всякое натуральное число n единственным образом (с точностью до порядка множителей) раскладывается в произведение степеней простых сомножителей:

n = p1 k 1 p2 k 2 pm k m

здесь p1, p2 ,…pm - различные простыеделители числа n, а k1 , k2 , …km - степени вхождения (степени кратности) этих делителей.

Признаки делимости

Число делится на 2 тогда и только тогда, когда последняя цифра делится на 2 (то есть четная).

Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Число делится на 4 тогда и только тогда, когда двузначное число, составленное из двух последних цифр, делится на 4.

Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Чтобы узнать, делится ли число на 7 (на 13), надо разбить его десятичную запись справа налево на группы по 3 цифры в каждой (самая левая группа может содержать 1 или 2 цифры), после чего взять группы с нечетными номерами со знаком «минус», а с четными номерами - со знаком «плюс». Если полученное выражение делится на 7 (на 13), то и заданное число делится на 7 (на 13).

Число делится на 8 тогда и только тогда, когда трехзначное число, составленное из трех последних цифр, делится на 8.

Число делится на 9 тогда и только тогда, когда сумма цифр делится на 9.

Число делится на 10 тогда и только тогда, когда последняя цифра - ноль.

Число делится на 11 тогда и только тогда, когда сумма его цифр, стоящих на четных местах в десятичной записи, и сумма его цифр, стоящих на нечетных местах в десятичной записи, дают одинаковые остатки при делении на 11.

Утверждения, связанные с делимостью чисел.

∙ Еслиa b иb c , тоa c .

∙ Если a m , то и ab m.

∙ Если a m и b m, то a+b m

Если a+.b m и a m, то и b m

Если a m и a k, причем m и kвзаимно просты, то a mk

Если ab m и a взаимно просто с m, то b m

Генрих Г.Н.

ФМШ №146 г. Пермь

На занятиях по данной теме в зависимости от возраста учеников, места и времени проведения занятий, я рассматриваю различные задачи. Подбираю эти задачи, в основном, из источников, которые указаны в конце работы, в том числе и из материалов Пермского регионального турнира юных математиков прошлых лет и материалов II и III этапов Российской олимпиады школьников по математике прошлых лет.

Следующие задачи использую для проведения занятий в 5, 6, 7 классах в ШЮМ1 е при прохождении темы «Делимость чисел. Простые и составные числа. Признаки делимости».

Устные задачи.

1. К числу 15 слева и справа припишите по 1 цифре так, чтобы число делилось на 15.

Ответ: 1155, 3150, 4155, 6150, 7155, 9150.

2. К числу 10 слева и справа припишите по 1 цифре так, чтобы число делилось на 72.

Ответ: 4104.

3. Некоторое число делится на 6 и на 4. Обязательно ли оно делится на 24?

Ответ: нет, например, 12.

4. Найдите наибольшее натуральное число, кратное 36, в записи которого участвуют все цифры по 1 разу.

Ответ: 9876543120.

5. Дано число 645*7235. Замените * цифрой так, чтобы полученное число стало кратно 3. Ответ: 1, 4, 7.

6. Дано число 72*3*. Замените * цифрами так, чтобы полученное число стало кратно 45. Ответ: 72630, 72135.

«Полуустные» задачи.

1. Сколько воскресений может быть в году?

2. В некотором месяце три воскресенья пришлись на четные числа. Какой день недели был 7 числа этого месяца?

3. Начнем считать пальцы рук следующим образом: первым пусть будет большой палец, вторым – указательный, третьим – средний, четвертым – безымянный, пятым – мизинец, шестым – снова безымянный, седьмым – средний, восьмым – указательный, девятым – большой, десятым – указательный палец и т.д. Какой палец будет 2000-м?

1 ШЮМ – Школа Юных Математиков – субботняя школа при ФМШ №146

Генрих Г.Н.

ФМШ №146 г. Пермь

При каких n число1111...111 делится на 7?

При каких n число1111...111 делится на 999 999 999?

6. Дробь b a – сократима. Будет ли сократима дробьa a + − b b ?

7. В стране Анчурии в обращении имеются купюры достоинством 1 анчур, 10 анчуров, 100 анчуров, 1000 анчуров. Можно ли отсчитать 1 000 000 анчуров с помощью 500 000 купюр?

8. Найдите двузначное число, первая цифра которого равна разности между этим числом и числом, записанным теми же цифрами, но в обратном порядке.

1. В году может быть 365 или 366 дней, каждый седьмой день – воскресенье, значит, 365=52× 7+1 или 366=52× 7+2, их может быть 52, или 53, если воскресенье пришлось на 1 число.

2. Эти 3 воскресенья пришлись на 2, 16 и 30 числа. Значит, 7 число этого месяца будет пятницей.

3. Количество пальцев при счете будут повторяться с периодом 8, значит, достаточно посчитать остаток от деления 2000 на 8. Он равен 0. Т.к. восьмым идет указательный палец, то и 2000-ым будет указательный палец.

нацело на 7, а 111111=7× 15873. Отсюда следует, что если в записи данного числа больше 6 единиц, то после каждой 6 единицы очередной остаток равен 0. Т.о.,

число вида 1111...111 делится на 7 тогда и только тогда, когда количество его

цифр делится на 6 , т.е. n=7× t, где tÎ Z.

одновременно. В данном числе количество единиц кратно 9. Однако первое и второе такие числа 111 111 111 и 111 111 111 111 111 111 не делятся на 999 999 999. А число, в котором 18 единиц, делится на 999 999 999. При этом, начиная с 18-го, каждое 18-ое число делится на 999 999 999, т.е. n=18× t, где tÎ N.

6. Дробь

a – сократима, т.е. a=bn, где nÎ Z. Тогда перепишем дробь

a − b

a + b

bn − b

b (n − 1)

n − 1

Очевидно, что дробь a a + − b b

сократима.

bn + b

b (n + 1)

n + 1

7. Пусть было a купюр достоинством в 1 анчур, b – достоинством в 10 анчуров, c достоинством в 100 анчуров и d достоинством в 1000 анчуров. Получим

- Одна из важнейших тем Алгебры. Изучается она, в основном, в 5-6 классах школы и в дальнейшем к ее изучению практически не возвращаются. В то же время на эту тему существует Значительное количество самых разнообразных задач, Которые часто встречаются на олимпиадах, при поступлении в физико-математические школы и институты. Школьники (и даже старших классов), как правило, большинство задач этой темы, к сожалению, решить не могут. Поэтому остановимся на этом разделе Достаточно подробно И рассмотрим те задачи, которые по силам учащимся 8-х классов.

Цели: Напомнить основные сведения о множестве натуральных чисел и рассмотреть типичные задачи по теме.

Ход урока

I. Сообщение темы и цели урока

II. Изучение нового материала (основные понятия)

Числа, которые используются Для счета предметов, Называются Натуральными: 1, 2, 3, 4, ... Множество натуральных чисел обозначают буквой N. Для того чтобы записать, что какое-либо число принадлежит рассматриваемому множеству, используют знак Е . Например, утверждение, что число 5 является натуральным (или что число 5 принадлежит множеству натуральных чисел УУ), можно записать так: 5 е N. Число 2,3 не является натуральным. Это можно записать с помощью знака ё, т. е. 2,3 ? N.

Все натуральные числа (исключая число 1) разделяются на Простые Числа и Составные Числа.

Число называется Составным, Если оно имеет хотя бы один Делитель, Который Не равен самому числу или единице. Например, число 18 имеет такие делители: 2, 3, 6, 9. Поэтому число 18 является составным. (Разумеется, кроме перечисленных делителей у числа 18 есть еще два делителя: 1 и 18).

Число называется Простым, Если оно Не имеет других делителей кроме Самого себя и единицы (например, 2, 3, 5, 7, 11, 13, 17, 19, 23,...).

Число 1 не является ни простым, ни составным.

Напомним Основные признаки делимости Натуральных чисел.

1. Число делится (без остатка или нацело) На число 2, Если Его последняя Цифра четная или 0. (Напомним, что число 0 не является ни четным, ни нечетным). Например, число 35 634 делится на 2, а число 35 635 - не делится.

2. Ч исл о делится На Число 3, если Сумма его цифр делится На 3. Например, число 33 606 делится на 3, т. к. сумма цифр этого числа 3 + 3 + 6 + 0 + 6= 18

Делится на 3. Число 32 606 имеет сумму цифр 3 + 2 + 6 + 0 + 6= 17, которая на 3 не делится. Поэтому число 32 606 также на 3 не делится.

3. Число делится На число 4, Если Две его последние цифры образуют число, Которое делится на 4, или являются нулями. Например, число 35 Щ делится

на 4, т. к. число, образованное двумя последними цифрами (число 12),

делится на 4.

Обратите внимание на этот признак делимости. Оченьчасто школьники ошибочно «сокращают» этот признак делимости до такого: число делится на число 4, если две его последние цифры делятся на 4. Разумеется, данный «признак делимости» является грубой ошибкой. В рассмотренном примере число 35112 делилось на 4, хотя ни одна из его двух последних цифр (1 и 2) на 4 не делится.

Число 35 Щ на число 4 не делится, т. к. число 18 (образованное двумя последними цифрами) на 4 не делится.

4. Число делится На число 5, если Его последняя цифра 0 или 5. Например, числа 35 110 и 35 115 делятся на 5, а число 37 513 на 5 не делится.

5. Число делится На число 8, Если Три его последние цифры образуют число, Которое делится на 8, или являются нулями. Например, число 37 408 делится на 8, т. к. число 408 делится на 8. Число 37 4J4 не делится на 8, т. к. число 414 не делится на 8.

6. Число делится На число 9, Если Сумма его цифр Делится На 9. Например, число 71 505 делится на 9, т. к. сумма цифр этого числа 7+ 1 +5 + 0 + 5= 18 делится на 9. Число 70 505 имеет сумму цифр 7 + 0 + 5 + 0 + 5= 17, которая на 9 не делится. Следовательно, и само число не делится на 9.

7. Число делится На число 10, Если его Последняя цифра нуль. Например, число 37 510 делится на 10, а число 37 515 не делится на 10.

Признаки делимости позволяют решать и более сложные задачи.

Пример 1

Определите: на какие из чисел 2, 3, 4, 5, 6, 8, 9, 10, 15, 18, 20 делится без остатка число 357 120.

А) Число делится на 2, т. к. его последняя цифра нуль.

Б) Число делится на 3, т. к. сумма цифр данного числа равна 3 + 5 + 7 +

1 +2 + 0- 18 и делится на 3.

В) Число делится на 4, т. к. две его последние цифры образуют число 20,

которое делится на 4.

Г) Число делится на 5, т. к. его последняя цифра нуль.

Д) Число делится на 6, т. к. 6 = 2 3 и из пунктов а, б следует, что число

делится на 2 и 3 одновременно.

Е) Число делится на 8, т. к. три его последние цифры образуют число

120, которое делится на 8.

Ж) Число делится на 9, т. к. сумма его цифр 18 (пункт б) делится на 9.

З) Число делится на 10, т. к. его последняя цифра нуль.

И) Число делится на 15, т. к. оно одновременно делится на 3 и 5 (пункты б, г).

К) Число делится на 18, т. к. из пунктов а, ж следует, что оно делится на 2 и 9.

Л) Число делится на 20, т. к. оно одновременно делится на 4 и 5 (пункты в, г).

Заметим, что при рассмотрении делимости числа 357 120 на 6, 15,18,20 мы каждое из этих чисел раскладывали на произведение взаимно простых чисел. Напомним, что Взаимно простыми Числами называются числа, которые Не имеют общих делителей. Причем числа могут и не являться простыми. Например, числа 8 и 15 взаимно простые, т. к. не имеют общих множителей. Однако каждое из этих чисел 8 и 15 - составное.

Например, в пункте к число 18 было представлено в виде произведения двух взаимно простых чисел 2 и 9. Затем использовались признаки делимости на эти числа. Если раскладывать число-делитель на произведение не взаимно простых чисел, то решение усложняется, и могут быть допущены Ошибки. Например, число 30 не делится на 20 без остатка. Но если представить число 20 в виде 2 10, то 30 делится и на 2 и на 10. Однако числа 2 и 10 - не взаимно простые.

Пример 2

Определите, является ли число 98 706 540 321 простым или составным?

Используя признаки делимости, сразу определяем, что данное число на 2,4, 5, 8, 10 не делится. Теперь разберемся, делится ли это число на 3 и на 9. Найдем сумму цифр этого числа: 9 + 8 + 7 + 0 + 6 + 5+4 + 0 + 3 + 2+1= 45. Так как число 45 делится на 3 и на 9, то данное число также делится на 3 и на 9. Так как данное число имеет делители (3 и 9), которые неравны ни единице, ни самому числу, то (по определению) оно является составным.

Нужно заметить, что далеко Не всегда Одно натуральное число Делится На другое Без остатка. Например, при делении числа 29 на 3 получаем в частном 9 и в остатке 2. Эту операцию можно записать в виде: 29 - 3-9 + 2 или Делимое (29) = Делитель (3) Частное (9) + Остаток (2). При Этом Остаток Должен быть Натуральным числом Или Нулем И Меньше, чем делитель.

Пример 3

А) Число 29 можно также записать и в виде: 29 = 3 - 8 + 5. Но в этом

частное 8 и остаток 5, т. к. остаток не может быть больше или равным

делителю.

Б) Число 29 можно записать и в другом виде: 29 = 3 10 + (-1). Но и

получается частное 10 и остаток (- 1), т. к. остаток должен быть натуральным

Таким образом, в общем случае деление с остатком записывается в виде: П = P" K + R. Здесь натуральное число П - Делимое, Натуральное число Р - Делитель, Натуральное число К - частное, Неотрицательное целое число Г - Остаток (0 < г < Р). Если Г = 0, то число П Нацело (без остатка) делится на число/? и л ~ р - к.

Такая форма записи деления числа с остатком позволяет решать различные задачи.

Пример 4

Число П Дает при делении на 13 остаток 5. Какой остаток при делении на 13 дает число вшестеро больше данного?

Если число П Дает при делении на 13 остаток 5, то его можно записать в виде: я = 13? + 5, где К - получающееся при этом частное. Тогда число вшестеро большее, т. е. 6л = 6-(13-&+5)=78-&+30. Выделим из числа 6/7 наибольшее натуральное число, которое без остатка делится на 13, т. е. представим число 6л в виде: 6я=(78А; + 26)+4=13-(6А: + 2)+4. Из этой записи видно, что число 6п При делении на 13 дает в частном число (вк + 2) и остаток 4.

Пример 5

Два числа при делении на 18 дают остаток 9. Доказать, что разность и сумма этих чисел без остатка делятся на 18.

Отношение делимости. Если при делении с остатком натурального числа а на натуральное число b остаток равен 0, то говорят что а делится на b. В этом случае а называют кратным числа b, b называют делителем числа а.

Обозначение а:b

Запись символами (а,bN) (а:b)(сN) (а=вс).

Простое число. Натуральное число называют простым, если оно делится только на себя и на единицу, т.е если у него только два делителя.

Составное число. Натуральное число называют составным, если у него более двух делителей.

  • 1 не является ни простым, ни составным числом, т.к имеет только один делитель - себя.
  • 2 - единственное четное простое число.

Свойства отношения делимости:

  • 1. если а делится на b, то а?b.
  • 2. рефлексивность, т.е. каждое натуральное число делится само на себя.
  • 3. антисимметричность, т.е. если два числа не равны, и первое из них делится на второе, то второе не делится на первое.
  • 4. транзитивность, т.е. если первое число делится на второе число, второе число делится на третье число, то первое число делится на третье число.

Отношение делимости на N - это отношение частичного нестрогого порядка. Порядок частичный, т.к. есть такие пары разных натуральных чисел, ни одно из которых не делится на другое.

Признак делимости суммы на число. Если каждое слагаемое суммы делится на число, то вся сумма делится на это число (для того чтобы сумма делилась на число, достаточно, чтобы каждое слагаемое делилось на это число). Этот признак не является необходимым, т.е. если каждое слагаемое не делится на число, то вся сумма может делиться на это число.

Признак делимости разности на число. Если уменьшаемое и вычитаемое делятся на число и уменьшаемое больше вычитаемого, то разность делится на это число (для того чтобы разность делилась на число, достаточно, чтобы уменьшаемое и вычитаемое делились на это число, при условии, что эта разность положительна). Этот признак не является необходимым, т.е. уменьшаемое и вычитаемое могут не делиться на число, а их разность может делиться на это число.

Признак неделимости суммы на число. Если все слагаемые суммы, кроме одного, делятся на число, то сумма не делится на это число.

Признак делимости произведения на число. Если хотя бы один множитель в произведении делится на число, то произведение делится на это число (для того чтобы произведение делилось на число, достаточно, чтобы один множитель в произведении делился на это число). Этот признак не является необходимым, т.е. если ни один множитель в произведении не делится на число, то произведение может делиться на это число.

Признак делимости произведения на произведение. Если число а делится на число b, число с делится на число d, то произведение чисел а и с делится на произведение чисел b и d. Этот признак не является необходимым.

Признак делимости натуральных чисел на 2. Чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на одну из цифр 0, 2, 4, 6 или 8.

Признак делимости натуральных чисел на 5. Чтобы натуральное число делилось на 5, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на 0 или на 5.

Признак делимости натуральных чисел на 4. Чтобы натуральное число делилось на 4, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на 00 или две последние цифры в десятичной записи этого числа образовывали двузначное число, кратное 4.

Признак делимости натуральных чисел на 3. Чтобы натуральное число делилось на 3, необходимо и достаточно, чтобы сумма всех цифр десятичной записи этого числа делилась на 3.

Признак делимости натуральных чисел на 9. Чтобы натуральное число делилось на 9, необходимо и достаточно, чтобы сумма всех цифр десятичной записи этого числа делилась на 9.

Общий делитель натуральных чисел а и в - это натуральное число, которое является делителем каждого из этих чисел.

Наибольший общий делитель натуральных чисел а и в- это наибольшее натуральное число из всех общих делителей этих чисел.

Обозначение НОД (а, в)

Свойства НОД (а, в):

  • 1. всегда существует и только один.
  • 2. не превосходит меньшего из а и в.
  • 3. делится на любой общий делитель а и в.

Общее кратное натуральных чисел а и в - это натуральное число, кратное каждому из этих чисел.

Наименьшее общее кратное натуральных чисел а и в - это наименьшее натуральное число из всех общих кратных этих чисел.

Обозначение НОК (а, в)

Свойства НОК (а, в):

  • 1. всегда существует и только одно.
  • 2. не меньше большего из а и в.
  • 3. любое общее кратное а и в делится на него.

Взаимно простые числа. Натуральные числа а и в называют взаимно простыми, если у них нет общих делителей, кроме 1, т.е. НОД (а, в)=1.

Признак делимости на составное число. Чтобы натуральное число а делилось на произведение взаимно простых чисел m и n, необходимо и достаточно, чтобы число а делилось на каждое из них.

  • 1. Чтобы число делилось на 12, необходимо и достаточно, чтобы оно делилось на 3 и на 4.
  • 2. Чтобы число делилось на 18, необходимо и достаточно, чтобы оно делилось на 2 и на 9.

Разложение числа на простые множители- это представление этого числа в виде произведения простых множителей.

Основная теорема арифметики. Любое составное число можно единственным образом представить в виде произведения простых множителей.

Алгоритм нахождения НОД:

Записать произведение общих для данных чисел простых множителей, причем каждый множитель записать с наименьшим показателем, с каким он входит во все разложения.

Найти значение полученного произведения. Это и будет НОД данных чисел.

Алгоритм нахождения НОК:

Разложить каждое число на простые множители.

Записать произведение всех простых множителей из разложений, причем каждый из них записать с наибольшим показателем, с каким он входит во все разложения.

Найти значение полученного произведения. Это и будет НОК данных чисел.

Множество положительных рациональных чисел

Дробь. Пусть даны отрезок а и единичный отрезок е , который состоит из n отрезков, равных e .

Если отрезок а состоит из m отрезков, равных e . то его длина может быть представлена в виде

Символ называют дробью ; m, n - натуральные числа; m - числитель дроби, n - знаменатель дроби. n показывает, на сколько равных частей разделена единица измерения; m показывает, сколько таких частей содержится в отрезке a.

Равные дроби. Дроби, выражающие длину одного и того же отрезка в одной единице измерения, называют равными.

Признак равенства дробей.

Основное свойство дроби. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

Сокращение дроби - это замена данной дроби другой, равной ей, но с меньшим числителем и знаменателем.

Несократимая дробь - это дробь, числитель и знаменатель которой взаимно простые числа, т.е. их НОД равен единице.

Приведение дробей к общему знаменателю - это замена данных дробей другими, равными им с равными знаменателями.

Положительное рациональное число - это бесконечное множество разных по написанию, но равных между собой дробей; каждая дробь этого множества есть форма записи этого положительного рационального числа.

Равные положительные рациональные числа - это числа, которые могут быть записаны равными дробями.

Сумма положительных рациональных чисел. Если положительное рациональное число a b представлено дробью, то их суммой с , представленное дробью.

Переместительное свойство сложения. От перемены мест слагаемых, значение суммы не меняется.

Сочетательное свойство сложения. Чтобы к сумме двух чисел прибавить третье, можно к первому числу прибавить сумму второго и третьего.

Существование суммы и её единственность. Каковы бы не были положительные рациональные числа a и b их сумма всегда существует и причем единственна.

Правильная дробь - дробь. числитель которой меньше знаменателя.

Неправильная дробь - дробь, числитель которой больше знаменателя или равен ему.

Неправильную дробь можно записать в виде натурального числа или в виде смешанной дроби.

Смешанная дробь - это сумма натурального числа и правильной дроби (принято записывать без знака сложения).

Отношение «меньше» на Q . Положительное рациональное число b меньше положительного рационального числа a, если существует положительное рациональное число c , которое в сумме с b дает a .

Свойства отношения «меньше».

  • 1. Антирефлексивность. Ни одно число не может быть меньше самого себя.
  • 2. Антисимметричность. Если первое число меньше второго, то второе не может быть меньше первого.
  • 3. Транзитивность. Если первое число меньше второго, а второе меньше третьего, то первое число меньше третьего.
  • 4. Связанность. Если два числа не равны, то либо первое меньше второго, либо второе меньше первого.

Отношение «меньше» на Q - это отношение строгого линейного порядка.

Разность положительных рациональных чисел. Разностью положительных рациональных чисел a и b называется положительное рациональное число c , которое в сумме с b дает a .

Существование разности. Разность чисел a и b существует тогда и только тогда, когда b меньше a .

Если разность существует, то она единственная.

Произведение положительных рациональных чисел. Если положительное рациональное число a представлено дробью, положительное рациональное число b представлено дробью, то их произведением называется положительное рациональное число с , представленное дробью.

Существование произведения и его единственность. Каковы бы не были положительные рациональные числа a и b их произведение всегда существует и причем единственно.

Переместительное свойство умножения. От перемены мест сомножителей значение произведения не меняется.

Сочетательное свойство умножения. Чтобы произведение двух чисел умножить на третье, можно первое число умножить на произведение второго и третьего.

Распределительное свойство умножения относительно сложения. Чтобы сумму чисел умножить на число, можно каждое слагаемое умножить на это число и полученные произведения сложить.

Частное положительных рациональных чисел. Частным положительных рациональных чисел a и b называется положительное рациональное число c, которое при умножении на b дает a .

Существование частного. Каковы бы не были положительные рациональные числа a и b , их частное всегда существует и причем единственное.

Множество Q и его свойства.

  • 1. Q линейно упорядоченно с помощью отношения «меньше».
  • 2. В Q нет наименьшего числа.
  • 3. В Q нет наибольшего числа.
  • 4. Q бесконечное множество.
  • 5. Q плотно в себе, т.е. меду любыми двумя разными положительными рациональными числами заключено бесконечное множество положительных рациональных чисел.

Запись положительных рациональных чисел в виде десятичных дробей.

Десятичная дробь - это дробь вида m/n , где m и n - натуральные числа.

Виды десятичных дробей. Конечные, бесконечные, периодические (чисто периодические и смешанно периодические), непериодические.

Конечная десятичная дробь - это дробь. в которой после запятой стоит конечное число цифр.

Бесконечная периодическая десятичная дробь - это дробь, которая получается бесконечным повторением одной и той же группой цифр, начиная с некоторого номера, а повторяющаяся группа цифр называется её периодом.

Чисто периодические и смешанно периодические дроби. Если период дроби начинается сразу после запятой, то эта дробь называется чисто периодической. Если между запятой и началом периода есть несколько цифр, то дробь называется смешано периодической.

Теорема. Любое положительное рациональное число может быть представлено либо в виде конечной десятичной дроби, либо бесконечной периодической десятичной дроби.

Перевод обыкновенной дроби в десятичную. Для перевода надо числитель делить на знаменатель в столбик. При делении получится либо конечная десятичная дробь, либо бесконечная периодическая.

Перевод конечной десятичной дроби в обыкновенную. Отбросить запятую, полученное число записать в числитель, а в знаменатель записать столько нулей после единицы, сколько цифр было после запятой.

Перевод чисто периодической дроби в обыкновенную. Период дроби записать в числитель, а в знаменатель записать столько девяток, сколько цифр в периоде.

Перевод смешанно периодической дроби в обыкновенную. В числитель записать разность между числом, стоящим между запятой и второй скобкой, и числом, стоящим между запятой и первой скобкой; в знаменатель записать столько девяток, сколько цифр в периоде, и столько нулей после них, сколько цифр между запятой и первой скобкой.

Теорема. Чтобы несократимую дробь можно было записать в виде конечной десятичной дроби, необходимо и достаточно, чтобы в разложение ее знаменателя на простые множители входили лишь числа 2 и 5.


Материалом этой статьи начинается теория делимости целых чисел . Здесь мы введем понятие делимости и укажем принятые термины и обозначения. Это нам позволит перечислить и обосновать основные свойства делимости.

Навигация по странице.

Понятие делимости

Понятие делимости – это одно из основных понятий арифметики и теории чисел. Мы будем говорить о делимости и в частных случаях - о делимости . Итак, дадим представление о делимости на множестве целых чисел.

Целое число a делится на целое число b , которое отлично от нуля, если существует такое целое число (обозначим его q ), что справедливо равенство a=b·q . В этом случае также говорят, что b делит a . При этом целое число b называется делителем числа a , целое число a называется кратным числа b (для получения более детальной информации о делителях и кратных обращайтесь к статье делители и кратные), а целое число q называют частным .

Если целое число a делится на целое число b в указанном выше смысле, то можно сказать, что a делится на b нацело . Слово «нацело» в этом случае дополнительно подчеркивает, что частное от деления целого числа a на целое число b является целым числом.

В некоторых случаях для данных целых чисел a и b не существует такого целого числа q , при котором справедливо равенство a=b·q . В таких случаях говорят, что целое число a не делится на целое число b (при этом имеется в виду, что a не делится на b нацело). Однако в этих случаях прибегают к .

Разберемся с понятием делимости на примерах.

    Любое целое число a делится на число a , на число −a , a , на единицу и на число −1 .

    Докажем это свойство делимости.

    Для любого целого числа a справедливы равенства a=a·1 и a=1·a , из которых следует, что a делится на a , причем частное равно единице, и что a делится на 1 , причем частное равно a . Для любого целого числа a также справедливы равенства a=(−a)·(−1) и a=(−1)·(−a) , из которых следует делимость a на число, противоположное числу a , а также делимость a на минус единицу.

    Отметим, что свойство делимости целого числа a на себя называют свойством рефлексивности.

    Следующее свойство делимости утверждает, что нуль делится на любое целое число b .

    Действительно, так как 0=b·0 для любого целого числа b , то нуль делится на любое целое число.

    В частности, нуль делится и на нуль. Это подтверждает равенство 0=0·q , где q – любое целое число. Из этого равенства вытекает, что частным от деления нуля на нуль является любое целое число.

    Также нужно отметить, что на 0 не делится никакое другое целое число a , отличное нуля. Поясним это. Если бы нуль делил целое число a , отличное от нуля, то должно было бы быть справедливо равенство a=0·q , где q – некоторое целое число, а последнее равенство возможно только при a=0 .

    Если целое число a делится на целое число b и a меньше модуля числа b , то a равно нулю. В буквенном виде это свойство делимости записывается так: если ab и , то a=0 .

    Доказательство.

    Так как a делится на b , то существует целое число q , при котором верно равенство a=b·q . Тогда должно быть справедливо и равенство , а в силу должно быть справедливо и равенство вида . Если q не равно нулю, то , откуда следует, что . Учитывая полученное неравенство, из равенства следует, что . Но это противоречит условию . Таким образом, q может быть равно только нулю, при этом получим a=b·q=b·0=0 , что и требовалось доказать.

    Если целое число a отлично от нуля и делится на целое число b , то модуль числа a не меньше модуля числа b . То есть, если a≠0 и ab , то . Это свойство делимости непосредственно вытекает из предыдущего.

    Делителями единицы являются только целые числа 1 и −1 .

    Во-первых, покажем, что единица делится на 1 и на −1 . Это следует из равенств 1=1·1 и 1=(−1)·(−1) .

    Осталось доказать, что никакое другое целое число не является делителем единицы.

    Предположим, что целое число b , отличное от 1 и −1 , является делителем единицы. Так как единица делится на b , то в силу предыдущего свойства делимости должно выполняться неравенство , которое равносильно неравенству . Этому неравенству удовлетворяют только три целых числа: 1 , 0 , и −1 . Так как мы приняли, что b отлично от 1 и −1 , то остается лишь b=0 . Но b=0 не может быть делителем единицы (что мы показали при описании второго свойства делимости). Этим доказано, что никакие числа, отличные от 1 и −1 , не являются делителями единицы.

    Чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы модуль числа a делился на модуль числа b .

    Докажем сначала необходимость.

    Пусть a делится на b , тогда существует такое целое число q , что a=b·q . Тогда . Так как является целым числом, то из равенства следует делимость модуля числа a на модуль числа b .

    Теперь достаточность.

    Пусть модуль числа a делится на модуль числа b , тогда существует такое целое число q , что . Если числа a и b положительные, то справедливо равенство a=b·q , которое доказывает делимость a на b . Если a и b отрицательные, то верно равенство −a=(−b)·q , которое можно переписать как a=b·q . Если a – отрицательное число, а b – положительное, то имеем −a=b·q , это равенство равносильно равенству a=b·(−q) . Если a – положительное, а b – отрицательное, то имеем a=(−b)·q , и a=b·(−q) . Так как и q и −q являются целыми числами, то полученные равенства доказывают, что a делится на b .

    Следствие 1.

    Если целое число a делится на целое число b , то a также делится на число −b , противоположное числу b .

    Следствие 2.

    Если целое число a делится на целое число b , то и −a делится на b .

    Важность только что рассмотренного свойства делимости сложно переоценить - теорию делимости можно описывать на множестве целых положительных чисел, а это свойства делимости распространяет ее и на целые отрицательные числа.

    Делимость обладает свойством транзитивности: если целое число a делится на некоторое целое число m , а число m в свою очередь делится на некоторое целое число b , то a делится на b . То есть, если am и mb , то ab .

    Приведем доказательство этого свойства делимости.

    Так как a делится на m , то существует некоторое целое число a 1 такое, что a=m·a 1 . Аналогично, так как m делится на b , то существует некоторое целое число m 1 такое, что m=b·m 1 . Тогда a=m·a 1 =(b·m 1)·a 1 =b·(m 1 ·a 1) . Так как произведение двух целых чисел является целым числом, то m 1 ·a 1 - это некоторое целое число. Обозначив его q , приходим к равенству a=b·q , которое доказывает рассматриваемое свойство делимости.

    Делимость обладает свойством антисимметричности, то есть, если a делится на b и одновременно b делится на a , то равны либо целые числа a и b , либо числа a и −b .

    Из делимости a на b и b на a можно говорить о существовании целых чисел q 1 и q 2 таких, что a=b·q 1 и b=a·q 2 . Подставив во второе равенство b·q 1 вместо a , или подставив в первое равенство a·q 2 вместо b , получим, что q 1 ·q 2 =1 , а учитывая, что q 1 и q 2 – целые, это возможно лишь при q 1 =q 2 =1 или при q 1 =q 2 =−1 . Отсюда следует, что a=b или a=−b (или, что то же самое, b=a или b=−a ).

    Для любого целого и отличного от нуля числа b найдется такое целое число a , не равное b , которое делится на b .

    Таким числом будет любое из чисел a=b·q , где q – любое целое число, не равное единице. Можно переходить к следующему свойству делимости.

    Если каждое из двух целых слагаемых a и b делится на целое число c , то сумма a+b также делится на c .

    Так как a и b делятся на c , то можно записать a=c·q 1 и b=c·q 2 . Тогда a+b=c·q 1 +c·q 2 =c·(q 1 +q 2) (последний переход возможен в силу ). Так как сумма двух целых чисел является целым числом, то равенство a+b=c·(q 1 +q 2) доказывает делимость суммы a+b на c .

    Это свойство можно распространить на сумму трех, четырех и большего количества слагаемых.

    Если еще вспомнить, что вычитание из целого числа a целого числа b представляет собой сложение числа a с числом −b (смотрите ), то данное свойство делимости справедливо и для разности чисел. Например, если целые числа a и b делятся на c , то разность a−b также делится на с .

    Если известно, что в равенстве вида k+l+…+n=p+q+…+s все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

    Допустим, этим членом является p (мы можем взять любой из членов равенства, что не повлияет на рассуждения). Тогда p=k+l+…+n−q−…−s . Выражение, получившееся в правой части равенства, делится на b в силу предыдущего свойства. Следовательно, число p также делится на b .

    Если целое число a делится на целое число b , то произведение a·k , где k – произвольное целое число, делится на b .

    Так как a делится на b , то справедливо равенство a=b·q , где q – некоторое целое число. Тогда a·k=(b·q)·k=b·(q·k) (последний переход осуществлен в силу ). Так как произведение двух целых чисел есть целое число, то равенство a·k=b·(q·k) доказывает делимость произведения a·k на b .

    Следствие: если целое число a делится на целое число b , то произведение a·k 1 ·k 2 ·…·k n , где k 1 , k 2 , …, k n – некоторые целые числа, делится на b .

    Если целые числа a и b делятся на c , то сумма произведений a·u и b·v вида a·u+b·v , где u и v – произвольные целые числа, делится на c .

    Доказательство этого свойства делимости аналогично двум предыдущим. Из условия имеем a=c·q 1 и b=c·q 2 . Тогда a·u+b·v=(c·q 1)·u+(c·q 2)·v=c·(q 1 ·u+q 2 ·v) . Так как сумма q 1 ·u+q 2 ·v является целым числом, то равенство вида a·u+b·v=c·(q 1 ·u+q 2 ·v) доказывает, что a·u+b·v делится на c .

На этом закончим обзор основных свойств делимости.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.